

Inhaltsverzeichnis

		Seite
	Einleitung	3
Ka	pitel	
1	Die Qualität des Rheinwassers in 2010	7
2	Die Anfangsjahre (1950-1970): RIWA und die Sorge um den Rhein	37
3	Die Aktionsjahre (1970-1986): RIWA sucht die Öffentlichkeit	45
4	Die Jahre des Umschwungs (1986-2000):	
	das Katastrophenjahr und die Sanierung des Rheins	55
5	Jahre des Fortschritts (2000-2011):	
	RIWA vertritt den Standpunkt, dass die Ökologie als Maßstab unzureichend ist	65
6	Die Zukunftsjahre (nach 2011): RIWA weiterhin bedacht auf neue Stoffe	73
7	Laufende und neue Forschungsprojekte	81
8	Erschienene Berichte	85
An	hänge	
1	Die Zusammensetzung des Rheinwassers bei Lobith in 2010	88
2	Die Zusammensetzung des Lekkanalwassers bei Nieuwegein in 2010	108
3	Die Zusammensetzung des Amsterdam-Rheinkanalwassers bei Nieuwersluis in 2010	140
4	Die Zusammensetzung des IJsselmeerwassers bei Andijk in 2010	168
5	Alarmmeldungen in 2010	200
6	Entnahmestopps WCB 1969-2010	202
7	Mitgliedsunternehmen RIWA-Rhein	203
8	Interne Arbeitsgruppen RIWA-Rhein	204
9	Externe Arbeitsgruppen RIWA-Rhein	205
10	Organisation der RIWA-Dachorganisation	206
11	Mitglieder der IAWR	209
12	Vertreter in IAWR-Arbeitsgruppen	210
13	Adressen der RIWA-Arbeitsgruppenmitglieder in alphabetischer Reihenfolge	211
lm	pressum	219
	Frläuterung RIWAnikt	220

Einleitung

Es ist erfreulich, feststellen zu können, dass der im vorigen Jahresbericht verzeichnete Rückgang der Frequenz und Intensität der Wasserbelastung durch die Benzinadditive MTBE und

Dr. Peter G. Stoks

ETBE sich weiter fortgesetzt hat. Die Bemühungen des Verbands der europäischen Kraftstoff-Ether-Industrie (EFOA) und des nordrhein-westfälischen Umweltministeriums haben augenscheinlich Wirkung gezeigt.

Die vermehrten Kontrollen der deutschen Wasserschutzpolizei auf dem Rheinabschnitt strom-aufwärts von Lobith,
bei denen Zuwiderhandelnde sogar "an die Kette" gelegt
wurden, werden ebenfalls hierzu beigetragen haben. Ebenso erfreulich ist die Feststellung, dass trotz einer weniger
intensiven Kontrolle in diesem Berichtsjahr auf niederländischer Seite kein signifikanter Anstieg der Verschmutzungen
stromabwärts von Lobith aufgetreten ist.

Dennoch drängt RIWA-Rhein bei den niederländischen

Behörden darauf, die MTBE-Problematik auch weiterhin ernst zu nehmen: schließlich gib es keine Garantie dafür, dass die Verschmutzungen nicht wieder steigen, sobald die Kontrollen auf deutscher Seite abnehmen.

Auch der bereits eher festgestellte Rückgang der Schwermetallgehalte und, bemerkenswerterweise der Komplexbildner-Gehalte, z.B. des EDTA-Gehalts, haben sich 2010 weiter fortgesetzt. Da es für diese zuletzt genannte Stoffgruppe kaum Alternativen gibt, wurden hierfür im Donau-, Maas- und Rheinmemorandum 2008 notgedrungen höhere Schwellenwerte aufgenommen. Doch auch diese Werte wurden bisher fast permanent überschritten. Die jetzt festgestellte Tendenz lässt hoffen, dass die Überschreitungen zukünftig vielleicht abnehmen könnten.

Positiv sind auch die Ergebnisse einer internationalen mehrjährigen Messkampagne zu neuen Pflanzenschutzmitteln. Dabei handelt sich u.a. um die Mittel Iprodion, Ethofumesat, Dimethenamid-p und Carbendazim, sowie die Metaboliten Desphenylchloridazon und DMS (von Tolylfluanid stammend). Über die Verwendung dieser Mittel und somit das Vorkommen im

Oberflächenwasser des Rheins war kaum etwas bekannt. Die gemessenen Gehalte geben vorläufig noch keinen Anlass zur Sorge.

Bedenklich sind jedoch die Entwicklungen in Bezug auf eine Vielzahl von Stoffen, die von Konsumenten verwendet werden und die hauptsächlich über kommunale Abwasserreinigungsanlagen in das Oberflächenwasser gelangen. Beispielsweise Arzneimittel, künstliche Süßstoffe und Korrosionsschutzmittel, die u.a. in Spülmaschinen verwendet werden.

Im Berichtsjahr veröffentlichten RIWA-Rhein und KWR-Water Cycle Reseach Institute gemeinsam einen Sonderbericht über Arzneimittel. Darin wurde zwar keine starke Zunahme der vorgefundenen Gehalte während des Untersuchungszeitraums festgestellt, konnte aber, neben einer jahreszeitlichen Fluktuation einiger Mittel, wohl ein Zusammenhang zwischen der Verwendung durch Konsumenten und den gemessenen Gehalten im Rheinwasser aufgezeigt werden. Außerdem lagen viele Gehalte über dem Schwellenwert von 0,1 ug/l, der im Donau-, Maas-, und Rheinmemorandum für Stoffe mit einer gezielten biologischen Wirkung festgesetzt wurde. In jeder Gruppe von Arzneimitteln, von Fiebersenkern und Betablockern bis zu Antiepileptika und Antidepressiva, gab es Vertreter, die diesen Schwellenwert überschritten. RIWA-Rhein drängt daher bei den Behörden darauf, in Anlehnung an die für Pflanzenschutzmittel geltende Norm von 0,1 ug/l bei Entnahmestellen, bei Arzneimitteln genauso vorzugehen. Arzneimittel werden ja ebenso wie Pflanzenschutzmittel mit einer gezielten biologischen Wirkung hergestellt.

Seit 2010 wird auch eine Reihe künstlicher Süßstoffe untersucht. Diese Stoffe werden u.a. als Zuckerersatz in Erfrischungsgetränken verwendet. Vor allem der Stoff Acesulfam scheint strukturell vorzukommen, wobei die Gehalte sich um den Schwellenwert von 1 ug/l aus dem Donau-, Maas- und Rhein-Memorandum bewegen.

Des Weiteren wurden das zweite Jahr in Folge einige Vertreter der Stoffgruppe Benzotriazol gemessen, die unter anderem als Korrosionsschutzmittel in Spülmaschinen verwendet werden. Die gemessenen Gehalte entsprechen auch in diesem Jahr in etwa den Gehalten des Vorjahres und bewegen sich um den Schwellenwert von 1 ug/l.

Neu im RIWA-Messprogramm war auch der Stoff 1,4-Dioxan, eine vor allem industriell verwendete Verbindung. Auch hierbei bewegen sich die gemessenen Gehalte, wie bei den Benzotriazolen und den künstlichen Süßstoffen, um den Schwellenwert von 1 ug/l.

Diese Befunde haben unseren Dachverband, die Internationale Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet (IAWR), dazu veranlasst, einen Brief an die Internationale Kommission zum Schutz des Rheins (IKSR) zu senden. Bereits 2006 hatte die IAWR eine Liste mit etwa 15 Stoffen vorgelegt, deren Anwesenheit und Persistenz ein deutliches Problem für eine Trinkwasseraufbereitung mit Hilfe naturnaher Aufbereitung verfahren darstellt.

In diesem Schreiben plädiert die IAWR dafür, die frühere Liste um die nun nachgewiesenen Stoffgruppen zu erweitern.

Es ist bemerkenswert, dass bei den verschiedenen nationalen Behörden deutlich unterschiedliche Auffassungen in Bezug auf Stoffe herrschen, die keine direkte ökotoxikologische Relevanz haben, wohl aber Probleme bei der Trinkwasseraufbereitung verursachen. Einerseits gibt es Mitgliedsstaaten, die Verständnis für eine prinzipiellere Handhabung des auch von der IAWR befürworteten Vorsorgeprinzips haben und andererseits gibt es Mitgliedsstaaten, die humantoxikologischen Kriterien bei der Ableitung von Normen den Vorzug geben.

Humantoxikologische Kriterien würden bei manchen Stoffen jedoch zu extrem hohen Normvorschlägen führen (für Röntgenkontrastmittel sogar in einer Größenordnung von hunderten Milligramm pro Liter und somit sogar noch höher als die geltende Chloridnorm, der höchsten Norm der Trinkwasserverordnung (Waterleidingbesluit)!).

Der Konsument will aber keine Verschmutzung im Trinkwasser, ob unbedenklich oder nicht. Es ist aber keine einzige Trinkwasseraufbereitung zu 100 Prozent effektiv, und selbst die heutigen fortschrittlichen Methoden haben größte Mühe, diese Stoffe zu beseitigen. Daher weist RIWA die Behörden immer wieder auf die in der Wasserrahmenrichtlinie (Artikel 7) enthaltene Verpflichtung, dass der Aufbereitungsaufwand nicht zunehmen dürfe, sondern dass stattdessen die Wasserqualität so zu verbessern sei, dass letztendlich eine Reduzierung des technischen Aufwands ermöglicht werde.

Die Qualität des Rheinwassers im Jahr 2010

Einleitung

Im vorliegenden Kapitel steht die Qualität der Oberflächengewässer im Rheineinzugsgebiet im Jahr 2010 im Mittelpunkt. Bei der Beurteilung der Oberflächengewässer ist die Eignung des Wassers als Quelle für die Trinkwassergewinnung entscheidend. Bei den untersuchten Oberflächengewässern handelt es sich um vier Standorte, und zwar: der Rhein bei Lobith, der Lekkanal bei Nieuwegein, der Amsterdam-Rheinkanal bei Nieuwersluis und das IJsselmeer bei Andijk. An den letzten drei Standorten wird Rheinwasser zur Trinkwassergewinnung entnommen. Vitens entzieht Ufergrundwasser entlang der IJssel bei Zwolle. Oasen verwendet entlang der Rheinarme Merwede, Noord und Lek auch Uferfiltrat für die Trinkwassergewinnung. Diese Unternehmen verfügen nicht über spezielle Messstellen im Rhein. Da es sich bei dem entnommenen Ufergrundwasser indirekt um Rheinwasser handelt, wird dieses Wasser selbstredend eingehend analysiert. In diesen Berichten werden allerdings nur die direkten Analysen des Rheinwassers beschrieben.

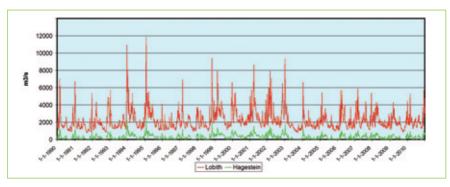
In den Anhänge 1 bis 4 werden die Messergebnisse der vier aufgeführten Oberflächengewässerstandorte als Monatsmittel aufgeführt; daneben werden auch einige andere Kennzahlen des Jahres 2010 aufgelistet.

Im vorliegenden Kapitel wird im Anschluss an eine kurze Betrachtung der DMR-Sollwerte (Donau-, Maas- und Rheinmemorandum 2008) und des RIWA-Wasserqualitätsmessnetzes separat auf einige besondere Punkte und Parameter eingegangen. Anschließend wird noch kurz das Verfahren behandelt, das befolgt wird, wenn für einen Parameter mehrere Ergebnisse an einem Probeentnahmedatum vorliegen.

Donau -, Maas - und Rheinmemorandum 2008 (DMR-Memorandum 2008)

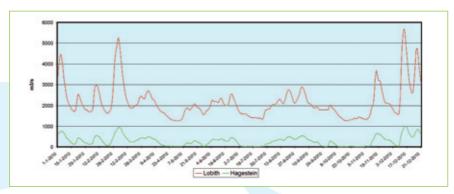
Im Jahr 2008 hat die IAWR (Internationale Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet) das aus dem Jahr 1986 stammende Rheinmemorandum erneut aktualisiert. Diesmal wurde in Zusammenarbeit mit der IAWD (Internationale Arbeitsgemeinschaft der Wasserwerke im Donaueinzugsgebiet) und der RIWA-Maas (Verband der Flusswasserwerke Maas/Meuse) ein Memorandum für die Einzugsgebiete von Maas, Donau und Rhein erstellt. Diese drei Organisationen vertreten gemeinsam 106 Millionen Verbraucher in siebzehn Ländern. Für den Rhein handelt es sich hierbei um die fünfte Fassung dieses Dokuments. Es umfasst Anforderungen im Hinblick auf den nachhaltigen Schutz der Wasserqualität und

konkrete Zielwerte für einige Stoffgruppen. Die Zielwerte werden in diesem Memorandum als Höchstwerte definiert (das gemeinsame Memorandum ist als PDF-Datei auf unserer Webseite zu finden: www.riwa.org) (diesbezüglich wird auch auf Kapitel 2 im Jahresbericht 2008 verwiesen). Allgemeiner Ausgangspunkt dieses DMR-Memorandums ist, dass es für viele Stoffe bereits gesetzliche Normen gibt. Für viele Stoffe, die ausgehend von der Philosophie einer naturnahen Aufbereitung problematisch sind, gibt es allerdings noch keine gesetzlichen Normen. Das DMR-Memorandum ist speziell auf diese Stoffe bzw. Stoffgruppen ausgerichtet. Man ist sich der Tatsache bewusst, dass das DMR-Memorandum keinen gesetzlichen Status hat. Deshalb werden die dort aufgeführten Werte in diesem Jahresbericht auch konsequent als "Zielwerte" aufgeführt.


Das RIWA-Wasserqualitätsmessnetz, RIWA-base

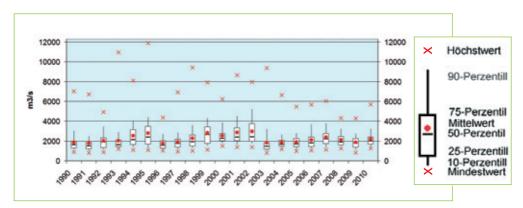
Das RIWA-Wasserqualitätsmessnetz im Rheineinzugsgebiet umfasste im Jahr 2010 vier Messstellen, und zwar: Lobith, Nieuwegein (oder Hagestein für den Abfluss), Andijk und Nieuwersluis. Neben der mehr oder weniger konventionelle Prüfung von Parametern wird ein umfangreiches Paket organischer Mikroverunreinigungen untersucht, wie z.B. Arzneimittel, hormonell wirksame Stoffe und mittels einer Screening-Untersuchung oder über (inter-)nationale Kontakte andere neue, in Oberflächengewässern vorkommende problematische Stoffe (emerging Substances). Konform zu den Langzeitvereinbarungen im Rahmen der IAWR, unseres Dachverbands im gesamten Rheineinzugsgebiet, werden die auszuführenden Messungen in ein so genanntes Grundprogramm mit bestimmten Messfrequenzen und fest beschriebenen Parametern für alle Probeentnahmestellen sowie ein so genanntes "erweitertes Programm" unterteilt, in dessen Rahmen und nur an den wichtigsten Probeentnahmestellen regelmäßig veränderbare Parameter untersucht werden. Lobith ist eine dieser wichtigen Probeentnahmestellen. In Lobith wird vor allem die Qualität des Wassers beim Einströmen in die Niederlande festgestellt. Die Untersuchung der Wasserqualität im niederländischen Teil des Rheineinzugsgebiets wird hauptsächlich vom Labor der Wasserwerke (HWL) und von Rijkswaterstaat (RWS) Waterdienst ausgeführt. RIWA-Rhein hat das in Karlsruhe ansässige Technologiezentrum Wasser (TZW) auch im Jahr 2010 mit der Analyse der an der Probeentnahmestelle Lobith vorgefundenen Arzneimittel, Nitrosoverbindungen, Komplexbildner und AOX beauftragt. Die Daten werden in einer Datenbank (RIWA-base) gespeichert. In der RIWA-base werden alle Messreihen auch auf Zielwertüberschreitungen und das Vorliegen bzw. die Abwesenheit etwaiger Trends hin untersucht. Die Trends werden mit einer Zuverlässigkeit von 80% und 95% berechnet (Für eine Erläuterung des Verfahrens wird auf Kapitel 2 und Anhang 7 des Jahresberichts 2005

verwiesen, der auf unserer Webseite verfügbar ist). Mit RWS/Waterdienst hat RIWA-Rhein eine Vereinbarung über den Austausch der Daten der verschiedenen Messstellen getroffen, um auf diese Weise doppelte Analysen zu vermeiden.

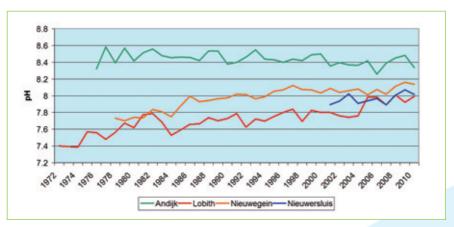

Wasserabfluss

Der durchschnittliche Wasserabfluss des Rheins bei Lobith betrug im Jahr 2010 2183 m³/s (siehe Grafik 1.1) und entsprach damit wieder dem gleitenden 20-jährigen Mittelwert von 2223 m³/s. Dieser gleitende Mittelwert schwankt seit 1912 zwischen 2000 und 2500 m³/s. Der 5-jährige gleitende Mittelwert beträgt 2128 m³/s.

Grafik 1.1 Wasserabfluss des Rheins bei Lobith und des Lek bei Hagestein 1990-2010


Der Wasserabfluss bei Lobith schwankte im Jahr 2010 zwischen 1260 und 5692 m³/s. Im Berichtsjahr zeigte der Abfluss wieder das vertraute Bild mit Abflussspitzen im Frühjahr und Herbst (siehe Grafik 1.2).

Grafik 1.2 Wasserabfluss des Rheins bei Lobith und des Lek bei Hagestein 2010


Im Hinblick auf den Wasserabfluss zeigt Hagestein ein ähnliches Bild wie Lobith. Die Werte im Jahr 2010 lagen zwischen o und 1015 m³/s und das Jahresmittel betrug 283 m³/s. Der 20-jährige bzw. 5-jährige gleitende Mittelwert beläuft sich bei Hagestein auf 294 und 250 m³/s.

Grafik 1.3 Boxplot der Abflussmengen der letzte 21 Jahre bei Lobith

Aus Grafik 1.3 ist abzulesen, dass in den letzten Jahren ein relativ niedriger Abfluss vorlag, dass immer Extremwerte vorkommen, dass aber auch die Extremwerte abzunehmen scheinen.

Säuregrad

Grafik 1.4 Jahresmittel des Säuregrads während der vergangenen 38 Jahre

Beim Parameter Säuregrad wird die Feststellung aus dem vorigen Berichtsjahr bestätigt. Im niederländischen Teil des Rheineinzugsgebietes, mit Ausnahme des IJsselmeers bei Andijk, ist der Säuregrad in den vergangenen Jahrzehnten gestiegen. Grafik 1.4 verdeutlicht dies. Bereits seit über dreißig Jahren steigt der Wert allmählich an. Alle gemessenen Werte während des Jahres 2010 liegen noch immer unter pH 9,00 (Zielwert DMR-Memorandum), bei Nieuwegein und Nieuwersluis zeigte sich bei der Trendberechnung jedoch wie im Vorjahr ein signifikanter Anstieg des Trends während der letzten fünf Jahre (siehe Abbildung 1.1).In dieser Abbildung ist zu sehen, dass der Säuregrad, mit Ausnahme von Andijk, seit Beginn der 80er Jahre regelmäßig signifikante ansteigende Trends aufweist.

Abbildung 1.1 Trend- und Normpalette des Säuregrads während der vergangenen 30 Jahre Für eine Erläuterung der verwendeten Piktogramme verweisen wir auf Seite 220.

Wie bereits im vergangenen Jahr aufgezeigt, ist der im Laufe der Jahre erfolgte Anstieg der Wassertemperatur wahrscheinlich die Hauptursache für dieses Phänomen. Hierdurch verändern sich verschiedene chemische und biologische Prozesse, was einen Anstieg des Säuregrads zur Folge hat.

Bei den Messungen der Wassertemperatur im Jahr 2010 konnten keine signifikanten 5-Jahres-Trends aufgezeigt werden Bei Lobith wurde wohl der DMR-Zielwert von 25 °C überschritten.

Anorganische Stoffe

Auch in diesem Berichtsjahr wurde das Wasser an den Messstellen im Rheineinzugsgebiet auf eine Reihe anorganischer Stoffe geprüft. Für einige dieser Stoffe wurde ein Zielwert in das DMR-Memorandum aufgenommen.

Wasserzusammensetzung

Tabelle 1.1 erteilt eine Übersicht über einige Extremwerte (die gemessenen Höchstwerte und für Sauerstoff die gemessenen Tiefstwerte) des Rheinwassers bei Lobith, des Lekkanalwassers bei Nieuwegein, des Amsterdam-Rheinkanalwassers bei Nieuwersluis und des IJsselmeerwassers bei Andijk.

		DMR 2008	Lobith		Nieuwegein		Nieuwersluis		Andijk	
		Zielwert	2009	2010	2009	2010	2009	2010	2009	2010
Allgemeine Kenngrössen										
Wassertemperatur	mg/L	25	23,1	26,8	22,4	22,2	24,4	23,4	22,3	23,7
Sauerstoff	mg/L	>8.0	8,4	7,3	7,6	7,0	6,8	7,0	6,0	6,2
Elektrische Leitfähigkeit	mS/M	70	80	74	67	76	67	64	90	76
Anione										
Chlorid	mg/L	100	137	172	98	116	95	90	154	125
Katione										
Ammonium-NH4	mg/l	0,3	0,32	0,23	0,31	0,27	0,39	0,64	0,35	0,21

Tabelle 1.1 In dieser Tabelle wurde die an den vier Messstellen ermittelte Wasserqualität mit den Zielwerten des DMR-Memorandums 2008 verglichen. Der gemessene Höchstwert (für Sauerststoff der Tiefstwert) wird in der Tabelle aufgeführt. Die rotgedruckten Werte erfüllen die entsprechende Norm nicht.

Konservative anorganische Stoffe

Stoffe wie z.B. Chlorid, Sulfat, Natrium, Kalium und Magnesium werden "konservativ" genannt, da ihr Gehalt nur durch Verdünnung und Ausscheidung der Ionen beeinflusst wird und nicht durch die physikalisch-chemischen oder biologische Prozesse, die sich in einem Fluss oder See abspielen. Die Schwankungen der Gehalte dieser Stoffe im Wasser werden demnach hauptsächlich vom Umfang der Einleitungen und dem Abfluss bestimmt.

Bei Lobith fällt auf, dass der rückläufige Trend für Chlorid und Sulfat das vierte Jahr in Folge bestehen bleibt. Auch die Chloridfracht nimmt signifikant ab. Bei den anderen Probeentnahmestellen wurden, im Gegensatz zu den Jahren 2008 und 2009, keine rückläufigen Messwerte dieser Parameter aufgezeigt.

Elektrische Leitfähigkeit (eLF)

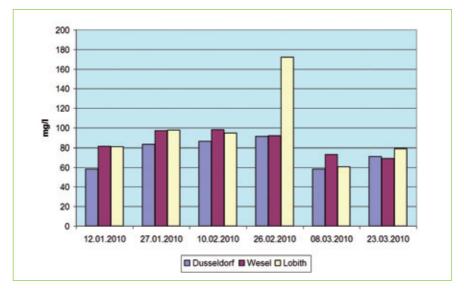
Die elektrische Leitfähigkeit ist ein Gruppenparameter, der ein globales Bild des Gesamtsalzgehalts in einer untersuchten Wasserprobe vermittelt. Insbesondere die oben genannten konservativen organischen Stoffe sind ausschlaggebend für die eLF. Das Registrieren von Messungen der elektrischen Leitfähigkeit ist ein Hilfsmittel, um schnell diesbezügliche Schwankungen der Wasserqualität feststellen zu können.

Der signifikante Rückgang der vergangenen Jahre hat sich im Jahr 2010 bei keiner der 4 Probeentnahmestellen fortgesetzt; bei Lobith und Nieuwersluis ist in den vergangenen 5 Jahren

jedoch noch immer eine rückläufige Tendenz zu verzeichnen. Lediglich bei Nieuwersluis wurde der DMR-Zielwert (70 mS/m) im Jahr 2010 unterschritten; die anderen Punkte zeigten eine Überschreitung. Bei Lobith genügte das 90-Perzentil dem Zielwert, während in Andijk und Nieuwegein auch diese Kennzahl darüber lag. Siehe auch die Anhänge 1 bis 4 ab Seite 88.

Chlorid

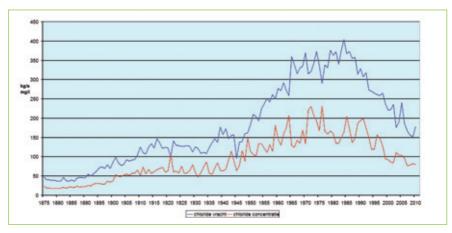
Bei Lobith fällt auf, dass Chlorid bei der Trendanalyse seit 2007 mit einer Zuverlässigkeit von 95% eine signifikante Verminderung erkennen lässt. Die anderen Probeentnahmestellen verzeichnen im Jahr 2010 keinen Trend; der Trend bei Nieuwegein wird nicht fortgesetzt, obwohl der Abfluss und damit die Verdünnung im Jahr 2010 höher war als im Jahr 2009. Auch hier ist erkennbar, dass der höchste Messwert an drei der vier Standorte über dem Zielwert liegt und der Höchstwert im Jahr 2010 bei Nieuwersluis 80 bis 100% dieses Zielwerts entspricht. (Siehe Abbildung 1.2).


Abbildung 1.2 Trend- und Normpalette der Chloridkonzentrationen an den Probeentnahmestellen im Zeitraum 2000-2010 Jahre. Für eine Erläuterung der verwendeten Piktogramme verweisen wir auf Seite 220

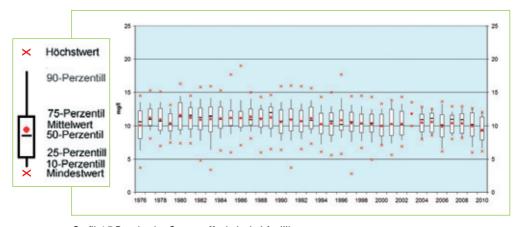
Die gemessene Höchstkonzentration des Jahres 2010 bei Lobith betrug 172 mg/l. Dieser Wert, der am 24. Februar gemessen wurde, ist außergewöhnlich hoch. 1999 wurde das letzte Mal ein derart hohes Jahresmaximum gemessen.

Grafik 1.5 zeigt diese Werte zusammen mit den anderen Messungen stromaufwärts, in Düsseldorf und Wesel (diese letzteren Werte können um einen Tag verschoben sein).

Eine Nachfrage bei RWS/Waterdienst, das die Messdaten für Lobith liefert, bot keinen Aufschluss über diesen außergewöhnlichen Wert. Möglicherweise ist die Auswaschung von Streusalz in diesem Zeitraum hierfür die Ursache. In diesem Falle ist es besonders schade, dass die Messfrequenz in den vergangenen Jahren von täglich auf vierzehntäglich gesenkt wurde.


Grafik 1.5 Chloridgehalt bei Lobith 1. Quartal 2010

Die Höchstwerte bei Andijk (125 mg/l) und Nieuwegein (116 mg/l) liegen ebenfalls über dem DMR-Zielwert von 100 mg/l. Bei Nieuwersluis lag der Gehalt mit einem Höchstwert von 90 mg/l das ganze Jahr über unter dem Zielwert. Die durchschnittliche Chloridfracht bei Lobith von 178 kg/s im Jahr 2010 war etwas höher als in den vorangegangenen Jahren. Der Trend bleibt jedoch weiter rückläufig.


Sauerstoffgehalt und Sauerstoffsättigung

Das DMR-Memorandum 2008 sieht als Zielwert für den Sauerstoffgehalt einen Wert von über 8,0 mg/l vor. Bei allen Probeentnahmestellen liegt der Jahrestiefstwert unter diesem Wert. Lediglich das 10-Perzentil bei Lobith genügte dem Zielwert. Bei Andijk entsprach selbst das 25-Perzentil mit einem Wert von 7,9 mg/l nicht dem Zielwert.

Der nachstehende Boxplot verdeutlicht dies. Außerdem wird deutlich, dass die meisten Kennzahlen der vergangenen 3 Jahre sinken. Das Jahresmittel von 9,4 mg/l ist der niedrigste Wert, der seit Beginn der Messreihe im Jahr 1976 berechnet wurde. Obwohl der 5-Jahres-Trend bei 95% Zuverlässigkeit nicht signifikant rückläufig ist, ist er dies bei 80% Zuverlässigkeit wohl, was gemeinsam dennoch eine rückläufige Tendenz suggeriert.

Grafik 1.6 Übersicht über den Chloridverlauf von 1875 bis 2010 (Jahresmittel)

Grafik 1.7 Boxplot des Sauerstoffgehalts bei Andijk

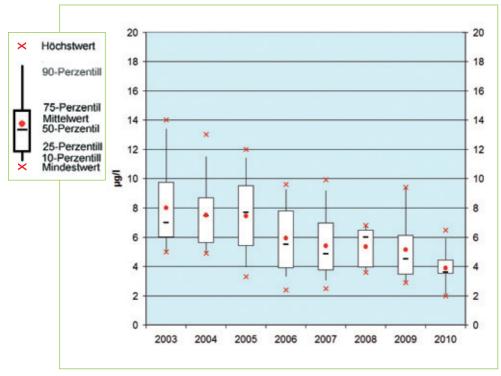
Die Sauerstoffsättigung bei Andijk zeigt einen ähnlichen Verlauf, während bei den übrigen Probenentnahmestellen dasselbe Bild wie in den vorangegangenen Jahren zu sehen ist.

Eutrophierende Stoffe (Nährstoffe)

Lediglich bei Nieuwersluis liegt mit einem Höchstwert von 0,64 mg/l eine erhebliche Überschreitung des Zielwerts für Ammonium (0,3 mg/l) vor; Nieuwegein liegt mit 0,27 mg/l noch etwas darunter. Wir verweisen diesbezüglich auf Tabelle 1.1. und die Anhänge 1 bis 4 ab Seite 88.

Metalle

Die Gruppe der Metalle weist bei keiner der Probeentnahmestellen Besonderheiten auf. Der im letzten Jahr festgestellte Anstieg des Bleigehalts bei Nieuwegein hat sich nicht weiter fortgesetzt. Das DMR-Memorandum 2008 enthält keine Zielwerte für diese Gruppe, da es hierfür bereits gesetzliche Normen gibt. Barium zeigt bei in Lobith und Nieuwegein Überschreitungen des Zielwerts aus dem BKMW (Beschlussentwurf Qualitätsanforderungen und Wasser-monitoring) von 100 µg/l.


Die Reinigungsmechanismen der Trinkwasserwerke sind gut dazu in der Lage, Metalle mit relativ einfachen Mitteln aus dem entnommenen Wasser zu entfernen.

Waschmittelbestandteile und Komplexbildner

Diese Gruppe von Stoffen im RIWA-Messnetz besteht u.a. aus den Stoffen NTA, EDTA und DTPA. Obgleich diese Stoffe an sich nicht besonders toxisch sind, haben sie durch ihr Komplexierungsvermögen die Eigenschaft, Schwermetalle aus Schlamm freizusetzen und in Wasser aufgelöst zu halten, wodurch sie sich bei der Trinkwasseraufbereitung schwieriger entfernen lassen. Hierdurch werden u.a. Cadmium und Quecksilber für vielerlei Wasserorganismen erneut verfügbar – mit allen damit verbundenen Konsequenzen. Das DMR-Memorandum 2008 enthält einen Zielwert für schwer abbaubare Komplexbildner (5 μ g/l). Diese Stoffe wurden an allen vier Messstellen analysiert. Bei allen Messstellen wurde vor allem EDTA weit über diesem Schwellwert angetroffen. In Lobith ist wohl das vierte Jahr in Folge ein rückläufiger Trend erkennbar.

Organischer Kohlenstoff (TOC, DOC)

TOC (gesamter organischer Kohlenstoff) und dessen filtrierte Variante DOC sind ein nicht spezifischer Indikator für die Gewässerbelastung mit organischen Stoffen. Die Höchstwerte der im Jahr 2010 gesammelten Messreihen für TOC und DOC erfüllten wie in den vorangegangenen Jahren an keiner der vier Messstellen den DMR-wert (4 bzw. 3 mg/l C). Lediglich Lobith zeigte noch einen rückläufigen Trend in Bezug auf TOC. Diese Messstelle verzeichnet gemeinsam mit Nieuwegein auch eine bessere Qualität als die übrigen Messstellen. TOC und DOC lagen bei über der Hälfte der Messungen und als Mittelwerte unter den Zielwerten. Mehr als die Hälfte der Messungen in Nieuwersluis genügte den Zielwerten nicht; bei Andijk entsprach keine einzige Messung dem Zielwert.

Grafik 1.8 Boxplot des Gehalts an Ethylendiamintetraessigsäure (EDTA) bei Andijk Siehe Tabelle 1.2 und die Anhänge am Ende dieses Berichts.

Adsorbierbare organische Halogenverbindungen (AOX)

Im Berichtsjahr 2010 entsprachen Lobith und Andijk dem DMR-Zielwert (25 μ g/l Cl) nicht; der gemessene Höchstwert bei Lobith betrug 47 μ g/l. Auch hier ist, wie in den vorangegangenen Jahren, ein steigender Trend erkennbar.

Organische Mikroverunreinigungen

Tabelle 1.2 enthält die gemessenen Höchstwerte einzelner organischer Mikroverunreinigungen, die an einer Messstelle (oder an mehreren Messstellen) im Rheineinzugsgebiet den im DMR-Memorandum vorgesehenen Zielwert nicht erfüllten.

In den Anhängen am Ende dieses Jahresberichts wird die Gesamtzahl der Stoffe, einschließlich der Parameter, die dem DMR-Zielwert wohl entsprachen, aufgeführt.

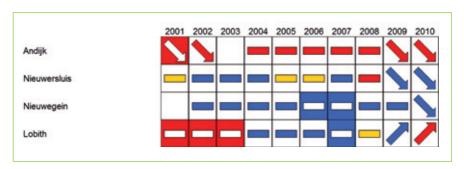


Abbildung 1.3 Trend- und Normpalette der AOX-Konzentrationen bei den Probeentnahmestellen im Zeitraum 2001 – 2010. Für eine Erläuterung der verwendeten Piktogramme verweisen wir auf Seite 220.

		DMR 2008	Lobith	Nieuwegein	Andijk	Nieuwersluis
		Zielwert	2010	2010	2010	2010
Gruppenparameter						
TOC	mg/L	4,0	7,0	4,1	8,9	7,8
DOC	mg/L	3,0	4,0	3,4	7,4	7,3
AOX	μg/L	25	47,0		32	
AOS	μg/L	80	-		120	170
Komplexbildner						
Nitrilotriacetat (NTA)	μg/L	5				14
Ethylendinitrilotetraacetat (EDTA)	μg/L	5	6,5	6,5	7,8	13,5
Flüchtige halogenierte Kohlenwass	erstoff	e				
1,2-Dichlorethan	μg/L	0,1	51,00			
Dichlormethan	μg/L	0,1	*)			
1,1,2,2-Tetrachlorethan	μg/L	0,1	*)			
Monozyklische arom. Kohlenwasse	rstoffe	(MAK's)				
Ethylbenzol	μg/L	1				3,0
Toluol	μg/L	1				2,5
1,3- und 1,4-Dimethylbenzol	μg/L	1				2,1
Organochlorpestizide						
3-Chlorpropen (Allylchlorid)	μg/L	1	*)	-	-	-
Dicophol	μg/L	1	-	*)	*)	*)
Halogenierte Säure						
Monochloressigsäure	μg/L	0,1	-	*)	*)	*)
Monobromessigsäure	μg/L	0,1	-	*)	*)	*)
Dichloressigsäure	μg/L	0,1	-	0,36	*)	0,45
Dibromessigsäure	μg/L	0,1	-	*)	0,42	*)
Trichloressigsäure (TCA)	μg/L	0,1	0,17	0,22	0,29	0,24

⁻ keine Messdaten

^{*)} Zielwertprüfung aufgrund zu hoher Nachweisgrenzen unmöglich Hinweis: ein leeres Feld, keine Überschreitungen

Fortsetzung tabelle

		DMR 2008 Zielwert	Lobith 2010	Nieuwegein 2010	Andijk 2010	Nieuwersluis 2010
Organophosphor und -Schwefelpes	tizide	2.0.000	20.0	20.0	2010	20.0
Glyfosat	μg/L	0,1		0.14		0.15
AMPA	μg/L	0,1	0,69	0,59	0.30	0,68
Organostickstoffpestizide	P9/ L	0,1	0,00	0,00	0,00	0,00
Azoxystrobin	μg/L	0,1		*)	*)	*)
Phenylharnstoffpestizide	F-5/-	-7.		,	,	,
Isoproturon	μg/L	0,1	0.17			
Carbamatpestizide	F-5/-	-7.	-,			
Butocarboximsulphoxid	μg/L	0,1	-	*)	*)	0,3
Conazole	F-5/-	-7.		,	,	-7-
Diphenoconazol	μg/L	0,1		*)	*)	*)
Sonstige Pestizide und Metabolite	P9/ -	0/1		,	,	,
Dimethenamid	μg/L	0,1	*)		-	
Ether	F-3/-	-7.	,			
Ethyl-Tertiär-Butylether (ETBE)	μg/L	1	4,00			
1,4-Dioxan	μg/L	1	1,20	*)	*)	*)
Sonstige organische Stoffe	1 3,			·	<u> </u>	,
4-Methylbenzotriazol	μg/L	1	0,57	*)	*)	*)
Röntgenkontrastmittel	10					
Amidotrizoesäure	μg/L	0,1	0,22	0,36	0,11	0,17
lohexol	μg/L	0,1	0,26	0,14		0,11
lomeprol	μg/L	0,1	0,77	0,52	0,29	0,42
lopamidol	μg/L	0,1	0,48	0,31	0,14	0,18
lopromid	μg/L	0,1	0,27	0,60		0,38
lotalaminsäure	μg/L	0,1	2.0			0,12
Antibiotika						
Dapson	μg/L	0,1		*)		
Sulfadiazin	μg/L	0,1		*)		-
Sulfadimidin	μg/L	0,1	-	*)		
Sulfamerazin	μg/L	0,1	-	*)	-	-
Sulfamethoxazol	μg/L	0,1		*)		
Sulfaquinoxalin	μg/L	0,1	-	*)		
Sulfachlorpyridazin	μg/L	0,1	-	*)	*)	*)
Sulfadimethoxin	μg/L	0,1		*)		
Sulfanilamid	μg/L	0,1	-	*)		
Hydrochlorthiazid	μg/L	0,1	-	0,11		0,12
Theophyllin	μg/L	0,1	-	0,12		
Betablocker						
Metoprolol	μg/L	0,1	0,14	0,13		0,19
Propranolol	μg/L	0,1			0,39	
Sotalol	μg/L	0,1				0,13

		DMR 2008	Lobith	Nieuwegein	Andijk	Nieuwersluis
		Zielwert	2010	2010	2010	2010
Schmerzbehandlungsmittel						
Diclofenac	μg/L	0,1	0,11	0,18		0,16
Phenazon	μg/L	0,1	-	0,23		
Antidepressiva und Drogen						
Fluoxetin	μg/L	0,1	-		0,75	0,18
Sonstige pharmazeutische Wirksto	ffe					
Coffein	μg/L	0,1	-	0,33	0,16	0,35
Carbamazepin	μg/L	0,1	0,11		0,14	0,11
Metformin	μg/L	0,1	-	0,87	0,57	0,54
Endokrin wirksame Stoffe (EDC's)						
Dibutylphtalat (DBPH)	μg/L	0,1	-	-	6,10	100
Di(2-Ethylhexyl)Phtalat (DEHP)	μg/L	0,1	*)	*)	2,20	*)
17-Alpha-Ethinylöstradiol	μg/L	0,1	-	*)	*)	*)
Di-(2-methyl-propyl)phtalat	μg/L	0,1	-	-	1,40	*)
Summe 4-Nonylphenol Isomeren	μg/L	0,1		*)	*)	0,91
Akitivität gegenüber 17-Beta- Östradiol (EEQ)	μg/L	0,1	0,82			
Diheptylphtalat	μg/L	0,1	-	-	0,12	-
Künstliche Süssstoffe						
Acesulfam	μg/L	1	2,7	-	-	-

⁻ keine Messdaten

Hinweis: ein leeres Feld, keine Überschreitungen

Tabelle 1.2: Vergleich der Qualität des Oberflächenwassers im Rheineinzugsgebiet mit dem DMR-Zielwert. In der Tabelle wird der höchste gemessene Wert wiedergegeben, falls der Parameter den DMR-Zielwert überschritten hat. Wird dieser Wert um mindestens das Fünffache überschritten, wird er in Weiß auf rotem Hintergrund wiedergegeben.

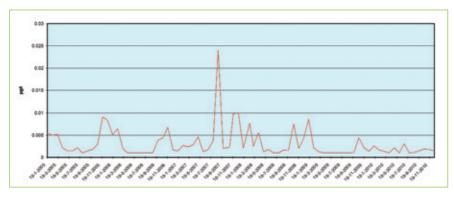
Flüchtige halogenierte Kohlenwasserstoffe

Die Gruppe flüchtiger halogenierter Kohlenwasserstoffe besteht hauptsächlich aus einfachen Kohlenwasserstoffen, die an ein oder mehrere Halogene gekoppelt sind. Der außergewöhnliche Wert von 51 µg/l für 1,2-Dichlorethan, der am 20. Oktober gemessen wurde, wurde durch eine illegale Einleitung verursacht (siehe Anhang 5). Die festgestellten Trends wurden alle durch die im Laufe der Zeit geänderten Bestimmungsgrenzen verursacht. Dabei fällt vor allem der Stoff Dichlormethan noch immer auf, da für ihn eine völlig unbrauchbare Bestimmungsgrenze von 10 µg/l festgelegt wurde. Von den insgesamt 1281 Messungen an den vier Probeent-

^{*)} Zielwertprüfung aufgrund zu hoher Nachweisgrenzen unmöglich

nahmestellen liegen lediglich 45 Werte über der Analysegrenze und nur ein einziger Wert, die oben erwähnte Einleitung, überschreitet den DMR-Zielwert (0,1 μ g/l). Tetrachlorethylen wird am häufigsten bei Lobith, Nieuwegein und Nieuwersluis über der Bestimmungsgrenze angetroffen.

Aromatische Stickstoffverbindungen


Aromatische Stickstoffverbindungen werden häufig als Grundstoff für die Synthese von Farbstoffen (Farbe, Textilien, Nahrungsmittel, Kosmetik), Gummi, Sprengstoffen, Pestiziden und pharmazeutischen Produkten verwendet oder als Medien in diesen Prozessen eingesetzt. Einige aromatischer Amine werden im Rheineinzugsgebiet hergestellt. An drei der vier RIWA-Rhein-Messstellen wurde diese Gruppe von Stoffen ausführlich untersucht; bei Lobith erfolgte dies nur in Bezug auf zwei Bestandteile. Alle Messwerte erfüllten den DMR-Zielwert (0,1 µg/l). Lediglich 1 Prozent der insgesamt 1098 Messungen lag knapp über der Bestimmungsgrenze, insbesondere 5 Messungen von Anilin bei Nieuwegein.

Nitrosoverbindungen

Zu dieser Gruppe gehört u.a. der Stoff NDMA. Für die Höchstkonzentrationen dieser Stoffe in Oberflächengewässern wurde noch keine endgültige Norm festgelegt. Diese zukünftige Norm wird voraussichtlich zwischen 0,002 und 0,010 µg/l liegen werden. US EPA handhabt eine sehr niedrige Norm von 0,7 ng/l. Die Stoffe stehen aufgrund ihrer karzinogenen Wirkung bei bereits sehr niedrigen Konzentrationen im Brennpunkt des Interesses, da sie mit einfachen Aufbereitungsverfahren schlecht entfernt werden und da z.B. NDMA bei Oxidierungsschritten im Laufe des Aufbereitungsverfahrens oder in Kläranlagen aus Vorstufen gebildet werden kann, die eigentlich unschädlich sind. Im Jahresbericht 2005 wurde ausführlich auf diese Gruppe von Stoffen eingegangen. Diese Gruppe wurde nur bei Lobith analysiert. In Lobith wurden dieses Jahr für einen Parameter, N-Nitrosomorpholin (NMOR), Werte über der Bestimmungsgrenze (0.001 µg/l) ermittelt. Aufgrund der Messergebnisse der vergangenen Jahre wird diese Gruppe von Stoffen ab 2011 nicht mehr im Messprogramm berücksichtigt.

Monozyklische aromatische Kohlenwasserstoffe (MAK)

Hierbei handelt es sich um eine sehr umfangreiche Gruppe von Stoffen, von denen einige in Benzin ihren Ursprung haben. Es werden noch immer viele Daten zu dieser Gruppe gesammelt. Die festgestellten Trends wurden in der Hauptsache wiederum durch die Erhöhung der Bestimmungsgrenzen bei den Labors verursacht. An den vier Probeentnahmestellen wurden

Grafik 1.9 Konzentration N-Nitrosomorpholin (NMOR) bei Lobith

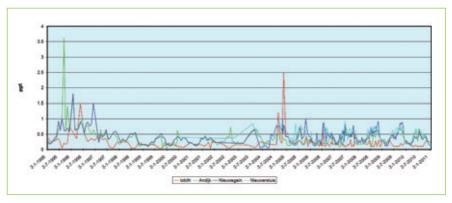
insgesamt 94 Reihen untersucht. Nur drei dieser Reihen erfüllten den Zielwert des DMR-Memorandums nicht. Lediglich bei Nieuwersluis wurden 3 Überschreitungen festgestellt, vor allem für Ethylbenzen, Methylbenzen (Toluen) und 1,3- und 1,4-Dimethylbenzen.

Wir verweisen diesbezüglich auf Tabelle 1.2.

Polyzyklische aromatische Kohlenwasserstoffe (PAK)

Polyzyklische aromatische Kohlenwasserstoffe werden hauptsächlich bei Verbrennungsprozessen freigesetzt, wie z.B. bei der Verbrennung fossiler Brennstoffe und bei der Abfallverbrennung. Die atmosphärische Ablagerung ist daher eine wichtige Quelle für die Wasserverschmutzung. Auch im Straßenverkehr werden beträchtliche Mengen PAK produziert, insbesondere durch Fahrzeuge mit Dieselmotor. PAK kommen ferner in Teerprodukten vor. Da diese u.a. in Straßenbelägen, bei der Holzkonservierung, im Schiffsbau, im Wasserbau und für die Verkleidung von Rohren und Fässern verwendet werden, gelangen PAK auch auf diese Weise in die Oberflächengewässer. Bei den insgesamt 474 Analysen im Jahr 2010 wurde keine einzige Überschreitung des Zielwerts festgestellt; 142 reelle Zahlen aus diesen Analysen lagen unter dem Zielwert, aber über der untersten Analysegrenze.

Wir verweisen diesbezüglich auf Seite 88 und die nachfolgenden Seiten.


Organophosphor- und Organoschwefelpestizide

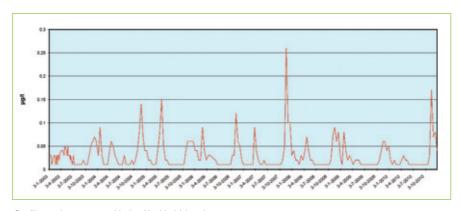
Von den untersuchten Pestiziden aus der Gruppe der Organophosphor- und Organoschwefelpestizide steht vor allem der Stoff Glyphosat im Brennpunkt des Interesses. Glyphosat ist ein Wirkstoff, der in vielen Unkrautbekämpfungsmitteln vorkommt, die auch für Privat-

personen weithin erhältlich sind. Glyphosat wird vor allem in China hergestellt. Ende 2010 lag die erwartete Herstellungskapazität dort bei 850.000 Tonnen jährlich, einschließlich der Kapazität von Monsanto in China, dem Hersteller, der ursprünglich in den Vereinigten Staaten produzierte. In China selbst werden etwa 50.000 Tonnen verbraucht; der Rest wird exportiert. Der Gesamtbedarf des Weltmarkts wird jedoch auf maximal 750.000 Tonnen geschätzt. Dies beinhaltet einen niedrigen Preis und eine überschwängliche Verfügbarkeit und Verwendung. An den Messstellen Nieuwegein und Nieuwersluis gab es die höchsten Messwerte (0,14 bzw. 0,15 µg/l), die beide über dem DMR-Zielwert lagen. An den übrigen Probeentnahmestellen wurden keine Überschreitungen des Zielwerts festgestellt.

Auch die Verbindung Aminomethylphosphonsäure, besser bekannt als AMPA (ein Abbauprodukt von Glyphosat) überschreitet den DMR-Zielwert noch immer erheblich. Bei Andijk wurde ein Höchstgehalt von 0,30 μg/l gemessen; bei den anderen Probeentnahmestellen wurde der Zielwert jedoch um mindestens das Fünffache überschritten: Lobith 0,69 μg/l, Nieuwegein 0,59 und Nieuwersluis 0,68 μg/l.

Grafik 1.10 Aminomethylphosphonsäure (AMPA) Verlauf seit 1995

Alle übrigen Messwerte dieser Stoffgruppe entsprachen dem DMR-Zielwert.


Chlorphenoxy-Herbizide

Chlorphenoxy-Herbizide bilden eine Gruppe chlorhaltiger Unkrautbekämpfungsmittel, deren bekannteste Vertreter MCPA, MCPP und 2,4-D sind. Auch hier zeigt sich dasselbe Bild wie bei den aromatischen Stickstoffverbindungen und PAK: keine Überschreitungen und nur 21 reelle Messwerte bei insgesamt 266 Analysen im Jahr 2010. Die in den Tabellen aufgeführten

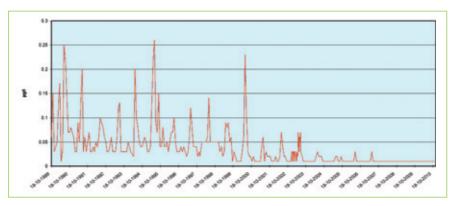
ansteigenden Trends werden auch hier durch die Anhebungen der untersten Analysegrenze verursacht.

Phenylharnstoffherbizide

Von den untersuchten Pestiziden, die zur Gruppe der Phenylharnstoffherbizide gehören, sind Isoproturon und Chlortoluron die bekanntesten. Mit Ausnahme von Lobith wurde für keinen der analysierten Parameter Überschreitungen festgestellt. In der Vergangenheit wurden hier noch regelmäßig Isoproturonwerte über dem DMR-Zielwert von 0,1 µg/l gemessen. Die von der Internationalen Kommission zum Schutz des Rheins (IKSR) formulierten Empfehlungen anlässlich dieser Überschreitungen haben anscheinend Wirkung gezeigt.

Grafik 1.11 Isoproturon-Verlauf bei Lobith seit 2003

Dinitrophenol-Herbizide


Oberflächengewässer werden seit 1992 auf das Vorkommen von Dinitrophenolen geprüft. Bei den untersuchten Stoffen handelt es sich u.a. um DNOC, Dinoseb und Dinoterb. Diese werden hauptsächlich als Unkrautbekämpfungsmittel und Krautvertilgungsmittel im Kartoffelanbau eingesetzt.

Die Stoffe wurden an allen Messstellen untersucht. Bei 219 Analysen bezüglich dieser Parameter wurden keine Überschreitungen festgestellt; lediglich 2 reelle Messwerte lagen über der Bestimmungsgrenze.

Triazine

Die wichtigsten Emissionen von Triazinen in Gewässer wurden in der (jüngsten) Vergangenheit insbesondere durch die Verwendung von Atrazin als Unkrautbekämpfungsmittel in der Landwirtschaft und im Gartenbau verursacht. Das EU-weite Verbot der Verwendung von Atrazin zeigt deutlich Wirkung: Triazine werden bei den Analysen kaum mehr nachgewiesen. An den Entnahmestellen unterschritten die Werte die Grenze von 0,1 µg/l und erfüllten damit die Norm- und Zielwerte. Hier zeigt sich folgendes Bild: bei 1337 Analysen lagen nur 26 reelle Zahlen noch unter dem Zielwert des DMR-Memorandums.

Grafik 1.12 Atrazin-Verlauf bei Lobith seit 1989

"Neue" Pflanzenschutzmittel

Ende des Jahres 2006 hat RIWA in Zusammenarbeit mit dem (damals noch) Staatlichen Institut für Integralverwaltung der Binnengewässer und für Abwasserreinigung (RIZA) einen Übersichtsbericht zum möglichen Vorkommen von Pflanzenschutzmitteln erstellt. Dabei wurde vor allem den Mitteln Aufmerksamkeit geschenkt, die noch relativ neu am Markt waren. Unter anderem aufgrund von Berichten von KWR Water Research über diese "neuen" Pflanzenschutzmittel haben mit dazu beigetragen, dass eine Auswahl dieser Mittel 2008 in das internationale Messprogramm aufgenommen wurde. Es handelt sich hierbei u.a. um Iprodion, Ethofumesat, Dimethenamid-p und Carbendazim, sowie die Metaboliten Desphenylchloridazon und DMS (von Tolylfluanid stammend). Bei keinem dieser Stoffe wurde bis heute eine Überschreitung des Memorandumwerts von 0,1 µg/l festgestellt. Carbendazim ist der einzige Stoff, der regelmäßig über der Bestimmungsgrenze gemessen wird. Dies hängt möglicherweise mit dem Einsatz Verwendung dieses Breitspektrumfungizids bei der Bekämpfung der Ulmenkrankheit zusammen.

Perfluorverbindungen

Die wichtigsten Vertreter dieser Stoffgruppe sind die Octylderivate PFOA und PFOS bzw. Perfluoroctansäure und Perfluoroctansulfonat. Aufgrund der schädlichen Auswirkungen auf Wasserorganismen wurde allmählich auf die Herstellung und Anwendung der Butylderivate PFBA und PFBS (Perfluorbutansäure und Perfluorbutansulfonat) umgestellt.

Perlfluorverbindungen werden weit verbreitet eingesetzt, variierend von Wasser abstoßenden Beschichtungen von Schuhen und Pizzaschachteln bis zu Zusätzen in Löschschaum. TZW Karlsruhe hat in Zusammenarbeit mit RIWA-Rhein bereits früher (2006) einen Übersichtsbericht erstellt (der auf unserer Website verfügbar ist).

Alle gemessenen Werte dieser Stoffgruppe liegen unter dem Memorandumwert von 0,1 µg/l. Im Rheineinzugsgebiet gibt es zwischen Köln und Düsseldorf eine punktförmige Einleitung. In Nordrhein-Westfalen werden von behördlicher Seite Gespräche mit dem Einleiter geführt, um eine Verminderung der Einleitung zu bewirken.

Ether
Diese Stoffgruppe umfasst u.a. die Stoffe Diglyme, Triglyme, MTBE und ETBE.

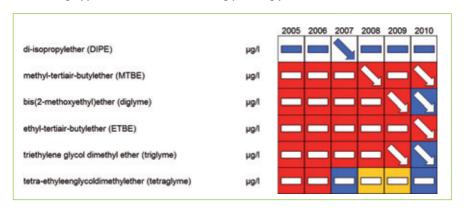
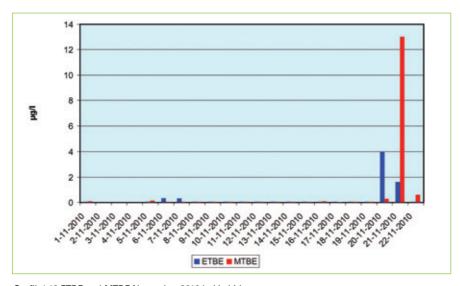



Abbildung 1.4 Trend- und Normpalette der Stoffgruppe Ether bei Lobith im Zeitraums 2005 - 2010 Für eine Erläuterung der verwendeten Piktogramme verweisen wir auf Seite 220.

Die Messungen von MTBE, ETBE, Diglyme und Triglyme bei Lobith zeigen einen Abwärtstrend. Wie bereits in früheren Jahresberichten angegeben, scheint dies bei MTBE und ETBE vor allem auf die Bemühungen von EFOA (European Fuel Oxygenates Association) und der Behörden in Nordrhein-Westfalen zurückzuführen zu sein. Die Jahreshöchstwerte von sowohl MTBE mit

13 µg/l als auch ETBE mit 4,0 µg/l bleiben jedoch weit über dem Zielwert von 1 µg/l. Diese ist die Folge einer Anhebung im Dezember, wie in Grafik 1.13 zu sehen ist. Die hohe Messfrequenz hat hier deutlich einen Vorteil, da die hohen Werte im November bei einer normalen Messfrequenz nicht wahrgenommen worden wären.

(Wir verweisen diesbezüglich auf Anhang 5, Seite 200).

Grafik 1.13 ETBE und MTBE November 2010 bei Lobith

Auffallend sind auch die Werte für 1,4-Dioxan, die bei Lobith gemessen wurden. Mit der Messreihe wurde etwa in der Mitte des Berichtsjahres begonnen, weshalb noch keine Aussagen über etwaige Trends möglich sind. Es ist wohl deutlich, dass die gemessenen Werte erheblich sind. 2 der 9 Messungen überschritten den DMR-Zielwert von 1 µg/l. 1,4-Dioxan wird u.a. als Lösungsmittel für Farben und Leime verwendet. Es ist gut wasserlöslich und schwer biologisch abbaubar.

Arzneimittel

Seit 2004 wird eine große Auswahl dieser Stoffe bei der Probeentnahmestelle Lobith gemessen. Zu den ausgewählten Stoffen gehören Vertreter von Antibiotika, Penizillinen, Schmerzmitteln, fiebersenkenden Mitteln, Blutverdünnern und Röntgenkontrastmittel. Streng genommen sind Röntgenkontrastmittel keine Arzneimittel; da sie aber im Gesundheitswesen

vielfach Verwendung finden, wurden sie in diese Stoffgruppe eingeteilt. Alle Stoffe werden in großem Umfang eingesetzt, beispielsweise in der intensiven Viehzucht. Sie gelangen über Kläranlagen und Abschwemmung in die Oberflächengewässer. Bei einer großen Anzahl von Stoffgruppen aus der Hauptgruppe der Arzneimittel konnten bei diversen Parameter Überschreitungen des DMR-Zielwerts gemessen werden.

Wir verweisen diesbezüglich auf Tabelle 1.2 und die Anhänge 1 bis 4 am Ende dieses Berichts. 2010 wurde ein Bericht zu den Trends und den Konzentrationen von Arzneimitteln im Rheineinzugsgebiet im Hinblick auf den Arzneimittelverbrauch veröffentlicht. Dieser Bericht ist auf unserer Website verfügbar.

Röntgenkontrastmittel

Wie in den vorangegangenen Jahren überschritten auch im Jahr 2010 insbesondere die Röntgenkontrastmittel sehr regelmäßig und an allen Probeentnahmestellen den DMR-Zielwert von 0,1 µg/l. Wir verweisen diesbezüglich auf Tabelle 1.2 und die Anhänge 1 bis 4 am Ende dieses Berichts.

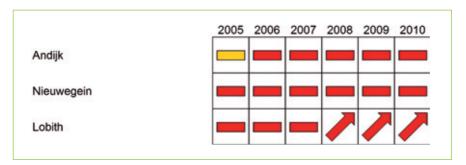


Abbildung 1.5 Trend- und Normpalette von Jomeprol während des Zeitraums 2004 – 2010 Für eine Erläuterung der verwendeten Piktogramme verweisen wir auf Seite 220.

RIWA-Rhein hat jetzt zum ersten Mal eine Trendanalyse zu dieser Stoffgruppe ausführen können. Die Datenbank enthält nun fünf komplette Messdatenjahrgänge. Die Daten von Andijk, Nieuwersluis und Nieuwegein wurden im Berichtsjahr mit einer Methode gemessen, von der noch nicht bekannt ist, inwieweit diese mit der in Lobith verwendeten Methode vergleichbar ist. Aufgrund der langen Zahlenreihen von Lobith, die konsequent von einem Labor analysiert wurden, hat man sich dafür entschieden, alle Röntgenkontrastmittelgehalte bei Andijk und Nieuwegein mit einem neuralen Netzwerk auf der Grundlage der Daten von Lobith zu schätzen.

Die Methodik dieser Schätzung (estimating missing values in time series) wurde 2010 als separater Bericht veröffentlicht und ist auf unserer Website verfügbar.

Betablocker

Betablocker regulieren den Herzschlag und wirken blutdrucksenkend. Sie sind ein häufig vorgeschriebenes Medikament. Bei allen Probeentnahmestellen kam es zu Überschreitungen der DMR-Zielwerte.

Schmerzmittel und fiebersenkende Mittel

Diclofenac, ein Schmerzmittel und Entzündungshemmer, wurde bei Lobith, Nieuwersluis und Nieuwegein über dem Zielwert von 0,1 µg/l nachgewiesen. Fenazon, ein Schmerzmittel und Fiebersenker, wurde bei Nieuwegein über dem Zielwert gemessen.

Antidepressiva und Betäubungsmittel

Von Fluoxetine, dem Wirkstoff in Prozac, gibt es derzeit nur einzelne Messungen bei den Probenentnahmestellen. Die Messungen bei Andijk ergaben einen Höchstwert von $_{0.75}$ $\mu g/l$, und bei Nieuwersluis von $_{0.18}$ $\mu g/l$.

Sonstige Arzneimittel

Für Carbamazepin, einem Antiepileptikum, wurde bei allen 4 Probeentnahmestellen ein Höchstgehalt knapp über dem Zielwert von $0,1~\mu g/l$ gemessen.

Für Metoformin stehen bisher nur kurze Messreihen bei Nieuwegein, Nieuwersluis und Andijk zur Verfügung. Dieses Arzneimittel, das zur Behandlung von Diabetes Typ 2 eingesetzt wird, wurde bei diesen 3 Probenentnahmestellen weit über dem Zielwert gemessen.

Hormonaktive Substanzen (EDC)

Hormonstörungen bei Mensch und Tier können durch (meist) organische Mikroverunreinigungen verursacht werden. Hierbei handelt es sich um eine sehr heterogene Stoffgruppe mit der gemeinsamen Eigenschaft, dass sie hormonelle Funktionen bei Mensch und Tier beeinträchtigen. Sie können Fortpflanzungsorganen von Organismen erheblichen Schaden zufügen und auch Verhaltensänderungen bewirken.

Man unterscheidet künstliche, synthetische hormonaktive Substanzen, die so genannten Xeno-Östrogene. Dabei kann es sich um eine Vielzahl von Stoffen handeln, wie z.B.: Flammschutzmittel, Agrarchemikalien, Lösungsmittel, Weichmacher (insbesondere Phtalate und

Nonylphenole) usw.. Und andererseits die natürlich vorkommenden Hormone, wie z.B. Östrogene und das davon abgeleitete synthetische Ethynylestradiol ("die Pille") und Östrogene, die von Pflanzen und Schimmel gebildet werden (Phyto- und Myco-Östrogene). Die natürlichen Hormone haben im Vergleich zu den künstlichen hormonaktiven Substanzen jedoch eine viel stärkere Wirkung. Für das weibliche Geschlechtshormon Östradio gilt z.B. ein "no-effect level" von 0,7 Nanogramm pro Liter. Bei den künstlichen hormonaktiven Substanzen liegen die "no-effect levels" eher in der Größenordnung von Mikrogramm pro Liter. Für die natürlichen Hormone sind deshalb überaus empfindliche Analysemethoden erforderlich. Die derzeit angewandten Verfahren sind für den Nachweis natürlicher Hormone allerdings nicht empfindlich genug, wodurch eine direkte Messung des aktiven Stoffs faktisch sinnlos ist. Aus diesem Grund hat RIWA sich dafür entschieden, bis mindestens bis Ende 2010 effektorientierte Messungen nach dem so genannten Calux-Verfahrens vorzunehmen. Die Ergebnisse dieser Messungen werden in separaten Berichten veröffentlicht.

Insbesondere bei der Probeentnahmestelle Andijk wurden Phtalatkonzentrationen über dem DMR-Zielwert von $_{0,1}$ µg/l gemessen.

RIWA-base

Seit einigen Jahren werden regelmäßig Datenreihen geliefert, die pro Tag mehrere Daten für denselben Wasserqualitätsparameter umfassen. Ursache ist eine Überlappung von Analyseverfahren, die möglicherweise von verschiedenen Lieferanten ausgeführt werden.

Häufig lassen sich diese Daten für denselben Parameter, die mit unterschiedlichen Verfahren ermittelt wurden, nicht vergleichen. Im vorigen Jahresbericht wurde ein Entscheidungsbaum erstellt, um die "beste" Reihe für die weitere Verarbeitung in den RIWA-Berichten zu wählen. 2010 wurde dieser Entscheidungsbaum in der RIWA-base implementiert. Dies erspart zukünftig viel zeitraubende und fehleranfällige Handarbeit. Nach ausführlicher Prüfung wurden einige kleinere Anpassungen am Entscheidungsbaum vorgenommen.

(Siehe Abbildung 1.7).

Die RIWA-base im Dienste Dritter

Es wenden sich stets mehr Personen und Instanzen an die RIWA-base und lernen diese zu schätzen. 2010 haben wiederum verschiedene Instanzen die sehr umfangreichen Datenreihen der RIWA-base in Anspruch genommen. Großen Zuspruch fanden auch die Trendanalysen, die wir auf der Grundlage der Datenreihen ausführen können. Sehr geschätzt werden auch die Selektionen, die aus mehreren Datenreihen pro Tag erstellt werden. Anfragen kamen

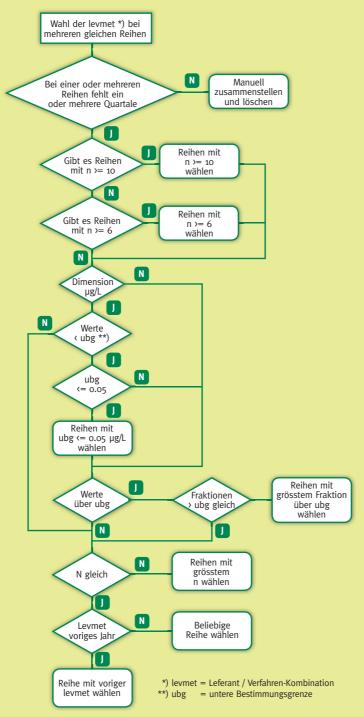


Abbildung 1.7 Entscheidungsbaum für Lieferanten / Methodenkombinationen an einer Messstelle

u.a. aus Deutschland und von verschiedenen Instanzen, die anschließend auf der Grundlage dieser Daten Berichte über die Qualität des Oberflächenwassers erstellten. Sowohl von RIWA-Mitgliedswerken als auch von niederländischen Instituten wie z.B. CTGB (Instanz für die Zulassung von Pflanzenschutzmitten und Bioziden), KWR (Watercycle Research Institute), RWS (u.a. Waterdienst), RIVM (Staatliches Institut für Volksgesundheit und Umwelt) und Vewin (dem niederländischen Wasserverband) erhielten wir Anfragen bezüglich langer Messreihen. Auch verschiedene Universitäten und Forschungsbüros haben sich inzwischen an die RIWA-Datenbank gewandt. Sämtliche Fragen konnten schnell und ausführlich beantwortet werden.

Slordig

Politieman komt fatal

De Rijn: riool van Europa

Van onse verslaggevere

DEN HAAG, donderdag

EVEHT OM TE ADEMEN, water om te drinken en vordsel om te eten - dat heeft de mens in de allereerste plasts modig om te kunnen leven. Het meck waardige is echter, dat hij gich enorm veel sorger unnet over het efficient functioneren van zon stantinstellingen en hedrijven, maar dat hij volkomen opver schillig is ten aanzien van de hasiselementen van sij bestaan: lucht, water en bodem

Hij maakt van zijn een eving een grote vuilniswaardoor het water nkbaar wordt, de e mens zijn eigen grootste ijand geworden. Zozeer zeifs, dat de Amerikaanse botanicus Bichard Figer voorspelt: "Wamner het 20 doorgast, zal de mens over vijftig jaar uitgestor-ven zijn".

Slachtoffer

Rockeloos

(ADVERTENTIE)

2

Die Anfangsjahre (1950-1970): RIWA und die Sorge um den Rhein

Der ausgelaugte Fluss

Zu Beginn 50er Jahre war der Rhein sehr stark verschmutzt. Die Lachse und Forellen aus dem Fluss stanken nach Phenol und waren ungenießbar. Dennoch sahen die vier großen Wasserwerke der westlichen Niederlande den Rhein als eine wichtige Quelle für die Trinkwasser-bereitung und gründeten 1951 aus diesem Grund die Rheinkommission Wasserwerke RIWA. Die wichtigste Aufgabe? 'Messen, messen und nochmals messen.' Währenddessen suchten die Leiter der Wasserwerke national und international nach Verbündeten in ihrem Kampf um eine bessere Wasserqualität des Rheins.

Als die vier Leiter der Trinkwasserwerke aus Den Haag, Amsterdam, Rotterdam und Nordholland sich am 15. Juni 1951 trafen, machten sie sich große Sorgen um den Rhein. Der Fluss stank zum Himmel und das Wasser schmeckte ebenso wie die darin gefangenen Fische nach Phenol. Man war sich jedoch der Tatsache bewusst, dass der Rhein als eine der Quellen für die Aufbereitung von Trinkwasser unentbehrlich war. Daher wurde beschlossen, einen Verein zu gründen, der sich im Interesse der Trinkwassergewinnung für eine Verbesserung der Rheinwasserqualität einsetzen würde. Auf dieser Gründungsversammlung benannte der Vorsitzende Dipl.-Ing. Cornelis Biemond, Leiter der Gemeentewaterleidingen Amsterdam, die größten Probleme: den zunehmenden Salzgehalt im Rhein und den starken Phenolgeschmack des Wassers.

Ein Jahr zuvor, am 11. Juli 1950, hatten die Schweiz, Frankreich, Deutschland, Luxemburg und die Niederlande bereits die Internationale Kommission zum Schutz des Rheins (besser bekannt als die Rheinkommission) ins Leben gerufen, um der zunehmenden Verschmutzung des Flusses Einhalt zu gebieten. Für die Leiter der Trinkwasserwerke war diese Kommission nicht genug. Es musste eine Organisation entstehen, die sich gezielt mit den Trinkwasseraspekten befassen würde. RIWA sollte vor allem die Messungen durchführen und Informationen und Daten bezüglich der Wasserqualität austauschen. Schon bald stießen die Wasserwerke auf unerwartet hohe Gehalte bestimmter Stoffe, und in manchen Fällen gelang es ihnen, die Einleitungsstelle aufzuspüren. So leitete eine Spur zu hoher Sulfatkonzentrationen in Rotterdam zur Superphosphatfabrik Albatros Superphosphaatfabriek in Kralingse Veer.

Das wiederkehrende Phenolproblem

Bei der Gründung von RIWA war der Gemeentelijke Dienst Drinkwaterleiding in Rotterdam übrigens das einzige Wasserwerk, das Wasser für die Trinkwasseraufbereitung direkt aus dem Rhein entnahm. Rotterdam verfügte damals über eine Trinkwasseraufbereitungsanlage in Kralingen, mit einer Pumpstation, zwei Absetzbecken und vier Sandfilterbänken. Dennoch hatte das Rotterdamer Wasser einen bedenklichen Ruf. Dies hing vor allem mit den hohen Phenolkonzentrationen im Rhein zusammen, die dem Wasser einen unangenehmen Geruch und Geschmack verliehen. Phenol ist eine monoaromatische Kohlenstoffverbindung, die unter anderem beim Untertagebau und in der Kohlenindustrie anfällt. 1928 häuften sich die Klagen über den Beigeschmack des Rotterdamer Leitungswassers derart, dass der städtische Wasserdienst dringend nach einer Lösung suchte. Nach dem Besuch eines Wasserwerks in Deutschland wurde die Aufbreitung in Kralingen um einen Schnellfilter erweitert. Außerdem wurde das Wasser gechlort. Einige Jahre später setzte Rotterdam, als erstes Wasserwerk der Niederlande, auch Aktivkohle bei der Aufbereitung ein: zunächst beim vorgereinigten Wasser, später beim abgesetzten Wasser.

Das Geruchs- und Geschmackproblem des Rheinwassers erwies sich jedoch als sehr hartnäckig und immer wiederkehrend. Der unangenehm schmeckende Fisch aus dem Rhein führte 1950 sogar zu Fragen im Parlament. Das Problem war nach Meinung des Ministers für Verkehr und Wasserfragen auf die Einleitung von Phenol durch den deutschen Steinkohlenabbau an der Emscher, einem Nebenfluss des Rheins im Ruhrgebiet, zurückzuführen. Es gab jedoch noch keine internationalen Vereinbarungen über die Abwassereinleitung in Flüsse. Die Niederlande konnten also nichts hiergegen unternehmen, außer zu hoffen, dass man sich an das Versprechen eines schnellen (Wieder)Aufbaus von Reinigungsanlagen halten würde.

Später wurde übrigens deutlich, dass auch die Papierindustrie mit ihren Einleitungen von Chlorphenolen für die Verschmutzung verantwortlich war. Erst als man dort Alternativen für das Chlorbleichen von Papier gefunden hatte, verschwand der Phenolgeschmack des Rheinwassers definitiv.

Rheinwasser in den Dünen

Trotz des Kopfzerbrechens, das der Rhein als Trinkwasserquelle der Stadt Rotterdam bereitete, gab es auch bei den anderen drei Wasserwerken weit fortgeschrittene Pläne, die stark schwindenden Dünenwasservorräte mit Flusswasser aufzufüllen. Der Leiter der Gemeentewaterleidingen Amsterdam Biemond war ein großer Befürworter des Umstiegs auf Rheinwasser, das jedoch nicht direkt zu Trinkwasser aufbereitet, sondern erst in die Dünen

infiltriert werden sollte. Zu diesem Zweck gründeten die Stadt Amsterdam und die Provinz Nordholland 1952 das Wasserversorgungsunternehmen WRK (Watertransportmaatschappij Rijn-Kennemerland). Fünf Jahre später konnte das erste Wasser vom Rhein in das Wasserschutzgebiet Amsterdamse Waterleidingduinen und das nordholländische Dünenreservat gepumpt werden. Auch das Wasserwerk in Den Haag (Duinwaterleiding 's-Gravenhage) begann mit der Entnahme von Wasser aus dem Lek bei Bergambacht, das anschließend in die Dünen bei Scheveningen infiltriert wurde.

"Der erste Plan der Gemeinde Amsterdam zur Verwendung von Rheinwasser stammte bereits aus

Jan Jansen (Riza)

dem Jahr 1900", berichtet Dipl.-Ing. Maarten Gast, Leiter des Wasserwerks Gemeente-waterleidingen Amsterdam von 1986 bis 2000. Ihm zufolge waren es vor allem die hohen Kosten und die schwierige Aufgabe, eine große Transportleitung in weichem Boden zu verlegen, die dafür sorgten, dass es noch so lange auf sich warten lassen würde. "Man kann es mit dem derzeitigen Bau der Metrolinie Noord-Zuidlijn in Amsterdam vergleichen. Die Ingenieure sahen sich vor eine große technische Herausforderung gestellt. Im Gegensatz zu Rotterdam, wo das Rheinwasser direkt entnommen wurde, leitete Amsterdam das Wasser also erst in die Dünen. Rotterdam gelang es jedoch nicht, den Phenolgeschmack in ausreichendem Maße zu

beseitigen. Außerdem konnte bei Niedrigwasser salziges Meerwasser bis zur Entnahmestelle bei Kralingen vordringen." Gast erläutet, dass die Dünen drei wichtige Aufgaben erfüllten: sie dienten der Wasserreinigung, hatten eine Pufferfunktion, um etwaige Verschmutzungsspitzen abzuschwächen und dienten als Vorrat, auf den bei einen vorübergehenden Wasserentnahmestopp zurückgegriffen werden konnte.

Abwasser und Trinkwasser

In den ersten Jahren nach der Gründung suchte RIWA auch Anschluss zu Instanzen außerhalb des bekannten Trinkwassersektors. Die vier Rheinwasserwerke nahmen eine Sonderstellung ein, da fast alle anderen Wasserwerke Grundwasser als Trinkwasserquelle nutzten. RIWA knüpfte Kontakte zu Rijkswaterstaat (der staatlichen Straßen- und Wasserbaubehörde), RIZA

(dem staatlichen Institut für Integralverwaltung der Binnengewässer und für Abwasserreinigung) und sogar zum Ministerium für Soziales. Damals war nur wenig über Verunreinigungen bekannt, bringt Dipl.-Ing. Jan Jansen, Leiter von Riza in Erinnerung. "In jener Zeit drehte sich alles um Makroverunreinigungen. Das Messsystem von Rijkswaterstaat beschränkte sich auf Sauerstoff und Salz", erläutert Jansen. Selbst stieß er 1962 zur Riza. Dies geschah auf Fürsprache von Dipl.-Ing. J.J. Hopmans, Leiter des Instituts und großer Verfechter eines Vorgehens gegen Einleitungen von ungeklärtem Abwasser. "Kurz nach dem Zweiten Weltkrieg war dies keinesfalls selbstverständlich. Gesellschaftlich gab es hierfür kaum Unterstützung, und es war nur wenig über Verunreinigungen und Reinigungstechniken bekannt."

Jansen zufolge hat es lange gedauert, bis die Politik erkannte, dass für die Einleitung von Abwasser ein spezielles Gesetz erforderlich sei. "Man war der Meinung, dass das Emissionsschutzgesetz ausreiche. Die Abwasserbehandlung kam sehr langsam in Gang. Unter der Leitung von Hopmans wurden 1955 die ersten Entwürfe für das Gesetz über die Verschmutzung der Oberflächengewässer (Wvo) erstellt. Er benötigte jedoch Mitstreiter, um den Erlass dieses Gesetzes zu bewirken. Beim Wasserverband Waterschap De Dommel gab es Geistesverwandte. Dort hatte man bereits eine Sonderabgabe eingeführt, um den Bau einer Abwasserkläranlage zu finanzieren. Gleichzeitig wurde auch Kontakt mit Cornelis Biemond vom Trinkwassersektor aufgenommen, der sich aktiv für eine Senkung der Salzkonzentrationen im Rhein einsetzte."

"Bei Riza waren wir eigentlich Idealisten", sagt Jansen, der sich auch noch gut an die Ambivalenz erinnern kann, die in den 50er und 60er Jahren bezüglich der Wasserqualität herrschte. "Aufgrund ihrer schlechten Trinkwasserqualität sprachen wir mit Rotterdam über die Verbesserung der Qualität des Rheinwassers. Gleichzeitig gab es jedoch große Meinungsverschiedenheiten zwischen uns, da Rotterdam es nicht für nötig erachtete, ihr Abwasser zu reinigen. So nahe am Meer habe das doch keinen Sinn." Auf staatlicher Seite wuchs die Erkenntnis, dass die Einleitung von Abwasser nicht bedenkenlos fortgesetzt werden könne. "Letztendlich spielte der Trinkwassersektor dabei jedoch eine untergeordnete Rolle, da nur wenige Wasserwerke vom Oberflächenwasser abhängig waren."

Der internationale Link

In der damaligen Zeit war die Überwachung der Oberflächenwasserqualität vor allem eine nationale Angelegenheit. Dennoch waren sowohl Biemond als auch Hopmans jeder für sich stark international engagiert. Hopmans, der fließend Deutsch und Französisch sprach, war mit dem Schweizer Professor Otto Jaag befreundet. "Die beiden verstanden sich sofort gut",

berichtet Jansen. Sie standen an der Basis der Gründungsversammlung der Internationalen Rheinschutzkommission vom 11. Juli 1950 in Basel. "Die Schweiz war damals bereits Vorläufer im Bereich der Wasserreinigungstechnologie, da man die eigenen Seen sauber halten wollte", erläutert Janssen.

Während Hopmans sich bei der Rheinkommission für die Behandlung von Abwasser einsetzte, versuchte Biemond im Interesse des Trinkwassersektors über RIWA internationale Kontakte zu knüpfen. Er musste jedoch schon bald feststellen, dass Rijkswaterstaat Kontakte mit deutschen und französischen Instanzen nicht würdigte. Vor allem die Beziehung zu Deutschland war prekär, da große Schifffahrtsinteressen auf dem Spiel standen. Große Seehäfen, wie z.B. Rotterdam, Antwerpen und Hamburg, forderten von den Alliierten einen Teil des Güterstroms für den Wiederaufbau in Deutschland.

Neben den Abwassereinleitungen, die die Wasserqualität lokal stark beeinflussten, war inzwischen auch deutlich, dass ein Großteil der Verschmutzung seinen Ursprung im Einzugsgebiet am Oberlauf des Rheins hatte. RIWA wollte daher über verschiedene Wege Messdaten aus dem Ausland sammeln und knüpfte engen Kontakt zu den Wasserwerken der deutschen Städte Duisburg, Düsseldorf und Köln, deren Bezugsquellen am Ufer des Rheins lagen.

Direkt nach dem Zweiten Weltkrieg hatten die Niederlande bereits in verschiedenen internationalen Kommissionen auf die Problematik der Verschmutzung des Rheins hingewiesen. Letztendlich waren es jedoch die großen Probleme mit dem Lachs, die die Wasserqualität auf die Tagesordnung setzten, berichtet Dipl.-Ing. Bob Dekker, stellvertretender Direktor für international Politik beim Ministerium für Infrastruktur und Umwelt und seit 1998 Delegationsleiter der Internationalen Rheinkommission für die Niederlande. "Das Verschwinden des Lachses, aber auch anderer Fische, war wohl der Anstoß für die Rheinkommission. Durch Überfischung brach der Lachsbestand zusammen und durch den Bau von Schleusen konnten die Lachse ihre Laichplätze nicht mehr erreichen", schlussfolgert Dekker. "Gefangener Lachs, der wohl überlebt hatte, schmeckte zudem nach Phenol."

Bessere Messungen und vergleichbare Ergebnisse

Sowohl RIWA als auch die Internationale Rheinkommission konzentrierten sich in den Anfangsjahren völlig auf das Messen der Qualität des Rheinwassers. "Bei den damaligen Messungen ging es um Milligramm pro Liter. Präzisere Messungen waren noch nicht möglich", berichtet der ehemalige RIZA-Leiter Jan Jansen. "Riza hatte 1948 zwar ein nationales Messnetz, dabei ging es aber oft nur um vereinzelte Messungen. Erst Ende der 60er Jahre verfügte Riza über viel neue Messapparatur. Von da an konnten auch die ersten Stoffe in Mikrogramm gemessen werden", so Jansen.

Bei der Internationalen Rheinkommission sieht Dekker in dieser Zeit ein ähnliches Bild. "Es hat gedauert, bis die Rheinkommission alle hinter sich scharen konnte und alle beteiligten Labors ihre Verfahren aufeinander abgestimmt hatten. Zum ersten Mal wurden internationale Vereinbarungen über Aspekte wie z.B. die Tiefe der Probeentnahmen getroffen. Diese Vereinbarungen waren nötig, um die Messergebnisse miteinander vergleichen zu können. Es begann mit einfachen Messungen von Säuregrad, Sauerstoff und Chlorid; später kamen Phosphat und Stickstoff hinzu. Das Messen von Schwermetallen war ebenfalls möglich, doch das Messen von Mikroverunreinigungen war noch viel zu kompliziert. "Dennoch veröffentlichte die Rheinkommission 1956 bereits die ersten abgeglichenen Messdaten von neun Messstationen, vom Bodensee bis Vreeswijk, Utrecht.

Über die Kontakte mit Rheinwasserwerken in Deutschland und der Schweiz hatte RIWA zur selben Zeit ebenfalls ein Netzwerk zum Austausch und Vergleich von Messergebnissen aufgebaut. Die Wasserwerke gingen noch einen Schritt weiter als Riza, da sie die Konzentrationen von Parametern wie Bicarbonat, Sulfat, Kalzium, Magnesium und Permaganat wissen wollten. Die Wasserlabors der Rheinwasserwerke lieferten stets mehr Messdaten und spielten später ein wichtige Rolle bei der Weiterentwicklung von Analysetechniken für Wasserverunreinigungen. In Deutschland nahm die Arbeitsgemeinschaft Rhein-Wasserwerke (ARW) eine vergleichbare Position ein, berichtet Dipl.-Ing. Klaus Lindner, ehemaliger ARW-Geschäftsführer. "Schon früh gab es verschiedene Monitoring-Stationen am Rhein. Den Wasserwerke war deutlich, dass das Flusswasser ein Problem darstellte, und ihre Labors analysierten das Wasser viel gründlicher als die nationalen Institute, die lediglich alte Parameter wie z.B. den biologischen Sauerstoffverbrauch (BZV5) und später den chemischen Sauerstoffverbrauch (CZV) maßen. Dies führte zum Streit zwischen den Wasserwerken und den Bundesämtern. Die Autoritäten befanden sich in einem Dilemma: mussten sie das "Wirtschaftswunder" stoppen? Es war doch ein Segen? Sie wussten wirklich nicht, welche Maßnahmen sie ergreifen sollten, um Veränderungen zu bewerkstelligen.

Zunehmende Verschmutzung

Die zunehmenden internationalen Beratungen über den Rhein weckten die Erwartung, dass die Wasserqualitätsprobleme schnell gelöst sein würden. Konkrete Maßnahmen blieben im Laufe der Jahre jedoch aus. Es mangelte vor allem an der Gesetzgebung, um die Einleitungen zu stoppen. Der wirtschaftliche Aufschwung hatte höchste Priorität. Dennoch beschäftigte die Verschmutzung die Regierungen. Vor allem die Salzeinleitungen im Elsass waren ein Stein des Anstoßes. Bei der Behandlung seines Etats im Jahr 1956 teilte der damalige Verkehrs-

minister dem Parlament mit, dass Deutschland und Frankreich Zusagen gemacht hatten, um ihre Salzeinleitungen zu reduzieren. Er ging damals noch davon aus, dass die Internationale Rheinschutzkommission Maßnahmen ergreifen würde. 1958 hofften die Niederlande vergeblich, dass die Internationale Rheinschutzkommission Anforderungen für Höchstwerte biologischer und chemischer Verunreinigungen festschreiben würde. Die Diskussionen führten wohl dazu, dass die Rheinschutzkommission 1963 im Vertrag von Bern weiter formalisiert wurde. Darin erhielt die Kommission das Mandat, Maßnahmen zum Schutz des Rheins vorzuschlagen. Man ging davon aus, dass alle Rheinuferstaaten erhebliche Investitionen zum Bau von Abwasserkläranlagen vornehmen würden.

In Wirklichkeit nahmen die Verunreinigungen nur noch weiter zu. 1970, fast zwanzig Jahre nach der Gründung von RIWA, gelangten laut Angabe der vereinten Rheinwasserwerke jährlich 85 Tonnen Quecksilber, 200 Tonnen Cadmium, 1000 Tonnen Arsen, 1500 Tonnen Blei, 2900 Tonnen Kupfer und 9000 Tonnen Chrom in den Rhein. Und dazu kamen im Schnitt noch einmal täglich 30.000 Tonnen Chlorid. Der Sauerstoffgehalt im Rhein reichte nicht aus, um die organischen Stoffe unterhalb der Einleitungsstellen noch abbauen zu können. Bei niedrigem Wasserstand sank der Sauerstoffgehalt im Rheinwasser auf erschreckende Niveaus, was gelegentlich zu massenhaftem Fischsterben führte. Es gab Pläne, Blasebälge in den Pfeilern von Brücken anzubringen, die durch ihre Auf- und Abwärtsbewegungen kontinuierlich Sauerstoff in das Wasser einblasen würden.

Lebensader bedroht

Die Selbstreinigungskraft des Rheins war ausgelaugt. In noch relativ kleinem Kreis war man sich darüber im Klaren, dass radikale Veränderungen erforderlich seien. Wirtschaftliche Interessen und zähe internationale, politische Beziehungen standen einem tatkräftigen Eingreifen jedoch im Wege. Die Rheinkommission setzte den Rhein auf die Tagesordnung, war aber selbst noch machtlos. Zudem wusste man noch viel zu wenig über die Verschmutzung des Rheins. In jener Zeit vergrößerten die vereinten Trinkwasserwerke zunächst ihre Kenntnisse, indem sie Messungen vornahmen und aufzeigten, was und wo etwas mit dem Wasser im Argen lag. Der Rhein war einerseits als Lebensader unverzichtbar für die Wasserversorgung einer Millionenbevölkerung. Anderseits schien er jedoch unabwendbar auf sein Los als "toter Fluss" zuzusteuern.

In 1985 geen fosfaat meer toegestaan in de wasmiddelen

GIFGOLF DOOR CHEMIEBRAND NADERT 22 juli - Minister Vorrink (volksgeel wil dat er in 1985 geen middelen. Zij hoopt Amsterdam staakt inname drinkwater uit Rijn

Van onze verslaggever

AMSTERDAM — De gemeentewaterleiding van Amsterdam staakt hoogstwaarschijnlijk dinsdag de inname van Rijnwater voor de drinkwatervoorziening. Dinsdag wordt bij het innamepunt van rivierwater in de buurt van Nieuwegein de gifgolf verwacht die is ontstaan na de brand bij de chemische industrie Sandoz in het Zwitserse Bazel.

Volgens een woordvoerder van Rijkswaterstaat bevond de gifgolf zich donderdagmiddag in de buurt van Koblenz. Overal waar het gif is gepasseerd, is massale vissterfte geconstateerd. Donderdagmiddag stierven de vissen bij Mannheim. Vooral de paling is slachtoffer van de vervuiling. Dit komt volgens visdes-

Zwendelaars in hormonen krijgen gevangenisstraf

BREDA (ANP) — De Bredase rechtbank heeft de vier hoofdverdachten in de groeihormonenzaak met mestkalveren in Zuid-Nederland veroordeeld tot gevangenisstraffen wegens het in gevaar brengen van levens van mensen.

De directeur van een veevoederbedrijf uit Sittard kreeg een gevangenisstraf van een jaar en negen maanden plus een boete van zeventieduizend gule

kundigen omdat de andere vissen zich in de herfst niet meer in de Rijn ophouden, maar zijn uitgeweken naar de zijrivieren. Alleen paling zit in grote getale in de rivier.

Inmiddels is ook meer inzicht gekomen in de aard van de verontreiniging. De Milieubeschermingsdienst van het kanton Bazel maakte donderdag bekend dat tot 30 ton landbouwchemicaliën, disulfoton en thiometon,in de Rijn terecht gekomen zijn, waaronder 200 kilo erder verwezenlijken kwik. Volgens de diener kwik. Volgens de dienst wordt deze hoeveelheid normaal in een jaar in de Rijn geloosd. Het giftige metaal zal doordringen in de voedselketen, maar het is nog en industrie. niet duidelijk of dit gevolgen zal hebben sten van Vorrinks plan-voor de volksgezondheid voor de volksgezondheid.

De gemeentewaterleiding van Amsterdam neemt vanaf dinsdag geen Rijnwater meer in. Een woordvoerder van de Gemeentewaterleidingen zegt dat de vervuiling zondag omstreeks het mid-daguur bij Lobith wordt vertaal het. In september kan eer daguur bij Lobith wordt verwacht. Na ort van de desbetreffende een dag of twee is het gif de worder van de Raad worder een dag of twee is het gif dan bij het missie uit de Raad worder innamepunt van het Amsterdamse wa-terleidingbedrijf Na Amsterdamse wa-wacht. Waarschijnlijk word innamepunt van het Amsterdamse waterleidingbedrijf. Na een dag of vier zou de vervuiling zijn gepasseerd en het Rijnwater weer "schoon" zijn. Amsterdam kan twee maanden teren

rervangen orikanten oedig een

ilieuhygiëne) n het fsfaat ngen, tot minper liter. De liteit voor 1985 de concentratie mt op internaelde milieulijs-

stadium wil mide concentratie at nog verder teit minder dan 0.05 De nagestreefde 1985 is een geocentratie zoals die internationaal milieulijsten.

passing van de beaiveringsinstallaties en lergaande maatregelen fosfaatvervuilers van

rden geschat op hooguit r inwoner per jaar in

Centrale Raad voor migiëne is zelf al lang bezig bestudering van fosfaatadvies aan de minister i rapport "meegenomen".

3

Die Aktionsjahre (1970-1986): RIWA sucht die Öffentlichkeit

Neues Leben für einen toten Fluss

Wie lange würden die Trinkwasserwerke dem Rhein noch Wasser entnehmen können? Nicht mehr lange, wenn man den stark verschmutzten Fluss betrachtete. Die Industrie leitete ihre Abwässer in immensen Frachten in den Fluss und die Städte taten dies mit ihren kommunalen Abwässern. Wenn das Abwasser überhaupt behandelt wurde, war die Menge noch so groß, dass sie die Selbstreinigungskraft des Rheins weit überforderte. 1969 war es dann soweit. Die toten Fische trieben im Fluss. Umweltorganisationen betitelten den Rhein als die offene Kloake Europas und erklärten den Fluss für biologisch tot. Gleichzeitig entstand aber auch eine Gegenbewegung: es wurden internationale Vereinbarungen zum Schutz des Rheins getroffen. Auch RIWA suchte aktiv nach internationaler Zusammenarbeit und betrat die öffentliche, politische und rechtliche Arena.

Zu Beginn des Sommers 1969 trieben im Loreley-Tal plötzlich große Mengen toter Fische im Rhein. Aus scheinbar unerklärlichem Grund. Erst allmählich wurde der wahre Umfang des mysteriösen Fischsterbens deutlich: es stellte sich heraus, dass etwa vierzig Millionen Fische verendet waren. Die in RIWA vereinten niederländischen Rheinwasserwerke beschlossen die Wasserentnahme so lange einzustellen, bis mehr Deutlichkeit gegeben sei. Auch RIV (das staatliche Institut für Volksgesundheit) erhielt aus Deutschland Wasserproben zur Analyse. RIV entdeckte Spuren von Endosulfan im Wasser, dem Wirkstoff des Schädlingsbekämpfungsmittels Thiodan, das vom Chemiekonzern Hoechst hergestellt wurde. Staatssekretär für Volksgesundheit Roelof Kruizinga brachte den Fund an die Öffentlichkeit. Dies zum großen Missbehagen Deutschlands, das die Proben unter dem Siegel der Vertraulichkeit in die Niederlande gesandt hatte. Nach Meinung der deutschen Behörden hätte erst gründlicher nach Resultaten und Ursachen geforscht werden müssen, bevor etwas an die Öffentlichkeit gebracht würde. Die Niederlande verwiesen auf Hoechst, da dieser Konzern für die Endosulfan-Einleitung in den Fluss verantwortlich sei. Vor Gericht in Deutschland wurde der Chemiekonzern jedoch mangels Beweisen freigesprochen, da das Fischsterben erst siebzig Kilometer stromabwärts der Fabrik aufgetreten sei.

Umwelt als Thema in Medien und Gesetzgebung

Der Endosulfan-Vorfall erwies sich dennoch als Wendepunkt. Trotz der zunehmenden Verschmutzung hatten die niederländischen und deutschen Wasserwerke noch fast ungehindert Wasser aus dem Rhein entnehmen können. Sandfiltration, gelegentlich ergänzt mit Aktivkohlefiltration reichte aus, um aus dem Wasser Trinkwasser zu bereiten. Nun sahen die Wasserverwalter und Trinkwasserwerke sich jedoch mit einem bisher unbekannten Problem konfrontiert: der Mikroverunreinigung. Die Konzentrationen des Stoffes im Wasser waren niedrig, verdünnt durch die hohen Wasservolumen des Rheins, und dennoch waren die Folgen groß.

Maarten Hofstra (Riza)

Mikroverunreinigungen sind für die Wasserwerke auch heute noch eine der größten Herausforderungen.

Der Vorfall sorgte damals auch für viel Medienandacht. Dipl.-Ing. Maarten Hofstra, ehemaliger
Leiter der Abteilung Emissionen bei Riza, ist
davon überzeugt, dass das Endosulfan-Problem
dazu beigetragen hat, dass man sich auf hoher
politischer Ebene eingehender mit der internationalen Bekämpfung der Verschmutzung des
Rheins befasste. "Nach dem Endosulfan-Vorfall
wurden über die Rheinkommission Ministerkonferenzen in Gang gesetzt. Dabei wurde schon
schnell über einen Rheinchemievertrag und einen
Rheinsalzvertrag gesprochen. Die Niederlande

und Deutschland wollten nicht länger auf eine international abgestimmte Strategie warten und begannen, gegen die Einleitungen in den Rhein vorzugehen."

RIWA auf dem öffentlichem Podium

In den 70er Jahren begann RIWA als Vertreter der niederländischen Rheinwasserwerke seinen Kurs zu ändern. Dies war vor allem der Verdienst von Dipl.-Ing. Cor van der Veen, dem ehemaligen Leiter der Gemeentewaterleidingen Amsterdam. Er durchbrach die stille Diplomatie, die bis dahin von den Rheinwasserwerken betrieben worden war, und suchte nach Verbündeten, indem er die öffentliche Meinung mobilisierte. Van der Veen war auch Mitglied der Provinzialstaaten Nordhollands für die sozialdemokratische Partei PvdA und kannte sich in der politischen und öffentlichen Arena aus, berichtet Dipl.-Ing. Maarten Gast, sein späterer

Nachfolger als Leiter der Amsterdamer Wasserwerke. Van der Veen fing die Signale aus der Gesellschaft auf und erkannte, dass die Umwelt sich zu einem wichtigen Thema entwickeln würde. Er suchte auch bewusst die Öffentlichkeit. Und das war bemerkenswert, da "Umweltaktivismus", obgleich das Wasserwerk ein öffentliches Unternehmen war, keineswegs zur Unternehmenskultur gehörte."

Auf internationaler Ebene knüpfte Van der Veen mit RIWA engere Beziehungen zu den anderen Wasserwerken am Rhein. Im Januar 1970 gründeten die Rheinwasserwerke aus den Niederlanden, Deutschland und der Schweiz die 'Internationale Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet' (IAWR). Trotz der großen Unterschiede in Bezug auf Arbeitsweise, Vorgehensweise und Unternehmenskultur in den Ländern, hatten sie ein großes, gemeinsames Interesse: die Reduzierung der Verschmutzung, um den Rhein auch weiterhin als Trinkwasserquelle nutzen zu können. "Damals waren die Rheinwasserwerke der verschiedenen Rheinanliegerstaaten noch eine bunte Gesellschaft", berichtet Gast, "sie fanden einander aber in diesem gemeinsamen Ziel."

Dieses Ziel wurde kurz und bündig in einer Hauptforderung zusammengefasst, dem man bei RIWA und IAWR auch heute noch huldigt: der Rhein muss so sauber sein, dass eine Aufbereitung zur Trinkwasser mit ausschließlich natürlichen Aufbereitungsverfahren möglich ist. 1973 präsentierte IAWR das erste Memorandum, in dem diese Hauptforderung zum ersten Mal schriftlich festgehalten wurde und das auch maximal zulässige Konzentrationen für einige Problemstoffe enthielt. "Das Memorandum formulierte ein deutliches Ziel, und die Politik war bereit, es zu umarmen. In späteren Jahren war man diesem Grundsatz vor allem in 'Brüssel' zugetan, so Maarten Gast.

Ideelles und pragmatisches Memorandum

Da der Großteil der deutschen Rheinwasserwerke mittels Uferfiltration Trinkwasser aus dem Fluss bereitete, war Endosulfan für sie kein direktes Problem gewesen. Es hatte sie wohl ihn erhöhte Alarmbereitschaft versetzt. Dipl.-Ing. Klaus Lindner zufolge, dem ehemaligen Geschäftsführer der Arbeitsgemeinschaft Rhein-Wasserwerke (ARW), war den Rheinwasserwerken deutlich, dass sie sich - auch mit den Nachbarländern - organisieren mussten, um ihre Interessen zu wahren. "Natürlich wusste man, dass der Fluss verschmutzt war. Aber noch nie zuvor hatte ein einiger Stoff so viele Fische getötet, wie damals Endosulfan. Zudem wuchs die Erkenntnis, dass noch viel mehr problematische Stoffe im Wasser enthalten sein könnten. Kurzum: es musste gegen die Verschmutzung vorgegangen werden. Und nicht bei der Wasserentnahme durch die Rheinwasserwerke, sondern dort, wo die Verschmutzung in den Fluss gelangte. Es gab

also einen großen Bedarf an mehr Reinigungsmechanismen für industrielle und kommunale Abwässer. Technologie musste dafür sorgen, dass der Rhein sauberer würde, so Lindner.

Dieses große gemeinsame Interesse war auch die Triebfeder für die Gründung von IAWR und das erste Memorandum. In diesem Memorandum wurden zwei Zielwerte für Stoffe festgelegt: der A-Wert, bei dessen Einhaltung die Trinkwasseraufbereitung aus Rheinwasser allein mit natürlichen Verfahren möglich ist, und der B-Wert, bei dessen Unterschreitung noch eine zufrieden stellende Trinkwasserqualität mit z.B. Aktivkohle im Aufbereitungsverfahren gewährleistet ist. Lindner zufolge hatte das Memorandum des Jahres 1973 damit sowohl einen ideellen als auch pragmatischen Charakter. "Höchstes Ziel war der Grundsatz der Aufbereitung mit natürlichen Verfahren. Doch bis dahin war es noch ein weiter Weg. Aus diesem Grund wurde der A/B-Zielwert aufgenommen, der verdeutlichen sollte, dass die Wasserwerke Übereinstimmung mit den anderen Benutzern des Flusses erzielen wollten. Es war ein Schritt auf dem Weg zu unserem Endziel, erläutert Lindner. Im Nachhinein war dies nach seiner Überzeugung einer der größten Erfolge des gemeinsamen Vorgehens der Rheinwasserwerke.

Fluss für 'biologisch tot' erklärt

In den 70er Jahren häuften sich jedoch die Probleme mit der Wasserqualität des Rheins. Das Aufkommen der Waschmaschine ging mit der Verwendung neuer Waschmittel einher, die für einen erheblichen Anstieg des Phospatgehalts im Wasser verantwortlich waren. Die Schmutzfracht der industriellen und kommunalen Abwässer überforderte die Selbstreinigungskraft des Rheins. Die Wasserqualität erreichte ihren Tiefpunkt, und die Umweltbewegung, die in den frühen 70er Jahren einen starken Aufschwung erlebte, erklärte den Rhein für 'biologisch tot'. Das Endosulfan-Problem war für die Niederlande Anlass, die mangelnde Tatkraft der Internationalen Rheinschutzkommission anzuprangern. Die grenzüberschreitenden Beratungen mussten intensiviert werden. Im Oktober 1972 trafen sich die Minister der Rheinanliegerstaaten zum ersten Mal in Den Haag. Auf dieser ersten Rheinministerkonferenz erzielten die Staaten Übereinstimmung über die Reduzierung der thermischen und chemischen Belastung sowie der Salzbelastung des Rheins.

Während die Minister im Binnenhof tagten, betitelte die Internationale Rijngroep – Vorläufer der Stiftung Reinwater – im nur wenige Minuten entfernt gelegenen Pressezentrum Nieuwspoort den Rhein als "offene Kloake Europas". Der Fluss war inzwischen zur Ikone der Umweltverschmutzung geworden. In der Bevölkerung wuchsen Umweltbewusstsein und Sorge um die Umwelt. Der gesellschaftliche und der daraus folgende politische Druck resultierten in Umweltgesetzen und Umweltplänen.

Große internationale Konferenzen, wie beispielsweise die erste Umweltkonferenz der Vereinten Nationen im Juni 1972 in Stockholm, mündeten in einigen wichtigen Verträgen. Auch der Rhein stand international wieder regelmäßig auf der Tagesordnung. In Oslo, London und Paris wurden auf drei Konferenzen in Folge Vereinbarungen über ein Verbot von Einleitungen in die Nordsee getroffen. Das Besondere daran war, dass auch die Schmutzfracht des Flusses als eine Einleitung in die Nordsee angesehen wurde. Durch diese Bestimmung waren plötzlich alle Rheinanliegerstaaten gemeinsam für die Sanierung der Abwassereinleitungen im gesamten Flussbereich verantwortlich. Die Staaten konnten sich also nicht mehr ausschließlich auf die eigenen Einleitungen beschränken, sondern mussten das gesamte Einzugsgebiet berücksichtigen.

Wvo sorgt für Durchbruch

Die Niederlande führten am 1. Dezember 1970 das Gesetz über die Verschmutzung der Oberflächengewässer (Wvo) ein. Dieses Gesetz verbot es, Abfallstoffe und Schadstoffe ohne Genehmigung in Oberflächengewässer einzuleiten. Das Gesetz schaffte zudem den rechtlichen Rahmen für die Bekämpfung der Verschmutzung und erstellte Regeln für die Erteilung von Genehmigungen, das Setzen von Standards sowie die Handhabung. Wenn Abwasser nicht den Vorschriften genügte, musste es behandelt werden, bevor es in das Oberflächenwasser eingeleitet wurde. Außerdem wurden Gebühren nach Abwassermenge und Grad der Verschmutzung erhoben.

Laut Hofstra war das Wvo für die Verbesserung der Wasserqualität des Rheins von großer Bedeutung. "Natürlich gab es erst Anlaufprobleme, bevor die Ausführung des Gesetzes wirklich in Gang kam. Der Druck auf die Industrie wurde jedoch viel größer, und in den 80er Jahren tat sich plötzlich sehr viel im Bereich der Einleitungen. Unternehmen mussten einen Sanierungsplan haben und ihre Abwässer klären. Das allgemeine Bild, das der Schutz des Rheins erst 1986 nach der Sandoz-Katastrophe bei Basel begann, ist somit nicht richtig. Es wurde bereits viel früher damit begonnen."

Auch für Maarten Gast ist das Wvo ein Meilenstein. "Es schuf den gesetzlichen Rahmen, um gegen die Einleitungen vorgehen zu können. Auch die Schweiz erließ ein solches Gesetz, und einige Jahre später folgten Deutschland und Frankreich. In den 80er Jahren zeichneten sich die ersten Erfolge ab. Vor allem die Schwermetallkonzentrationen im Rheinwasser nahmen ab. Natürlich hatte auch das Umweltbewusstsein inzwischen eine weite Verbreitung gefunden, berichtet Gast. "Als ich 1986 in die Fußstapfen von Van der Veen trat, war Aktivismus, wie in seiner Zeit, nicht mehr erforderlich. Ich konnte mich über RIWA viel mehr auf Zusammenarbeit konzentrieren, auch mit der Industrie."

Internationale Verhandlungen über Einleitungen

In den 70er und 80er Jahren wuchs nicht nur das Umweltbewusstsein. Es gab auch einen deutlichen strategischen Umbruch, sowohl im gesamten Einzugsgebiet des Rheins als auch in ganz Europa. Dies zeigte sich ebenfalls deutlich auf den großen internationalen Umweltkonferenzen, die seit dieser Zeit regelmäßig stattfanden, berichtet Dipl.-Ing. Bob Dekker. Er war seit 1980 als Vertreter des niederländischen Verkehrsministeriums bei vielen dieser Treffen anwesend. "Auf den Umweltkonferenzen waren die größten Problemstoffe schon schnell deutlich. In das Paris-Abkommen (über die Verhütung der vom Lande ausgehenden Meeresverschmutzung) aus dem Jahr 1973 wurde beispielsweise bereits ein Grenzwert für die Quecksilbereinleitungen aufgenommen." Viele Stoffe waren noch nicht toxikologisch untersucht worden, und die Analysemethoden waren noch absolut unzureichend. Dies war ein Problem, gibt Dekker zu erkennen. "Ein Stoff musste in der Umwelt messbar sein. PCB beispielsweise konnten anfänglich nur sehr schwer im Rheinwasser nachgewiesen werden. 1976 erstellte die EEG, als Vorläufer der EU, eine Richtlinie betreffend die Verschmutzung infolge der Ableitung bestimmter gefährlicher Stoffe in die Gewässer, in der 129 Problemstoffe aufgelistet wurden. Diese wurden später einer nach dem anderen in Normen umgewandelt. Die stofforientierte Vorgehensweise führte jedoch zu überaus zähen Verhandlungen, berichtet Dekker. "Die Arbeitsgruppe Chemie der Internationalen Rheinkommission war anfänglich richtungweisend. Im Rhein waren wir uns über die Vorgehensweise gegen Quecksilber relativ schnell einig, während dies auf europäischer Ebene zu vielen Problemen führte, insbesondere mit Großbritannien. Die Britten wollten bestimmen, inwieweit ein Stoff im Wasser eine Gefahr darstellt, anschließend Normen für Konzentrationen erstellen und erst wenn diese überschritten würden, wollte man sich auf die Suche nach Verursachern der Einleitung machen. Dies führte zu hoffnungslos komplizierten Diskussionen. Wir entschieden uns für eine quellenorientierte Vorgehensweise. Wenn man weiß, wie gefährlich Quecksilber ist, setzt man alles daran, um eine Einleitung zu verhindern."

Die diversen internationalen Organisationen hielten einander mit diesen Verhandlungen im Würgegriff, führt Dekker an. Die Reibereien innerhalb der EEG wirkten letztendlich auch hemmend auf die Internationale Rheinkommission. "Die Diskussion über Einleitungsnormen verlief überaus träge. Die Arbeitsgruppe Chemie war mit den Normen für viele Stoffe bereits weit vorangeschritten. Doch vor allem Deutschland fürchtete den unlauteren Wettbewerb, auch innerhalb der eigenen Grenzen. Eine Ableitungsnorm sollte nicht nur für ein Unternehmen am Rhein gelten, sondern beispielsweise auch an der Elbe. Deutschland bestand daher darauf, dass die EEG erst diesen Ableitungsnormen zustimmen müsse. Durch die wiederholten Diskussionen mit den Britten waren uns diesbezüglich die Hände gebunden."

Ratifizierung des Salzvertrag nach zehn Jahren

Nach der ersten Rheinministerkonferenz 1973 in Den Haag gab es in den darauf folgenden Jahren neue Ministertreffen der Rheinanliegerstaaten. 1976 mündete die vierte Rheinministerkonferenz im Vertrag von Bonn. Dieser umfasste zwei Vertragsteile: den Rhein-Salzvertrag und den Rhein-Chemievertrag. Der Rhein-Salzvertrag musste in der Hauptsache die Aufhaldung des Salzes aus den Kaliminen im französischen Elsass regeln. Die Salzeinleitungen waren für die Rheinanliegerstaaten bereits seit vielen Jahren Gegenstand peinlicher Diskussionen und den Trinkwasserwerken und Umweltorganisationen ein Dorn im Auge. Mit dem Rhein-Salzvertrag wurde dieses Problem jedoch nicht gelöst, da die französische Regierung zwar den Vertrag in Bonn unterzeichnete, ihn dann aber dem eigenen Parlament nicht zur

Ratifizierung vorlegen wollte. Frankreich und die Niederlande standen einander dabei letztendlich diametral gegenüber. 1979 riefen die Niederlande selbst ihren Botschafter aus Paris zurück. Noch nie zuvor hatte ein EEG-Land einen derart drastischen Schritt gegen einen anderen Mitgliedsstaat eingeleitet.

Nach Meinung von Bob Dekker lag die Hauptursache für die französische Auflehnung gegen den Salzvertrag in der peniblen wirtschaftliche Situation und der ungünstigen Beschäftigungslage. "Die Kaliminen beschäftigten 12.000 Menschen. Frankreich war also alles daran gelegen, die Kaliminen weiter bestehen zu lassen. Auf den Ministerkonferenzen, die nach dem Vertrag von Bonn folgen, wurden fortlaufend neue Alternativen besprochen. "Per Briefwechsel wurde der Vertrag immer wieder angepasst", berichtet Dekker. Ende 1983 wurde der aktualisierte Text vom französischen Parlament ratifiziert. Der Vertrag, mit ergänzendem Briefwechsel, trat am 5. Juli 1985 in Kraft. Bei Lobith durfte die Salzkonzentration im Rhein nicht mehr als 200 mg pro Liter betragen. Zu einer Versenkung des Salzes im Untergrund, wie vereinbart, kam es jedoch nicht mehr. In der ersten Phase der Ausführung wurde wohl ein Teil des Salzes überirdisch gelagert.

Langwierige Verhandlungen über den Rhein-Chemievertrag

Der zweite Teil des Bonner Vertrags, der Rhein-Chemievertrag, stand viel weniger im Blickpunkt der Öffentlichkeit. Der Vertrag umfasste schwarze und graue Listen mit Stoffen, die nicht oder nur in beschränktem Maße eingeleitet werden durften, vergleichbar mit der ebenfalls 1976 eingeführten europäischen Richtlinie für Problemstoffe in Gewässern. Auch das Rhein-Chemieabkommen kam nicht selbstredend zustande, berichtet Dekker. Die internationale Rheinschutzkommission hatte zwar mit ihrem Vorgehen gegen Quecksilber und Cadmium Anfang der siebziger Jahre die Initiative ergriffen, doch die Bestimmung von Normen für andere Stoffe war ausgesetzt worden. "Die Rheinanliegerstaaten waren auf nationaler Ebene vor allem mit der Problematik kommunaler Abwässer beschäftigt", so Dekker. "Die niederländische Delegation auf der Rheinberatung konzentrierte sich auch hauptsächlich auf industrielle Abwässer und die Einführung der besten Abwasserreinigungstechniken. Innerhalb der Rheinschutzkommission wurde für jeden Stoff eine separate Arbeitsgruppe ins Leben gerufen, um festzustellen, wie die Normen zu bestimmen seinen. Diese Normen waren rechtsverbindlich."

Unterstützung

Neben den Rechts- und Verwaltungsvorschriften erfuhren die Rheinwasserwerke in den 70er Jahren auch Unterstützung von Seiten der Umweltbewegung. 1974 erhob die Stiftung Rein-

water Klage gegen die französischen Kaliminen. Dieser Rechtsgang dauerte gut 10 Jahre. Letztendlich wurde in höchster Instanz entschieden, dass die Einleitungen rechtswidrig seien. Als die Kaliminen 1981 eine neue Einleitungsgenehmigung erhielten, leiteten RIWA, die Gemeinde Amsterdam, Vewin und Reinwater ein gerichtliches Verfahren vor einem französischen Gericht ein, um die Genehmigung aufzuheben. Auch hier wurde jahrelang prozessiert und letztendlich hat Frankreich einen Schadenersatz in Höhe von 50 Millionen Franc gezahlt. In den 70er und 80er Jahren wurde von Seiten der Umweltbewegung auch aktiv gegen industrielle Einleiter vorgegangen. Ein 'internationales Wassertribunal', bestehend aus elf Umweltorganisationen, ermahnte öffentlich zwanzig Industrieunternehmen aus den Niederlanden und Deutschland, ihre Einleitungen in den Rhein zu stoppen. Sogar die Hafengesellschaft Rotterdam setzte sich für eine bessere Wasserqualität ein. Durch das Verbot der Verklappung auf See konnte die städtische Hafengesellschaft Rotterdam ihren verschmutzten Baggerschlick nicht mehr ins Meer schütten, sondern musste ihn in speziell für diesen Zweck errichteten Depots - Papegaaienbek und Slufter - lagern. Rotterdam war sich darüber im Klaren, dass die Lagerung von verschmutztem Baggerschlick zu einem Dauerproblem werden würde, wenn es nicht zur einer Abnahme der Einleitungen stromaufwärts käme. Als die Rotterdamer Hafen-gesellschaft sich Seite an Seite mit Umweltorganisationen für einen saubereren Rhein einsetzte, entstand ein besonderes Monsterbündnis.

Der Weg zurück

Der auf die industriellen Einleiter ausgeübte Druck zum Bau von Abwasserreinigungsanlagen war enorm. Der Bau dieser Abwasserreinigungsanlagen bei den industriellen Großbetrieben am Rhein sorgte aber schließlich für einen Trendbruch. Es begann eine Periode, in der die Verschmutzung des Rheins allmählich wieder unter Kontrolle gebracht werden konnte. Das erworbene Wissen und die internationale Zusammenarbeit begannen Wirkung zu zeigen. Man hatte den Weg zurück gefunden.

FRANSEN LATEN FORMELE BELOFTE ACHTERWEGE Nederland verzet zich fel tegen lozing afvalzout op later tijdstip nen bij monde van de van oorsprong

Van onze correspondent PHILIP FRERIKS

COLMAR - Franse plannen om de tijdelijke opslag van zo'n zes miljoen ton afvalzout uit de Elzasser kalimijnen in een later stadium toch weer af te vo door middel van lozingen Rijn zijn gisteren op hevige stand gestuit van de Neder delegatie in de interna Rijncommissie.

Tijdens een extra-vergaderi vertegenwoordigers van de staten in Colmar lieten de Ne weten een dergelijke oplos overeenstemming te achten 1976 daterende Rijnzoutve bij kregen ze steun van d

Vervolgens bond de Fr in en gaf eveneens toe uitgestelde zoutstorting doeling konden zijn van tot stand gebrachte Rij De Fransen onthielden de formele belofte da later niet in de Rijr gestort. Het bleef bij alles zou worden ged komen. Daarbij zal Nederland en de a een eventuele (per voor het afvalzou Zee of Noordzee to feld van grote be

De extra-zittin gisteren was nod maand geleden miljoen ton a

begonnen met een miljoen ton en twee jaar nadien met de resterende twee miljoen ton. Dat stuitte op grote tegenstand van de plaatselijke bevolking en was de oorzaak van de tien jaar vertraging in de uitvoering van het verdrag.

Na overleg tussen de Franse premier Chirac en minister-president Lubbers o in allerijl geregeld avond-

Nederlandse chef van de opslagcentra L. Medemblik gehaald omdat er niet alleen nog eens 150 duizend ton voor strooizout wordt achtergehouden, maar ook omdat de zoutstortingen in de Moezel dankzij fabrieksluitingen een aantal jaren geleden met 250 duizend ton werden verminderd.

Twijfelachtige som

Nederland sprak er zijn spijt over uit an dat al niet meer bestaan-

hadden om aan kunnen voldoen wat twijfelachti Bovendien wer gesteld dat de ui van 132 miljoe iljoen gulden) nie g van afvalzout t de afgraving en a rgen gebruikt dien

regen bovendien l ek om een bereken costen voor te legg oals de verwachting a dan de inspuiting, gebleven geld beschoo eerste aanbetaling voo dus het Nederlandse tribbelen door de Zwi

der teruggehaalde ce el te leggen, werden al kwestie" afgedaan.

ik zal in juli 1987 met omen voor de tweede en wordt om een pijple zodanige capaciteit aan ook de zoutbergen daar verdwijnen zoals aan de volking is beloofd. Over de ld ingrijpende financiële ge in Colmar nog maar niet

GIFGOLF DOOR CHEMIEBRAND NADERT Amsterdam staakt inname drinkwater uit Rijn

AMSTERDAM - De gemeentewaterleiding van Amsterdam hoogstwaarschijnlijk dinsdag de inname van Rijnwater voor de drinkwatervoorziening. Dinsdag wordt bij het innamepunt van rivierwater in de buurt van Nieuwegein de gifgolf verwacht die is ontstaan na de brand bij de chemische industrie Sandoz in het Zwitserse Bazel.

Volgens een woordvoerder van Rijkswaterstaat bevond de gifgolf zich donderdagmiddag in de buurt van Koblenz. Overal waar het gif is gepasseerd, is massale vissterfte geconstateerd. Donderdagmiddag stierven de vissen bij Mannheim. Vooral de paling is slachtoffer van de vervuiling. Dit komt volgens visdes-

Zwendelaars in hormonen krijgen gevangenisstraf

BREDA (ANP) - De Bredase rechtbank heeft de vier hoofdverdachten in de groeihormonenzaak met mestkalveren in Zuid-Nederland veroordeeld tot gevangenisstraffen wegens het in gevaar brengen van levens van mensen.

gisteren wan geleden directeur van een veevoedermaand geleden De directeur van een veevoederstraf van een jaar en namensen. straf van een jaar en negen maanden ting van net ir 1800 meter ir den. De rechtbank beschenzigduizend gulden. De rechtbank beschouwt hem als de initiatiefnemer van de omvangrijke zwendel met gespoten mestkalveren. drie miljoen Zijn collega-directeur kreeg dezelfde boete en een half jaar kortere gevangenisstraf opgelegd. Een hoofdvertegenwoordiger van het veevoederbedrijf kreeg zes maanden en een boete van tienduizend gulden.

Een dierenarts ûit Chaam, die de flacons met groeihormonen cocktails leverde, werd veroordeeld tot and jaar en een boete

kundigen omdat de andere vissen zich in de herfst niet meer in de Rijn ophouden, maar zijn uitgeweken naar de zijrivieren. Alleen paling zit in grote getale in de rivier.

Inmiddels is ook meer inzicht gekomen in de aard van de verontreiniging. De Milieubeschermingsdienst van het kanton Bazel maakte donderdag bekend dat tot 30 ton landbouwchemicalien, disulfoton en thiometon,in de Rijn terecht gekomen zijn, waaronder 200 kilo kwik. Volgens de dienst wordt deze hoeveelheid normaal in een jaar in de Rijn geloosd. Het giftige metaal zal doordringen in de voedselketen, maar het is nog niet duidelijk of dit gevolgen zal hebben

De gemeentewaterleiding van Amsterdam neemt vanaf dinsdag geen Rijnwater meer in. Een woordvoerder van de Gemeentewaterleidingen zegt dat de vervuiling zondag omstreeks het middaguur bij Lobith wordt verwacht. Na een dag of twee is het gif dan bij het innamepunt van het Amsterdamse waterleidingbedrijf. Na een dag of vier zou de vervuiling zijn gepasseerd en het Rijnwater weer "schoon" zijn. Amsterdam kan twee maanden teren op een voorraad drinkwater in de duinen ten zuiden van Zandvoort.

Het gif verdeelt zich in Nederland over de IJssel, Rijn en Waal. Rijkswaterstaat verwacht dat ook het IJsselmeer vervuild raakt met het gif, maar dat de uiteindelijke concentratie van het gif in het meer niet veel problemen zal veroorzaken, omdat het daar wordt ver-

De Franse minister van mili Alain Ca

4

Die Jahre des Umschwungs (1986-2000): das Katastrophenjahr und die Sanierung des Rheins

Kursänderung

Zwei Ereignisse innerhalb eines halben Jahres sorgten dafür, dass der Rhein international im Brennpunkt der Öffentlichkeit stand. Neben der Sandoz-Katastrophe des Jahres 1986, die tief im kollektiven Gedächtnis verankert ist, offenbarte sich 1987 zudem eine "schleichende Gefahr". Das Wasserwerk Amsterdam (Gemeentewaterleidingen Amsterdam) entdeckte ein Pestizid im Trinkwasser. Das 'Katastrophenjahr' sorgte für eine definitive Kursänderung im Hinblick auf den Rhein.

Der Rhein verfärbte sich rot. Bei einem Großbrand auf dem Gelände des Chemiekonzern Sandoz im Schweizer Basel gelangten in der Nacht vom 1. November 1986 etwa 10.000 Kubikmeter des stark verseuchten Löschwassers in den Fluss. Fast 24 Stunden lang strömte das giftige Wasser in den Rhein und verursachte ein großes Fischsterben. In drei Giftwellen bewegte der chemische Cocktail sich flussabwärts Richtung Nordsee.

Die Bilder des roten Flusses gingen um die ganze Welt und erregten große Besorgnis. In den Niederlanden stoppte das Wasserversorgungsunternehmen WRK (Watertransportmaatschappij Rijn-Kennemerland) die Wasserentnahme für die Dauer von 9 Tagen. Im Nachhinein waren die Folgen für die Niederlande jedoch weniger schlimm als erwartet. Die Giftwellen waren inzwischen stark verdünnt und die Chemikalien zu einem wichtigen Teil abgebaut. Auch der Entnahmestopp war von kürzerer Dauer als beispielsweise im Jahr zuvor, als ein zu hoher Salzgehalt dazu führte, dass bei Nieuwegein an 17 Tagen kein Wasser aus dem Rhein entnommen werden konnte.

Der Sandoz-Unfall verursachte dennoch eine Schockwelle, die noch lange nachebbte. "Plötzlich stand ein chinesisches Kamerateam vor unserer Tür", berichtet Dipl.-Ing. Bob Dekker, der 1986 bei Riza arbeitete. "In diesem Moment war mir bewusst, dass etwas sehr Gravierendes geschehen war. Noch am selben Tag rief Ministerin Neelie Kroes vom Ministerium für Verkehr und Wasserwirtschaft alle Minister zu sich. Der Unfall stand direkt ganz oben auf der politischen Tagesordnung."

Zu diesem Zeitpunkt hatte die Giftwelle die Niederlande noch nicht erreicht, und das besorgte Parlament stellte der Ministerin zahlreiche Fragen. Sie konnte mitteilen, dass in Zürich eilends ein Treffen der Minister der Rheinuferstaaten anberaumt worden sei. Außerdem wurde im Dezember eine außerordentliche Rhein-Ministerkonferenz in Rotterdam abgehalten. Auf dieser Konferenz wurden drei langfristige Ziele formuliert. Erstens sollten die früher vorhandenen Wanderfische – mit dem Lachs als Symbol – bis zum Jahr 2000 im Rhein wieder heimisch sein. Zweitens sollte die Trinkwasserbereitung aus Rheinwasser mit Hilfe einfacher Aufbereitungsverfahren möglich sein. Seit 1973 war dies auch der ausdrückliche Wunsch der Rheinwasserwerke. Und drittens sollten die Sedimente des Flusses so sauber sein, dass diese auf dem Land problemlos wieder verwendet werden könnten. Die Internationale Kommission zum Schutz des Rheins erhielt den Auftrag, die Ziele in einem Aktionsprogramm auszuarbeiten. Dieses Programm Lachs 2000 hatte das Ziel, das Ökosystem des Rheins zu verbessern. Später folgte das viel umfassendere Aktionsprogramm Rhein 2020.

Veränderungen nach 'Sandoz'

"Der Sandoz-Brand hat viel bewegt", berichtet Dekker. "Plötzlich wurde nicht mehr über Einleitungsnormen für Einzelstoffe gesprochen. Man forderte vielmehr ein Aktionsprogramm mit einer 50%-igen Reduzierung aller Einleitungen. Dahinter steckte der Gedankte, dass die Internationale Kommission zum Schutz des Rheins dann nicht mehr jede einzelne Einleitung detailliert auszuarbeiten brauche. Die Verantwortlichkeit lag jetzt beim Verursacher, so dass schneller Resultate erzielt werden konnten. Die Minister wollten, dass der Rhein sich möglichst schnell erholen könne".

Auf den Rheinministerkonferenzen der darauf folgenden Jahre wuchs die Erkenntnis, dass die alleinige Reduzierung der Abwassereinleitungen für die Verbesserung der Wasserqualität des Rheins nicht ausreiche. Ein gesunder Rhein war nicht die Summe zulässiger Konzentrationen, sondern das Ergebnis eines intakten ökologischen Systems. Dazu war u.a. auch der Schutz vor extremem Hochwasser, die Einrichtung natürlicher Uferzonen für Amphibien und die Beseitigung von Hindernissen für Wanderfische oder der Bau von Fischpässen erforderlich. Die Mission der Internationalen Kommission zum Schutz des Rheins wurde damit viel umfassenderer: die ökologische Wiederherstellung des Flusses. Diese integrierte Bewirtschaftung des gesamten Rheineinzugsgebietes würde später wieder die Grundlage für die Wasserrahmenrichtlinie der EU bilden.

Der Rhein benötigte ein Internationales Symbol, sagt Dekker zurückblickend. "Wir suchten ein ansprechendes Bild für die geplante Renaturierung. Dadurch kamen wir auf den Lachs.

Zunächst war es nicht mehr als ein ansprechendes Bild für die Öffentlichkeit. Erst später wurde es ein echtes Ziel."

Auch Maarten Hofstra, der sich Anfang der 80er Jahre im Auftrag des Ministeriums für Verkehr und Wasserfragen beschäftigte mit der Verbesserung der Wasserqualität, weiß sich noch gut zu erinnern, wie die Sandoz-Katastrophe die Bewirtschaftungsstrategie des Rheins veränderte. In den 70er Jahren und erste Hälfte der 80er Jahren hatte man viele Einleitungen erfolgreich reduzieren können wie z.B. Quecksilber- und Cadmiumeinleitungen. Dabei ging es jedoch um einzelne Großeinleiter. Über ökotoxikologische Untersuchungen, die einen starken Aufschwung nahmen, identifizierte man später stets mehr Stoffe, die für Mensch und Umwelt schädlich waren. Gleichzeitig wurde es jedoch immer schwieriger, gegen die betreffenden Einleiter vorzugehen, da die Stoffe oft in viel kleineren Mengen und über viel mehr Betriebe oder diffuse Quellen verteilt in das Wasser gelangten. "Nach 'Sandoz' wurde im Aktionsprogramm Rhein festgelegt, dass Einleitungen um 50% reduziert werden müssten", sagt Hofstra. "Anfangs glaubten manche Leute noch, dass dies nie zu schaffen sei. Meiner meinung nach war dies aber eine gute Sache. Durch die Reduzierung bestimmter Großeinleitungen wie etwa von Titandioxid und Kunstdünger war die geplante Halbierung in erreichbare Nähe gerückt." Hofstra weist außerdem auf die neu entwickelten Messmethoden, wodurch u.a. Riza viel mehr Stoffe in Wasserproben nachweisen konnte. "Wir erhielten den Gaschromatographen und den Massenspektrometer, die für eine drastische Verschiebung der Nachweisgrenzen sorgten. Wir konnten jetzt viel niedrigere Konzentrationen messen. Dennoch war es für uns unmöglich, alles zu finden, und das warfen wir der Industrie auch vor. Es wurde weiterhin an dem Grundsatz festgehalten, dass eine gute Abwasserbehandlung zwingend erforderlich sei. Unternehmen durften Abwasser nur dann ableiten, wenn es wirklich nicht anders ging." Die florierende Wirtschaft war nach Hofstras Überzeugung von großem Vorteil, da die Industrie hierdurch über ausreichende finanzielle Mittel verfügte, um in Umweltmaßnahmen zu investieren.

Warten auf die Giftwelle

Welche Folgen hatte die Sandoz-Katastrophe für die Trinkwasserwerke, die ihr Wasser dem Rhein entnahmen? In der Nähe von Basel gab es akute Probleme, da die Wasserwerke ihre Entnahmestelle nicht rechtzeitig schließen konnten. Zudem hatte das internationale Warnund Alarmsystem Rhein, das 1976 ins Leben gerufen worden war, nicht ordnungsgemäß funktioniert. Ehemahliger Geschäftsführer der Internationalen Kommission zum Schutze des Rheins Dipl.-Ing. Pieter Huisman hat die Sandoz-Katastrophe 2007 in einem Artikel der Zeitschrift Tijdschrift voor Waterstaatsgeschiedenis analysiert. Huisman zufolge hatte die Warn-

zentrale in Basel lediglich regional Alarm ausgelöst, wodurch die nächste Warnzentrale im einige hundert Kilometer stromabwärts gelegenen Mannheim erst zwölf Stunden später über den Ernst der Situation aufgeklärt wurde. Mannheim informierte daraufhin unverzüglich die weiteren Zentralen stromabwärts.

Auch die Trinkwasserwerke hatten ein Netzwerk von Messstationen entlang des Rheins Sie tauschten - u.a. in IAWR-Verband - wohl Daten aus und hielten einander über eventuelle Messungen von Chemikalien auf dem Laufenden. Nach dem Sandoz-Unfall wussten die Trinkwasserwerke am Unterlauf dennoch nicht genau, wann sie die Giftwellen erwarten konnten und in welchen Konzentrationen die Chemikalien dann noch im Wasser enthalten sein würden. Bei den deutschen Rheinwasserwerken kam es letztendlich nicht zu einer Unterbrechung der Wasserentnahme. Nach Meinung von Klaus Lindner (ARW) war die Uferfiltration als Puffer ausreichend. Trotzdem wurden auch die Aktivkohlefilter eingehend im Auge behalten.

Die niederländischen Trinkwasserwerke hatte die Rheinwasserentnahme aus Vorsorge wohl vorübergehend unterbrochen. Als die Welle gut eine Woche nach dem Brand in Basel die Niederlande erreichte, war der Chemikaliengehalt jedoch bereits drastisch vermindert. Die Niederlande waren noch einmal mit dem Schrecken davongekommen.

Herbizide im Amsterdamer Trinkwasser

Wenige Monate später erschütterte die nächste Affäre die Rheinwasserwerke in ihren Grundfesten. Das Labor der Gemeentewaterleidingen Amsterdam hatte Spuren des Unkrautbekämpfungsmittels Bentazon im Trinkwasser gefunden. Die Konzentrationen von 0,3 Mikrogramm pro Liter waren dreimal höher als laut der damaligen Verordnung (Waterleidingbesluit) erlaubt. Das Wasserwerk, zu jener Zeit noch unter Leitung von Dipl.-Ing. Maarten Gast, brachte die Überschreitung an die Öffentlichkeit, was zu großer Aufruhr in den Medien, der Stadtverwaltung und der Landespolitik führte.

Der Bentazon-Fund wurde bewusst an die Öffentlichkeit gebracht, sagt Gast im Rückblick. "Man vermutete schon viel länger, dass es bei dem, was wir im Wasser aufzeigen können, weiße Flecken gäbe. Als die Labors über neue Methoden verfügten, mit denen insbesondere Pestizide auch in niedrigen Konzentrationen gemessen werden konnten, wurde auch gleich ein Volltreffer gelandet. Das Wasserwerk informierte zunächst das Gesundheitsamt über den Befund. Dort fand man es nicht problematisch, da die Gesundheitsnorm bei 700 Mikrogramm pro Liter lag. "Wir haben damals selbst die Quelle aufgespürt", berichtet Gast. "Mit dem Messschiff der Stiftung Reinwater sind wir rheinaufwärts gefahren. Bei Ludwigshafen entdeckten wir, dass BASF für die Einleitungen verantwortlich war." Im Gespräch mit der Geschäftsleitung von

BASF wurde deutlich, dass das Chemiewerk bereits seit sechzehn Jahren Abwasser der Bentazon-Herstellung in den Rhein leitete, ohne sich der Probleme bewusst zu sein, die dies für den Trinkwassersektor darstellen könnte. "Wir konnten die Sache nicht verschweigen und mussten es an die Öffentlichkeit bringen. Das haben wir BASF auch mitgeteilt. Darüber war das Unternehmen natürlich nicht sonderlich erfreut. Der Direktor unterzeichnete wohl noch eine handschriftliche Erklärung, laut der BASF die Bentazon-Einleitung innerhalb von zwei Jahren einstellen würde", sagt Gast.

Es war anzunehmen, dass sich noch zahlreiche andere Stoffe in niedrigen Konzentrationen im Trinkwasser befinden würden. Im Stadtrat von Amsterdam wurde nach Aussage von

Martien den Blanken (RIWA-Rijn)

Gast lange und heftig über die Möglichkeiten diskutiert, gegen die Quellen vorzugehen oder die Wasserbehandlung zu intensivieren. "Letztendlich entschied man sich dafür, beides zu tun. Wir haben Aktivkohlefilter in doppelter Aufführung installiert und haben BASF nochmals besucht, um zu prüfen, ob die Einleitungen inzwischen eingestellt worden seien. Das Unternehmen hatte sich die negative Publizität sehr zu Herzen genommen und sicherte zu, die Einleitung ein Jahr früher als ursprünglich vereinbart zu beenden. Daran hat man sich auch wirklich gehalten."

Die zweigleisige Vorgehensweise Amsterdams
– einerseits Bekämpfung der Quellen und andererseits Installation zusätzlicher Aktivkohlefilter

– wurde auch von den anderen Rheinwasserwerken übernommen. Minister Ed Nijpels von VROM (Ministerium für Bau, Raumplanung und Umwelt) reagierte am 3. Mai 1988 mit dem so genannten Bentazonbrief auf die Affäre, in dem er alle Wasserwerke, die Rheinwasser entnahmen, zur Aktivkohlefiltration verpflichtete. An quellenorientierte Maßnahmen wagte er sich jedoch noch nicht. BASF halte sich an die geltenden Einleitungsnormen, so schrieb Nijpels in seinem Brief. Somit könne nichts gegen das Unternehmen unternommen werden.

"Die Installation von Kohlefiltern war natürlich ein Sofortprogramm. Es musste blitzschnell innerhalb eines Jahres geschehen," sagt Dipl.-Ing. Martien den Blanken, Direktor PWN und jetziger RIWA-Vorsitzender und Präsident der internationalen IAWR. Damals arbeitete er noch beim Forschungsinstitut für den Trinkwassersektor KIWA. An den Wirbel um die Pestizide im

Trinkwasser kann er sich noch gut erinnern. "Es war besorgniserregend, dass Bentazon lediglich die Spitze des Eisbergs war. KIWA führte eine groß angelegte Folgeuntersuchung durch. Dies ergab, dass im Rheineinzugsgebiet über dreihundert verschiedene Pflanzenschutzmittel eingesetzt wurden, von denen in erster Instanz jedoch lediglich dreißig messbar waren."

Unfrieden in Deutschland

Der Bentazon-Vorfall belastete die Beziehungen zwischen den niederländischen und deutschen Rheinwasserwerken. Die deutschen Kollegen fühlten sich in die Enge getrieben, da die deutschen Medien sie direkt mit Fragen bombardierten. "In jener Zeit war alles, was mit Umwelt zu tun hatte, ein heikles Thema. Wir hatten 'Sandoz' gerade hinter uns, und der Rhein hatte schon einen schlechten Ruf," führt Klaus Lindner an. Er war damals Geschäftsführer der Arbeitsgemeinschaft Rhein-Wasserwerke (ARW), dem deutschen Pendant von RIWA. "Die durch die Niederlande hervorgerufene Medienandacht überfiel uns. Es war aber noch überhaupt nicht bekannt, ob Bentazon sich auch in unserem Trinkwasser befand." Beim Endosulfan-Problem und dem Sandoz-Brand hatte die Uferfiltration die meisten Stoffe zurückgehalten. Außerdem verwendeten die deutschen Rheinwasserwerke schon lange Aktivkohlefilter. Die schnelle Offenlegung des Befunds durch das Amsterdamer Wasserwerk stieß auch in den Niederlanden auf Kritik, vor allem von Seiten des Gesundheitsamtes. Gast zufolgte änderte sich dies jedoch schnell. "Wir hatten uns sehr offen gezeigt und erhielten zunächst von allen Seiten Kritik. Anschließend richtet der Unmut sich gegen die einleitende Industrie. Dort zeigte man sich durchaus für öffentliche Kritik empfänglich. Die Einleitungen wurden, trotz mangelnder Gesetzgebung, saniert," sagt Gast.

Ein einziger Schwellenwert für alle Mikroverunreinigungen

Der deutsche Biologe Jülich, der schon lange in den Niederlanden ansässig war, wurde 1990 zum RIWA-Geschäftsführer ernannt. Rückblickend auf die Spannungen zwischen den Niederlanden und Deutschland sagt Jülich, dass die deutschen Trinkwasserwerke vor allem an einer guten Untermauerung der Messungen und Normen interessiert waren. "Die Toxizität von Bentazon war beispielsweise wesentlich geringer als die von Lindan. Die deutschen Kollegen suchten nach mehr Differenzierung, begriffen aber auch, dass es unmöglich war, für hunderte von Stoffen separate Schwellenwerte festzusetzen. Dennoch entschied man sich letztendlich dafür, einen Wert von 0,1 Mikrogramm pro Liter für alle Pflanzenschutzmittel festzulegen, ungeachtet der jeweiligen Toxizität," so Jülich.

Die generische Vorgehensweise hat mittlerweile auch in den letzten beiden IAWR-Memoranda

Nachahmung gefunden: sowohl im IAWR-Rhein-Memorandum 2003 als auch im Donau-, Maasund Rhein-Memorandum, das IAWR 2008 gemeinsam mit den Schwesterorganisationen im Donau-, Maas- und Elbeeinzugsgebiet vorlegte, werden auch für andere Gruppen von Mikroverunreinigungen derartige Zielwerte präsentiert.

Letztendlich stimmten alle Trinkwasserwerke der Wahl eines einzigen allgemeinen Schwellenwerts für Mikroverunreinigungen zu. Auch das Vertrauen zwischen den Rheinwasserwerken und der chemischen Industrie wuchs allmählich wieder. Nach einiger Zeit wurden sogar Stoffdaten ausgetauscht. "Es war interessant zu beobachten, wie die Verhältnisse sich veränderten", berichtet Jülich. "Anfänglich galt die Industrie als der große Gegner; anschließend wurde sie eine Art Kollege, den man wohl im Auge behalten musste, aber sicherlich auch zu schätzen wusste."

Die Messtechnologie hatte sich seit Ende der 80er Jahre erneut in großen Sprüngen weiterentwickelt, so Den Blanken, wodurch die Labors stets niedrigere Konzentrationen von Stoffen nachweisen konnten. Diese Entwicklung bestärkte die Rheinwasserwerke in ihrer Auffassung, dass gegen den Einsatz von Pflanzenschutzmitteln vorgegangen werden müsse. "RIWA und IAWR spielten eine wichtige Rolle in dem Bemühen, die Menge von Pflanzenschutzmitteln in Oberflächengewässern zu vermindert. Auf der Produktionsseite ist man damit sehr erfolgreich gewesen, unter anderem durch den massiven öffentlichen Druck, dem die Industrie nach der Sandoz-Affäre ausgesetzt war." Bei den Benutzern, insbesondere der Landwirtschaft, hat sich auch viel getan. Allerdings ist dies ein viel langwierigerer Prozess, stellt Den Blanken fest. "Die Landwirtschaft ist auch von diesen Mitteln abhängig. Es wurde also viel über die Zulassungsbedingungen, die Abbaubarkeit und die Effekte im Wasser gesprochen. Die Diskussion wurde übrigens viel umfassender geführt, u.a. ausgehend von Vewin (dem Dachverband der Trinkwasserwerke) und dem Ministerium VROM (Bau, Raumplanung und Umwelt)."

Ökologischer Grundsatz WRR

Während die Internationale Kommission zum Schutz des Rheins über Fragen der ökologischen Wiederherstellung des Rheins nach dem Sandoz-Brand brütete, befasste die Europäische Kommission sich mit der Ausarbeitung der Wasserrahmenrichtlinie. 1996 wurde das erste Konzept dieser Richtlinie veröffentlicht. Für 'Brüssel' hatte die ökologische Wasserqualität mit dem Rhein als Vorbild - höchste Priorität. Wenn die Natur floriert, wird das Wasser sauber genug sein, war die allgemeine Auffassung. Am 22.12. 2000 trat die Wasserrahmenrichtlinie offiziell in Kraft. Die niederländischen Rheinwasserwerke waren der Richtlinie anfänglich sehr zugetan. Sie sollte das abschließende Element im Kampf um eine bessere Wasserqualität

und somit zum Schutz der Trinkwasserquellen sein. In Wirklichkeit zeigte sich jedoch, dass das 'ökologische' Prinzip keine Gewährleistung für eine möglichst einfache Aufbereitung von Trinkwasser beinhaltete. Im Gegenteil; schon wurden Stoffe entdeckt, die sich auf die Natur kaum merkbar auswirkten, für die Trinkwasseraufbereitung aber desto lästiger waren.

Vervuiling drinkwater Amsterdam

Extra zuivering werd nagelaten

AMSTERDAM - Het Amsterdamse drinkwater heeft vorig jaar te (Van een onzer verslaggeefsters) hoge concentraties chemische stoffen bevat, zonder dat tot gerichte zuivering werd overgegaan. Bij controles op innamepunten werden vorig jaar de onkruidbestrijdingsmiddelen bentazon, atrazin en

metolachloor aangetroffen.

HET PARCOL VANDAAG AMSTERDAM Goedheiligman Intocht van de Sint wordt minder commercieel BINNENLAND Alphen Onrust onder bevolking 5 over gifbelt neemt toe BUITENLAND Gitgas De stank van de dood in 6 Halabia is overweldigend MENINGEN eegloop Betere beloning van raadsleden geen garantie voor kwaliteit **ECONOMIE** Kantoren Amstelveen trotseert 9 Amsterdamse industrielobby KUNSTBIJLAGE New York De kunstenaars Clemente, Salle, Fischl en Rauschenberg, 'ledereen had in die tijd een 4 avocadoplant' Liefde Cabaretier Wilfried de Jong: 'Een kapotte contrabas is het ergste

wat er is'

De stoffen zijn afkomstig van landbouwbedrijven langs de Rijn, van de fabriek van BASF in Ludwigshafen en van een atrazin-fabriek in Bazel.

Volgens Lucas Reijnders van de stichting Natuur en Milieu zijn andere waterleidingbedrijven onmiddellijk overgegaan op zuivering met actieve koolstoffilters. "Dat had Amsterdam er ook meteen op moeten zetten. Het is mij een raadsel waarom dat niet gebeurd is."

De onkruidverdelgers mogen in het drinkwater voorkomen tot 0,1 microgram per liter. De gemiddelde waterconsumptie per hoofd van de bevolking is twee liter per dag. In die hoeveelheden zijn de stoffen niet schadelijk voor de mens, al worden de middelen wel verdacht van kaneigenschappen. Volgens het Wageningse Instituut voor Onderzoek van Bestrijdingskerverwekkende middelen komen de drie stoffen vrij algemeen voor in het Europese milieu en worden residuen ervan ook aangetroffen in het dagelijkse voed-selpakket. Voor drinkwater gelden echter hogere normen.

Filtreerproces

Directeur M. Gast van het Amsterdamse waterleidingbedrijf heeft onlangs bij het Westduitse BASF geklaagd over de lozingen. Het bedrijf zou hebben toegezegd de lozing van bentazon binnen twee jaar terug te brengen naar een tiende van de huidige hoeveelheid. Intussen werken de Amsterdamse en de Provinciale waterleidingbedrijven aan de installatie van een filtreerproces met ac-tieve kool dat juist deze stoffen uit het water moet filteren, maar dat proces is nog niet in bedrijf.

De stoffen worden door het provinciale waterleidingbedrijf aangemerkt als niet schadelijk voor de volksgezondheid. "Maar," verklaart een woordvoerster, "ze horen niet in

5

Jahre des Fortschritts (2000-2011): RIWA vertritt den Standpunkt, dass die Ökologie als Maßstab unzureichend ist

Das Ideal des gesunden Flusses

Die Renaturierung des Rheins verlief in den vergangenen Jahrzehnten schubweise. Große Zwischenfälle oder Unglücke verdeutlichten dabei immer wieder, dass der Fluss seinem Schicksal nicht überlassen werden konnte. Der Rhein war seit den 90er Jahren deutlich sauberer geworden. Die neue Wasserrahmenrichtlinie sollte der Entwicklung gesunder Flüsse in Europa einen letzten Impuls erteilen. Hierbei hatte der Rhein sogar als Vorbild gedient. Die Rheinwasserwerke begrüßen die europäische Gesetzgebung, stellen aber auch fest, dass diese Lücken hat.

Im Jahr 2000 trat die Wasserrahmenrichtlinie (WRRL) der Europäischen Union in Kraft. Die Erwartungen waren hochgespannt, da bereits seit Mitte der 90er Jahre an dieser Richtlinie gearbeitet wurde. Ihr ganzheitliches Schutz- und Nutzkonzept sollte einen guten ökologischen Zustand der europäischen Flüsse und Oberflächengewässer gewährleisten. Das erfolgreiche Vorgehen beim Rhein hatte Modell für diesen Brüsseler Ordnungsrahmen gestanden. Es verwundert daher nicht, dass die RIWA-Mitgliedswerke dieser neuen Gesetzgebung mit freudiger Erwartung entgegensahen. Schon bald offenbarten sich jedoch die Schwächen der Richtlinie, die insbesondere für die Trinkwasserwerke relevant waren. Aufgrund des neuen, an Biodiversität und Natürlichkeit der Flüsse orientierten, 'ökologischen' Bewertungsmaßstabs, wurde der chemischen Wasserqualität weniger Aufmerksamkeit geschenkt.

Die RIWA stimmte dem ökologischen Grundsatz der Richtlinie anfänglich zu. "Wenn Muscheln, Wasserflöhe oder Fische sich im Wasser wohl fühlten, müsse dieses biologisch gesunde Wasser auch für die Aufbereitung von Trinkwasser geeignet sein", erläutert Dr. Walter Jülich, RIWA-Direktor 1990 bis 2003, die damalige Auffassung. "Zudem bot diese Vorgehensweise auch die Perspektive, zukünftig nicht mehr endlos nach Einzelstoffen suchen zu müssen." Bei den Rheinwasserwerken auf deutscher Seite war die Zustimmung etwas zurückhaltender. Selbstverständlich befürwortete man auch hier die Verbesserung der Ökologie, sagt ARW-Geschäftsführer Klaus Lindner, gleichzeitig war man aber der Überzeugung, dass die chemische Wasserqualität nicht aus den Augen verloren werden dürfe. "Der Bau von Fischpässen ist gut

für den Fischstand, hat aber für die chemische Wasserqualität kaum Bedeutung. Aber gerade diese chemische Wasserqualität ist für die Trinkwasseraufbereitung so unglaublich wichtig." Schon bald stellte Jülich fest, dass die ökologische Bewertung bei Behörden und Industrie die Oberhand gewann. Als Beispiel führte er das Beruhigungsmittel Carbamazepin an. "Ende der 90er Jahre wurde dieses Mittel immer öfter im Rheinwasser nachgewiesen. Wir haben die nationalen Behörden hierüber informiert und ihnen mitgeteilt, dass wir derartige Stoffe nicht im Rohstoff für das Trinkwasser haben wollen." Dabei blieb es jedoch nicht. "Wir entdeckten ständig neue Stoffe im Rhein. Mindestens einhundert Arzneimittel und Röntgenkontrastmittel, Benzinadditive und noch vieles mehr. Von Seiten der Behörden und der Industrie wies man immer wieder daraufhin, dass diese Stoffe in derart niedrigen Konzentrationen nicht problematisch seien und dass die Muscheln auch hervorragend gediehen", so Jülich.

Die Kehrseite der WRRL

Ein weiterer, nicht vorhergesehener Effekt der Einführung der WRRL war der gesetzliche Charakter, den die Maßnahmen von nun an erhielten. Die Wasserrahmenrichtlinie ging nämlich nicht

Peter Stoks (RIWA-Rijn)

mehr von einer 'Bemühungsverpflichtung', sondern von einer 'Ergebnisverpflichtung' aus. Dies war ein großer Unterschied zu den Erfahrungen, die man in den vorherigen Jahrzehnten bei der Internationalen Rheinkommission gemacht hatte. Bei diesen Beratungen konnten leichter Vereinbarungen über mögliche Maßnahmen getroffen werden, ohne die Anliegerstaaten dabei direkt mit Auflagen und Beschränkungen zu konfrontieren. Über die WRRL würde Brüssel bei den Mitgliedsstaaten jedoch das Einhalten der Maßnahmen, die im internationalen Einzugsgebietsbewirtschaftungsplan des Rheins (2009-2015) festgehalten sind, erzwingen können.

Dr. Peter Stoks, Direktor RIWA-Rhein und Nachfolger

von Walter Jülich, blickt daher mit gemischten Gefühlen auf die Einführung der Wasserrahmenrichtlinie im Jahr 2000 zurück. Dabei hat laut Stoks vor allem die Erfahrung mit der europäischen Feinstoffrichtlinie eine Rolle gespielt. Die strengen europäischen Anforderungen an die Luftqualität führten zu unerwarteten Problemen bei der Ausführung neuer Bau- und

Infrastrukturprojekte. "Hierdurch entstand in den Niederlanden eine zunehmend abwehrende Haltung gegenüber europäischen Umweltnormen. Man fürchtete die Brüsseler Abrechnungskultur."

Dipl.-Ing. Maarten Hofstra, damals Direktor Wasserqualität bei Riza, kann sich noch gut an die Unruhe in den Niederlanden erinnern, die durch diese Ergebnisverpflichtung verursacht wurde. "Gewässergütewirtschaft beruhte in den Niederlanden immer auf einer Bemühungsverpflichtung. Als Wasserbewirtschafter konnten wir schließlich nicht garantieren, dass eine bestimmte Stoffkonzentration die vorgeschriebene Norm auch tatsächlich nicht überschreiten würde." Wenn Brüssel die Einhaltung der Wasserqualitätszielsetzungen fordern würde, hätte dies nach damaliger Überzeugung einiger Leute eine Stilllegung des gesamten landwirtschaftlichen Sektors beinhaltet. Die strenge Rechtswirkung der Rahmenrichtlinie warf ihren Schatten voraus, so Hofstra, und führte bei den Mitgliedstaaten, u.a. den Niederlanden, zur einer minimalen Umsetzung der Richtlinie. Die WRRL wirkte sich auch auf die Rheinberatungen aus. "Bei der Rheinberatung war es üblich, Vereinbarungen über Maßnahmen zu treffen. 2000 war dies plötzlich anders. Maßnahmen wurden ausgesetzt in Erwartung des internationalen Einzugsgebietsbewirtschaftungsplans für den Rhein im Jahr 2009. Dies beinhaltete also eigentlich einen neunjährigen Stillstand. In der Zwischenzeit wurden kaum noch Vereinbarungen über Maßnahmen getroffen."

Die fünfzehn Rheinstoffe

"Dennoch wurde bei der Rheinberatung nicht still gesessen", versichert Maarten Hofstra. "Die IAWR erstellte Ende 2006 eine Liste mit fünfzehn Stoffen, die speziell im Rhein Probleme bei der Trinkwasseraufbereitung verursachten. Wir haben damals eine unabhängige Arbeitsgruppe ins Leben gerufen, um eindeutige Normen für diese Stoffe festzusetzen", so Hofstra. Aus Frankreich und einigen deutschen Bundesländern erfuhren wir jedoch nur wenig Unterstützung für die Normierung dieser fünfzehn spezifischen Rheinstoffe. Gleichzeitig wurde nämlich mit Brüssel darüber gesprochen, einige dieser Stoffe in die Liste prioritärer Stoffe aufzunehmen. Die WRRL hatte somit ungewollt einen hemmenden Einfluss auf die Rheinberatung.

Arzneimittel im Wasser

Durch die Sanierung der großen Einleitungsquellen bei Städten und in der Industrie erhielt die Wasserqualität des Rheins allmählich einen völlig anderen Charakter. Die starken Konzentrationen der bis dahin bekannten Verunreinigungen gingen drastisch zurück. Allmählich

wurde aber deutlich, dass es im Wasser eine Vielzahl von Stoffen in relativ niedrigen Konzentrationen gab. Es wurde auch schwieriger, die Herkunft dieser Stoffe festzustellen, da sie immer häufiger aus diffusen Quellen stammten. Die früheren Verunreinigungen hatte man relativ einfach auf Punktquellen zurückführen können, meistens dem Abfluss einer industriellen Abwasserreinigungsanlage. Der Bentazon-Vorfall war hierfür ein gutes Beispiel.

Die Rheinwasserwerke behielten diese Stoffe sorgfältig im Auge. Bei einer Überschreitung der Grenze von 1 Mikrogramm pro Liter schlugen RIWA und IAWR regelmäßig Alarm, insbesondere bei Stoffen, die bei einfachen Aufbereitungsverfahren bis in das Trinkwasser vordringen konnten. Anfangs ging es dabei hauptsächlich um Pflanzenschutzmittel. Allmählich tauchten jedoch immer häufiger Arzneimittelreste, Hormonstoffe und andere in Haushalt und Industrie verwendete Mittel im Oberflächenwasser auf.

Walter Jülich erinnert sich an die Entdeckung der Röntgenkontrastmittel. Kiwa in den Niederlanden und das Technologiezentrum Wasser in Karlsruhe hatten ihre Messmethoden fortlaufend weiter entwickelt und stießen plötzlich auf Röntgenkontrastmittel im Rheinwasser. "Wir führten Gespräche mit einzelnen Fabrikanten, Branchenorganisationen und sogar mit Brüssel. Dort wurde schulterzuckend reagiert: "Eine beeindruckende Leistung, dass ihr das finden konntet. Aber wo liegt das Problem? Bei einer medizinischen Untersuchung wird den Leuten ein halbes Kilo oder mehr dieses Stoffes in den Körper gespritzt. Was soll ein Mikrogramm im Wasser da ausmachen?" Das Problem liegt jedoch darin, dass diese Stoffe nicht abgebaut werden. Wenn sie dann in das Trinkwasser gelangen, werden die Wasserwerke von Medien und Konsumenten hierauf angesprochen."

Die Rheinwasserwerke begannen daraufhin mit der Inventarisierung der neu auf den Markt gebrachten Mittel. Das war eine riesige Menge, so stellte sich heraus, sagt Jülich. "Damit konnten wir nicht Schritt halten. Wir konnten die Schädlichkeit dieser Stoffe nicht nachweisen. Das war allerdings auch nicht relevant: wir wollen diese Stoffe einfach nicht im Wasser haben. Für den Konsumenten ist es letztendlich nebensächlich, ob eine Trinkwasserverunreinigung unschuldig ist; sie hat einfach nicht im Wasser zu sein!"

Bleiersatzmittel

Auch das Pflanzenschutzmittel Isoproturon bereitete den Trinkwasserwerken regelmäßig Sorgen. In den 90er Jahren musste WRK die Wassereinnahme bei Nieuwegein mehrmals aufgrund zu hoher Isoproturon-Konzentrationen unterbrechen. 2001 wurde sogar während 34 Tagen kein Rheinwasser entnommen. RIWA machte die Sache beim Ministerium für Verkehr und Wasserfragen anhängig, und auch in den Medien wurde ausführlich hierüber berichtet.

Letztendlich führten die Gespräche in der Internationalen Kommission zum Schutz des Rheins und in Brüssel zum Erfolg und wurden Vereinbarungen getroffen, um die Auswaschung des Schädlingsbekämpfungsmittels beim Einsatz in der Landwirtschaft zu vermindern.

Für Peter Stoks ist die Verringerung der Spitzenkonzentrationen von MBTE und ETBE - Bleiersatzmittel im Benzin - ebenfalls ein Erfolg. Dabei erhielten RIWA und IAWR viel Unterstützung von den Produzenten selbst. Nachdem 2004 Spitzenkonzentrationen von weit über 50 Microgramm pro Liter im Rheinwasser gemessen worden waren, organisierten RIWA und IAWR ein Treffen mit den Produzenten der Bleiersatzmittel. "Für diese Stoffe gab es keine spezifischen Normen, weil sie die Ökologie des Rheins nicht beeinflussen", erläutert Stoks. "Für uns waren sie wohl problematisch, da sie dem Trinkwasser bereits in sehr niedrigen Konzentrationen einen bestimmten Geruch verleihen. Glücklicherweise nahm die Branchenorganisation die Sache ernst und suchte selbst nach der Quelle. Dies schien die Schifffahrt zu sein. Beim Transport der Stoffe auf dem Rhein gelangte viel MBTE und ETBE in das Wasser." Die Branchenorganisation erstellte ein Handbuch für 'gutes Verhalten', und die Wasserpolizei ahndete Schiffer, die sich nicht daran hielten. "Die Zahl der Spitzenkonzentrationen ist seither drastisch zurückgegangen", sagt Stoks.

Vorsorgeprinzip

Die Rheinwasserwerke haben Einleiter und Behörden systematisch – und mit wechselndem Erfolg – mit den möglichen Folgen der Einleitung bestimmter Stoffe für die Trinkwasserversorgung konfrontiert. In den 50er und 60 Jahren ging es um Makroverunreinigungen; heute vor allem um Mikroverunreinigungen. Das größte Problem der Rheinwasserwerke war das Fehlen gesetzlicher Normen, über die man Verursacher belangen konnte. Für die Makroverunreinigungen wurden bereits in den 70er Jahren Wasserqualitätsnormen erlassen, doch für die unzähligen Mikroverunreinigungen ist dies noch kaum der Fall. Die WRRL hat zwar mehr Deutlichkeit verschafft, in dem man sich auf die öko(toxi)kologisch problematischsten Stoffe konzentrierte. Dabei blieben gewisse Mikroverunreinigungen, die für die Wasserwerke am Rhein aber besonders lästig waren, jedoch unberücksichtigt.

Die Rheinwasserwerke legten daher verstärkten Nachdruck auf das Vorsorgeprinzip: es spricht für sich, dass angesichts der großen Bevölkerungsdichte im Rheineinzugsgebiet immer eine gewisse Basisverschmutzung gegeben ist. Dennoch sollte ein Stoff einen bestimmten Schwellenwert aber nicht überschreiten dürfen. Dieser Schwellenwert gewährleistet, dass auch dann noch mit relativ einfachen Aufbereitungsverfahren gutes Trinkwasser bereitet werden kann. Der Schwellenwert von 1 Mikrogramm pro Liter Wasser hatte (und hat) jedoch keinen Rechts-

status. Trotzdem legen die Rheinwasserwerke besonderen Nachdruck auf diesen Grenzwert. "Dies tun wir aus Vorsorge", erläutert Stoks. "Bestimmte Stoffe, die mit einfachen Reinigungsverfahren nicht zurückgehalten werden können - meistens Stoffe, die besonders gut wasserlöslich sind -, können bis in das Trinkwasser vordringen. Wir haben also das Problem, dass diese Stoffe uns zum Einsatz von Hightech-Reinigungsmethoden zwingen.

Mangels gesetzlicher Normen, über die eine Sanierung gefordert werden könnte, sind wir also dauerhaft hierzu verpflichtet. Dies steht im Widerspruch zu Artikel 7 der Wasserrahmenrichtlinie, in der explizit angegeben wird, dass die Verbesserung der Wasserqualität zu einer Reduzierung des technischen Aufwands für die Aufbereitung von Trinkwasser führen soll", so Stoks.

Zusammenschluss mit Donau und Maas

Am 18. Oktober 2007 trafen sich die Minister der Rheinanliegerstaaten zur 14. Rheinminister-konferenz in Bonn. Auch die von der IAWR erstellte Liste mit fünfzehn spezifischen 'Rheinstoffen' stand auf der Tagesordnung. RIWA und IAWR plädierten dafür, die Diskrepanz zwischen Normen für Trinkwasser und Normen für Oberflächengewässer für diese Stoffe aufzuheben. Die Minister erklärten sich jedoch nicht dazu bereit, abweichende Normen für den Rhein zu erstellen. Stoks war als IAWR-Vertreter auf dieser Konferenz anwesend. "Wir stellten fest, dass die Minister vor allem die europäischen Trinkwassernormen und die ökologische Gesundung von Oberflächengewässern im Visier hatten. Über die niedrig-toxischen Mikroverunreinigungen, die bei der Aufbereitung zu Problemen führten, aber keinen ökologischen Schaden verursachen, wollte man nicht sprechen", so Stoks.

Man hatte die Rheinwasserwerke ins Abseits gedrängt. Ein Jahr später gelang ihnen jedoch ein Meisterstreich, durch den sie wieder auf das internationale Spielfeld zurückkehrten. Im fünften Memorandum behandelt die IAWR nicht nur den Rhein, sondern auch die Donau und die Maas. Mit den Wasserwerken an diesen Flüssen erstellten sie ein gemeinsames Dokument. "In diesem Dokument haben wir uns als Wasserwerke kollektiv für saubere Flüsse eingesetzt. Dabei ist das Zurückhalten von Verunreinigungen an erster Stelle die Aufgabe des Verursachers und nicht der Trinkwasserwerke", berichtet Stoks. "Ein sauberer Fluss heißt für uns, dass relativ einfache Verfahren ausreichen, um Trinkwasser zu bereiten. Die Grundlage ist das Vorsorgeprinzips: keine Verunreinigungen über einem bestimmten Schwellenwert." Stoks zufolge war es nicht einfach, mit allen Wasserwerken auf einen gemeinsamen Nenner zu kommen. "Es ist uns gelungen, eine gut untermauerte Vision zu entwickeln, mit der wir wieder zur Politik zurückkehren konnten. Und der logische nächste Schritt, an dem wir derzeit

mit vereinten Kräften arbeiten, ist deren Ausweitung mit Wasserwerkorganisationen entlang anderer europäischer Flüsse."

Weniger Verbündete

Wasserlabors war es mit Hilfe fortschrittlicher Analysetechniken gelungen, Stoffe im Rheinwasser nachzuweisen, die nicht direkt toxisch sind, aber dennoch nicht ins Trinkwasser gehören. Die Rheinwasserwerke haben mit dem fünften Memorandum eine neue Mission. Möglicherweise die bisher schwierigste Mission, da sie heute außerhalb des Trinkwassersektors kaum mehr Verbündete haben. Beim Zustandekommen der Wasserrahmenrichtlinie ging es um nachweislich schädliche Verschmutzungen de Rheins. Bei der Bekämpfung dieser Verschmutzungen konnten die Rheinwasserwerke von einem wachsenden Umweltbewusstsein profitieren. Derzeit konzentriert man sich jedoch gänzlich auf die ökologische Wiederherstellung. Die Rheinwasserwerke stellen fest, dass sie nur noch wenig Unterstützung für das spezifische Trinkwasserproblem erhalten, verursacht durch ökotoxikologisch unschuldige Stoffe, die bis in das Trinkwasser vordringen können.

6

Die Zukunftsjahre (nach 2011): RIWA weiterhin bedacht auf neue Stoffe

Die unendliche Geschichte des Rheins

In vier Jahrzehnten vom fast toten Gewässer zum lebendigen Fluss; so lautet die Erfolgsgeschichte des Rheins, die weltweit Nachahmung findet. Mittlerweile erklingt aber auch die Frage, ob 'sauber nicht sauber genug sei'. Die Rheinwasserwerke entdecken unterdessen neue Stoffe im Wasser (von Arzneimittelresten bis zu Nanopartikeln), die aufgrund ihrer sehr niedrigen Konzentrationen zunächst unsichtbar geblieben waren. Grund zur Wachsamkeit, sagen die Wasserwerke, denn eines hat die Vergangenheit gezeigt: die Geschichte endet nie.

Heute besuchen Delegationen von Flussverwaltern aus aller Welt die Internationale Kommission zum Schutz des Rheins (IKSR) in Koblenz, um das 'Wunder vom Rhein' mit eigenen Augen zu betrachten. Ein Vortrag über den Rhein ist auf Symposien zu 'river basin management' meist fester Programmbestandteil. In vier Jahrzehnten wurde aus der offenen Kloake Europas ein lebendiger Fluss, der quer durch dichtbevölkerte, städtische Regionen fließt. Der Erfolg des Rheinprogramms kann aber auch leicht den Blick auf die Probleme versperren, die sich jetzt bereits ankündigen. Es tauchen neue Problemstoffe auf, z.B. Arzneimittelreste und Produkte, die im Haushalt verwendet werden, wie etwa Duftstoffe, Kosmetikreste und Reinigungsmittel. Selbst künstliche Süßstoffe aus Erfrischungsgetränken wurden im Rheinwasser vorgefunden. Bisher scheinen die Trinkwasserwerke die einzige gesellschaftliche Organisation zu sein, für die diese Verschmutzungen direkte nachteilige Folgen haben.

Während sich früher auch Umweltbewegungen und später Behörden und sogar umweltbewusste Unternehmen für einen saubereren Fluss einsetzten, sind die Rheinwasserwerke in diesem Punkt auf sich alleine gestellt, bemerkt der heutige RIWA-Direktor Dr. Peter Stoks. "Durch den Einsatz neuer und verfeinerter Analysemethoden entdeckte man plötzlich eine Vielzahl anderer Stoffe in niedrigen Konzentrationen. Einige stark toxische Substanzen wurden mittlerweile auch an Normen gebunden, doch gegen den Großteil dieser Stoffe wird praktisch nichts unternommen, da es eben keine Hinweise auf eine etwaige (ökologische) Schädlichkeit gibt. Als Rheinwasserwerke ist es unsere Pflicht, dies weiterhin zu beobachten."

die diese neuen Problemstoffe inventarisieren wird. Es stellt sich natürlich auch die Frage,

wie die Emissionen dieser Stoffe vermindert werden können. "Es handelt sich dabei um Stoffe, die die von uns im Donau-, Maas- und Rhein-Memorandum festgesetzten Schwellenwerte von 1 Mikrogramm pro Liter für anthropogene, mikrobiell schwer abbaubare Stoffe und 0,1 Mikrogramm pro Liter speziell für die biologisch aktiven Substanzen wie Arzneimittel überschreiten. An erster Stelle befassen wir uns natürlich mit den Stoffen, die die größten Probleme verursachen können. Dann wird zunächst geprüft, ob an der Quelle etwas dagegen unternommen werden kann und anschließend bei der Abwasserreinigung. Für uns ist es ein grundsätzlich falscher Ansatz, dieses Problem der Trinkwasserbereitung aufzubürden. Weil nämlich keine einzige Reinigung zu einhundert Prozent effektiv ist, weil dabei nicht nur die unerwünschten Stoffe beseitigt werden und weil insbesondere die fortschrittlichsten (oxidativen) Reinigungsmethoden die Stoffe nicht beseitigen, sondern diese lediglich in zumeist unbekannte Abbauprodukte umwandeln", konstatiert Stoks. "Zudem steht dies im Widerspruch zu den Zielsetzungen der Wasserrahmenrichtlinie".

Übrigens suchen unter anderem auch die Wasserverbände nach Lösungen, um zu verhindern, dass diese Stoffe in das Oberflächenwasser gelangen. Beispielweise durch Experimente mit zusätzlichen Reinigungsschritten in Kläranlagen oder durch die getrennte Sammelung von Urin, einer wichtigen Quelle für Hormonstoffe und Arzneimittelreste im Abwasser.

Der Charakter des Wassers

Bei den Rheinwasserwerken wurde lange über Sinn und Notwendigkeit allgemeiner Schwellenwerte diskutiert. Wenn über einen bestimmter Stoff gesprochen wird, weil er den Schwellenwert überschreitet, stellt sich schon schnell die Frage, ob dieser Stoffe wirklich schädlich ist. Welchen Einfluss hat dieser Stoff auf das Rheinwasser? Ökotoxikologische Untersuchung müsse den Beweis für die Schädlichkeit von Stoffen erbringen.

Der ehemalige IAWR-Geschäftsführer Dipl.-Ing. Klaus Lindner warnt jedoch, es mit der Reinigung nicht zu übertreiben und dabei das Gesamtbild aus den Augen zu verlieren. "Wasser hat seine eigenen Charakteristika. Durch Membranfiltration können wir sehr viele Stoffe aus dem Rheinwasser entfernen. Aber was bleibt dann noch? Auch die nützlichen Stoffe werden auf diese Weise herausgefiltert. Das ist bei der Wasserhärte eigentlich schon der Fall: weniger hartes Wasser ist gut für Wasserleitungen und Geräte, enthält aber weniger nützliche Stoffe." Linder sieht das Interesse für polare Mikroverunreinigungen als neue Phase in der Geschichte der Rheinwasserqualität. "Erst war es der Sauerstoffmangel, dann folgten die Makroverunreinigungen, anschließend die Mikroverunreinigungen und jetzt die neuen Problemstoffe."

Er zeigt sich optimistisch, wenn auch nuanciert. "Auch für diese Stoffe werden wir Lösungen finden. Es stellt sich viel mehr die Frage: Was charakterisiert das Wasser?"

Zwei 'Treiber'

Die Rheinwasserwerke haben ihren Blick jetzt vor allem auf 2015 gerichtet, wenn alle Mitgliedsstaaten ihre Bewirtschaftungspläne für die Einzugsgebiete (BPE) für den Zeitraum 2016-2021 aktualisieren müssen. Wie bei den ersten Plänen, die 2009 eingereicht wurden, ist

Ben van de Wetering (ICBR)

es die Aufgabe der IKSR, die nationalen Pläne zusammenzufügen und daraus einen umfassenden internationalen koordinierten Bewirtschaftungsplan für die internationale Flussgebietseinheit Rhein 'IFGE-Rhein' zu erstellen. Diese europäische Vorgehensweise hatte großen Einfluss auf die Rheinberatung. Vormals waren die Rheinministerkonferenzen die Eichpunkte der Bewirtschaftungspolitik. Heute dominiert das gesetzliche Verfahren der Wasserrahmenrichtlinie: der Bewirtschaftungsplan für das Einzugsgebiet muss alle sechs Jahre überarbeitet werden.

"Viele Themen dieser Pläne haben lediglich regionale Bedeutung", führt IKSR-Geschäftsführer Dipl.-Ing. Ben van der Wetering an. "Wir konzentrieren uns

auf die Abstimmung der internationalen Aspekte, wie z.B. die Wanderfische, für die es möglich sein muss, ungehindert stromauf- und -abwärts zu schwimmen." Van de Wetering zufolge umfasst die Arbeit der IKSR mehr als nur das Koordinieren der nationalen Pläne. "Innerhalb der Rheinkommission wird heftig über das Abstimmen von Standpunkten und Maßnahmen diskutiert, wie z.B. die Übernahme der 'Zielvorgaben' aus dem Rhein-Aktionsplan 2020. 2001 trafen wir für diesen Plan Vereinbarungen über Zielvorgaben, und diese müssen jetzt in den internationalen Bewirtschaftungsplan aufgenommen werden.

Van de Wetering skizziert die Bedeutung der beiden separaten Wege. "Die Zielvorgaben sind auf politischem Wege auf den Rheinministerkonferenzen entstanden. Die Maßnahmen der Bewirtschaftungspläne für die Einzugsgebiete sind aus den Verfahren der Wasserrahmenrichtlinie (WRRL) hervorgegangen und haben dadurch vor allem einen rechtlichen Hintergrund. Beide 'Treiber' sind nötig."

Wassertemperatur des Rheins

Einer der Aufgabenschwerpunkte der Internationalen Rheinberatung ist die Entwicklung einer Strategie für die Mikroverunreinigungen. "Für kommunale und industrielle Abwässer haben wir bereits eine solche Strategie entwickelt und in einem Bericht veröffentlicht. Des Weiteren wurden für zwei spezielle Stoffgruppen – Arzneimittel für den menschlichen Gebrauch und Biozide/Korrosionsschutzmittel – Problemanalysen durchgeführt. Diese Ergebnisse wurden in Auswertungsberichten beschrieben. Damit wurde die Grundlage für etwaige Maßnahmen geschaffen", sagt Van der Wetering.

Ein weiteres internationales Problem ist nach seiner Überzeugung die Wassertemperatur des Rheins im Verhältnis zur Wasserführung. Die mittlere Temperatur des Wassers steigt noch immer, und angesichts des erwarteten Klimawandels werden öfter Überschreitungen der erlaubten Höchsttemperatur von 25 °C auftreten. "Wir haben gute Fortschritte mit den Szenarien für die Wasserführung und die Wassertemperatur im internationalen Einzugsgebiet des Rheins gemacht. Es wurde mit der Beurteilung möglicher Auswirkungen von Veränderungen des Wasserhaushalts des Rheins begonnen. Wir müssen Anpassungsstrategien entwickeln, unter anderem für die Wasserverwendung, die Wasserqualität und die Ökologie."

Selektive Betrachtung der Natur- und Wasserziele

Dipl.-Ing. Maarten Hofstra, derzeit beschäftigt mit Watergovernance bei UNESCO-IHE in Delft und beim Watergovernance Centre, weist darauf hin, dass für Politiker stets häufiger die Effizienz ergänzender Maßnahmen entscheidend ist. Immer wieder taucht die Frage auf, ob 'sauber nicht sauber genug sei '. Hofstra zufolge geht es hier jedoch um eine 'never ending story'. "Mit so vielen Menschen im Rheineinzugsgebiet werden immer umweltfremde Stoffe in das Rheinwasser gelangen", sagt Hofstra. "Wachsamkeit ist wichtig, wie jetzt bei den Arzneimittelresten. Wir haben schon zu oft gedacht: unsere Arbeit ist fast getan! Und immer wieder überraschen uns neue Zwischenfälle und neue Stoffe. Der Trinkwassersektor muss uns helfen, diese Wachsamkeit zu bewahren. Jeder fände es gut, wenn man das Wasser direkt aus dem Rhein trinken könnte. Gleichzeitig weiß aber auch jeder, dass dies nie der Fall sein wird. Es wird immer ein Filter nötig sein."

Hofstra unterwirft die heutige Umsetzung der WRRL einer kritischen Prüfung. "Die Wasserrahmenrichtlinie wird viel zu selektiv gelesen. Man sieht heutzutage viel zu leicht über einen wichtigen Grundsatz hinweg, der deutlich in der Richtlinie erwähnt wird: Gewässerschutz beginnt an der Quelle. Davon spricht niemand mehr; es geht ständig um die Frage, ob die Zielvorgaben realisiert werden oder nicht", stellt Hofstra fest.

Er warnt vor einer zu abwartenden Haltung. "Es kommt der Moment, dass wieder Problemstoffe im Rhein entdeckt werden. Wenn man davon ausgehen kann, dass ein bestimmtes Produkt im Wasser zu Problemen führen wird, muss über die Produktpolitik gegen dieses Mittel vorgegangen werden. Er ist doch seltsam, dass ein Bauer dazu aufgefordert wird, ein bestimmtes Produkt nicht mehr zu verwenden, weil es den Wasserqualitätsanforderungen schaden könnte. Gleichzeitig kann er dieses Produkt aber völlig legal kaufen".

Nanopartikel und Metaboliten

Da man behördlicherseits vor weit reichenden und teuren Umweltmaßnahmen zurückschreckt, wird die Kluft zwischen den Trinkwassernormen und der tatsächlichen Rheinwasserqualität nach Meinung von Peter Stoks immer größer. "In den Niederlanden konnten wir das 2010 bereits bei dem BKMW (Beschluss Qualitätsanforderungen und Wassermonitoring) feststellen. Der Grenzwert für Salz wird vom Trinkwassergesetz auf 150 Milligramm pro Liter festgesetzt. Für das Rheinwasser, das wir entnehmen, liegt die Grenze in diesem Beschluss jedoch auf 200 Milligramm pro Liter. Die Behörden gehen also eigentlich davon aus, dass die Wasserwerke die Differenz von 50 Milligramm dann eben selbst beseitigen müssen."

Stoks größte Sorge sind jedoch die vielen neuen Stoffe, über die noch kaum etwas bekannt ist. "Derzeit wird Werbung für Deodorants mit Nanosilber betrieben. Nanosilber tötet die Bakterien. Bei jedem Duschen werden diese Nanopartikel in das Wasser gespült, hören dort aber natürlich nicht damit auf, Bakterien zu töten." Für Stoks macht dieses Beispiel deutlich, dass die Rheinwasserwerke immer wachsam bleiben müssen. "Wir sagen nicht gleich, dass ein solcher Stoff verboten werden sollte. Aber wir können auch nicht arglos zusehen, wie sich das nächste Umweltproblem ankündigt."

Es ist schwierig vorherzusagen, inwieweit die Rheinwasserwerke sich zukünftig mit einer relativ einfachen Wasseraufbereitung begnügen können. Stoks: "Man muss allzeit auf ein Unglück vorbereitet sein. Aktivkohlefilter sind daher immer erforderlich. Es ist aber ein großer Unterschied, ob diese nur als Backup dienen oder ob sie ein fester Bestandteil des Aufbereitungsverfahrens sind." Er weist auch darauf hin, dass Hightech-Aufbereitungsmethoden bei den Trinkwasserwerken nicht immer die Lösung darstellen. Fortschrittliche Methoden können die Abbauprodukte von Stoffen nicht in allen Fällen ausschalten. "Eine UV- oder Ozonbehandlung beseitigt einen Stoff nicht, sondern bricht ihn in Stücke oder wandelt ihn um. Jeder Chemiker weiß aber, dass die Zahl der Teilchen vor und nach einer Reaktion völlig gleich ist: der Ausgangsstoff wurde also nur umgewandelt, und jeder Stoff liefert beim Abbau mindestens zwei neue Abbauprodukte: eine eiserne Logik, die leider nur wenig Berücksichtigung findet."

Null gibt es nicht

PWN-Direktor und jetziger IAWR-Präsident Martien den Blanken glaubt, dass die Kommunikation in den nächsten Jahren eine wichtige Rolle spielen wird. "Wolfgang Kühn, ehemaliger Leiter des Technologiezentrums Wasser in Karlsruhe, sagte immer: 'Null gibt es nicht'. Mit den heutigen Messgeräten wird immer etwas gemessen. Wir müssen der Bevölkerung gegenüber ehrlich sein. Wasser ist ein lebendes Produkt. Es enthält auch Bakterien. Und diese befinden sich nicht nur im Rheinwasser, sondern auch in den Leitungen." Nach Meinung von Den Blanken geht es in der Kommunikation darum, dass deutsche, schweizerische und niederländische Wasserwerke laut genug von sich hören lassen, um die Politiker, insbesondere in Brüssel, bleibend für einen sauberen Rhein zu interessieren. Dazu ist ab und zu ein Spagat erforderlich. "Einerseits warnen wir vor dem, was sich im Wasser befinden kann. Und andererseits möchten wir dem Konsumenten die Sicherheit bieten, dass die Aufbereitungsanlagen die Verschmutzungen beseitigen."

Den Blanken stellt mit Zufriedenheit fest, dass die von der IAWR propagierten Schwellenwerte noch immer akzeptiert werden. "Der Ruf nach einer guten Untermauerung der Risiken eines bestimmten Stoffs für Mensch und Natur, insbesondere in derart niedrigen Konzentrationen, ist verständlich. Uns geht es jedoch um das Prinzip, dass der Verursacher dafür zu sorgen hat, dass oberhalb eines akzeptablen Schwellenwerts keine Fremdstoffe in den Rhein gelangen. Gerade weil diese uns bei der Trinkwasseraufbereitung so sehr zu schaffen machen."

Doppelstrategie

"Als IAWR müssen wir wachsam bleiben. So können wir auch noch immer kleine Erfolge verzeichnen. Beispielsweise bei MTBE, indem wir uns direkt an die Industrie gewandt haben," führt Den Blanken an. Ihm ist deutlich, dass die Reduzierung der Wasserbelastung mit Arzneimitteln lästiger sein wird. "Wir haben mit den Betreibern der Abwasserreinigungsanlagen gesprochen und sie gebeten, die Reinigung zu intensivieren. Es ist auch möglich, dass wir verstärkt mit Trinkwasserwerken anderer Flusseinzugsgebiete zusammenarbeiten werden. Also nicht nur mit Donau und Elbe, sondern auch anderen europäischen Flüssen. Gemeinsam können wir in Brüssel mehr erreichen."

Rückblickend auf das 60jähre Riwa-Jubiläum und das 40jährige IAWR-Jubiläum ist Den Blanken zufrieden mit den erzielten Resultaten. "Dass der Rhein so sauber ist, ist teils auch den Rheinwasserwerken und ihren Bemühungen im Rahmen von RIWA und IAWR zu verdanken. Beispielsweise durch die umfassenden Messprogramme, die wir kontinuierlich ausführen und durch unsere Datenbank mit allen Trendübersichten. Es sind besonders wertvolle Informationen,

da wir damit alle Fakten auf den Tisch legen können. Die besondere Stärke von RIWA und IAWR liegt nach meiner Überzeugung darin, dass wir zweigleisig fahren: wir messen und machen uns anschließend mit den Ergebnissen an die Arbeit."

Laufende und neue Forschungsprojekte

In den vergangenen Jahrzehnten standen RIWA beachtliche Budgets für die Ausführung notwendig erachteter Projektforschung zur Verfügung. Anfänglich war dies vor allem aus der Not geboren: nur wenige andere Organisationen beschäftigten sich mit dem Oberflächenwasser als Forschungsgegenstand, und die spezifischen Trinkwasseraspekte blieben dabei unberücksichtigt. Allmählich wurden die vom Verband der Wasserwerke ausgeführten Untersuchungen jedoch besser strukturiert und gebündelt. Dadurch kamen auch die speziellen Oberflächenwasseraspekte besser zum Zug.

Mitte der 90er Jahre erfolgte noch eine Neuausrichtung der RIWA-Forschungsvision; hieraus gingen u.a. die Veröffentlichung einer Reihe Stoffstudien sowie die regelmäßig erscheinenden "vanGenderen-Veröffentlichungen" hervor (für eine komplette Übersicht wird auf die Website www.riwa-rijn.org unter Veröffentlichungen verwiesen).

Mit der Errichtung des BTO, dem branchenspezifischen gemeinsamen Forschungsprogramm der niederländischen Wasserwerke, in dem auch zunehmend Oberflächenwasseraspekte als Forschungsthemen aufgegriffen wurden, nahm die Dringlichkeit einer "eigenen" RIWA-Forschung jedoch ab. Für eine Beschreibung dieser BTO-Forschung wird auf den RIWA-Rhein-Jahresbericht 2006 verwiesen.

Seit 2009 wird der Standpunkt vertreten, dass RIWA nur dann Forschungsprojekte durchführt, wenn dies – obgleich die Mitgliedsunternehmen dies als wichtig erachten – nicht im Rahmen der BTO-Struktur ausgeführt werden kann.

Vor dem Jahr 2010 hat dies zu drei Projekten geführt: ein breites Screening sowie effektorientierte (Calux-)Messungen in Lobith und ein Ad-hoc-Projekt zur Schätzung fehlender Werte in Zeitreihen.

Dieses zuletzt genannte Projekt wurde 2010 auch abgeschlossen und veröffentlicht (siehe auch das nächste Kapitel in diesem Jahresbericht). Eine Kurzfassung dieses Projekts wurde im Jahresbericht 2009 veröffentlicht. Die beiden anderen Projekte werden nachstehend beschrieben.

Breites Screening

Im regulären Wasserqualitätsmessnetz von RIWA-Rhein, auf das jährlich in den Jahresberichten eingegangen wird, wird eine umfassende Palette an Wasserqualitätsparametern untersucht. Es ist kennzeichnend für eine solches Wasserqualitätsmessnetz, dass die statistische Analyse der erhaltenen Messergebnisse nach einem festen Schema erfolgt: fest beschriebene

Parameter, eine feste Messfrequenz und feste Messstellen.

Es spricht für sich, dass dieses Messnetz nicht zum "Aufspüren" plötzlich auftretender zwischenzeitlicher Verunreinigungen geeignet ist. Auch Verunreinigungen, die nicht zu den fest beschriebenen Parametern gehören, werden auf diese Weise nicht oder kaum aufgezeigt. Dafür ist eine andere Art der Messung erforderlich: das so genannte breite Screening. Eine derartige Screening-Untersuchung wird an der deutsch-niederländischen Grenze mindestens einmal täglich von Rijkswaterstaat/Waterdienst in Zusammenarbeit mit dem nordrhein-westfälischen Landesamt für Natur, Umwelt und Verbraucherschutz durchgeführt. Wichtigstes Ziel ist dabei die Überwachung der Wasserqualität des Rheins. Dabei wird eine möglichst breite Skala von Stoffen gemessen, um so vor allem plötzlich auftretende Verunreinigungen wahrzunehmen. Wenn bei diesem Screening bestimmte Schwellenwerte überschritten werden (die in Rücksprache mit RIWA festgesetzt wurden), werden die Trinkwasserwerke hierüber informiert. Die Ergebnisse dieses Screenings (und der analogen Messungen an den Entnahmestellen bei Nieuwegein und Andijk) werden regelmäßig von RIWA-Rhein analysiert. Dies kann nämlich auch Informationen zu möglichen Veränderungen der Wasserqualität liefern, die vom regulären Messnetz nicht erfasst werden (können), wie z.B. das Auftreten neuer Stoffe und die Bestimmung etwaiger toxikologischer Effekte dieser Stoffe.

Beim letzten Mal betraf dies Daten aus dem Zeitraum 2004-2005 (gemeldet im Jahr 2007). Bei dieser letzten Evaluierung war die Zahl der gemessenen neuen Stoffe jedoch sehr beschränkt. Einerseits, weil RWS die Nachweisgrenze bei Lobith angepasst hatte und anderseits, weil HWL noch nicht über ein gutes Auswertungstool für die Datenverarbeitung verfügte. Das letztere wurde inzwischen realisiert. Neben der regulären Screening-Untersuchung der Entnahmestellen im Jahr 2010 wurden in Zusammenarbeit mit dem Wasserlabor HWL auch in regelmäßigen Abständen hochempfindliche Messungen bei Lobith durchführt. Dies geschah ergänzend zu der laufenden Überwachung, die dort von den Behörden durchgeführt wird, um auf diese Weise eine aktuelle Übersicht der gemessenen Verbindungen für eine anschließende toxikologische Evaluierung erstellen zu können.

Die Ergebnisse dieser Messungen werden Mitte 2011 evaluiert.

Endokrine Effekte

In Zusammenarbeit mit KWR Water Research und dem Amsterdamer Bio Detection Systems (BDS) hat RIWA-Rhein im Zeitraum 2007- 2008 eine orientierende Untersuchung zu hormonal wirksamen Stoffen bei Lobith und Nieuwegein durchgeführt. Neben einer östrogenen Wirkung wurden auch vier weitere Typen hormonaler Aktivität gemessen (androgene, progestagene,

thyreogene und kortikogene Aktivität). Die östrogene Aktivität entsprach in etwa früheren Messungen (der so genannten LOES-Studie); von den anderen Typen konnte lediglich eine kortikogene Aktivität deutlich nachgewiesen werden. Die Ergebnisse dieser gemeinsamen Untersuchung wurden 2009 veröffentlicht. Im Anschluss an diese Untersuchung hat KWR inzwischen einige Stoffe identifizieren können, die für die kortikogene Aktivität verantwortlich sein könnten.

Die Messergebnisse sowohl der östrogenen als auch der kortikogenen Aktivität umfassen jedoch eine zu kurze Zeitspanne, um deutliche Schlussfolgerungen bezüglich möglicher Jahreszeiteneinflüsse bzw. zu Trends ziehen zu können (was für einige Arzneimittel beispielsweise wohl deutlich nachgewiesen werden konnte). Über HWL wurde bei den Mitgliedsunternehmen inzwischen mit der Messung dieser beiden Aktivitätstypen bei den Entnahmestellen begonnen. Zur Untermauerung der möglichen Herkunft (hat der Großteil seinen Ursprung im niederländischen Teil des Rheineinzugsgebietes oder dem Oberlauf?) und möglicher jahreszeitlicher Schwankungen werden die Messungen in Lobith während des Jahres 2010 fortgesetzt.

8

Erschienene Berichte

In diesem Kapitel werden die im Berichtsjahr erschienenen Berichte aufgeführt.

Alle Berichte sind auch als PDF-Datei auf der Website www.riwa-rijn.org unter Veröffentlichungen verfügbar, auf der sie kostenlos heruntergeladen werden können.

Aus Kostengründen werden die Berichte bereits seit 2003 nicht mehr in großer Auflage verteilt. Stattdessen entschied man sich für so genannte "Aufmerksamkeitskarten" mit einer kurzen Zusammenfassung der Ergebnisse. Die Berichte können aber noch immer als PDF-Datei oder als Papierkopie bei RIWA-Rhein angefordert werden.

Da alle in diesem Kapitel aufgeführten Berichte bereits im Kapitel "Laufende und neue Forschungsprojekte" in eher erschienenen Jahresberichten besprochen wurden, wird lediglich der Text der dazugehörigen Aufmerksamkeitskarten integral in der Originalsprache wiedergegeben.

Temporal and spatial trends of pharmaceuticals in the Rhine

In this study a large dataset of 48 to 127 pharmaceuticals, X-ray contrast media and endocrine disrupting chemicals was monitored at 9 sampling locations along the river Rhine, resulting in over 5000 positive detections of pharmaceuticals in the aqueous samples. Both spatial and temporal variation at the Dutch sampling locations Lobith and Nieuwegein were

studied. The obtained information was compared to literature data on the occurrence of pharmaceuticals in the aqueous environment and interpreted in relation to consumption of pharmaceuticals in the Rhine catchment area.

X-ray contrast media (e.g. iomeprol, iopamidol, iopromide) showed te highest concentrations, exceeding 0.1 ug/L, while concentrations of most other pharmaceuticals varied between 0.2 and 0.01 ug/L. The concentration of several pharmaceuticals slightly increased over the course of the river Rhine. However, concentrations of carbamazepine, bezafibrate and diclofenac significantly decreased with a factor

of 2 while two X-ray contrast media (iohexol and iomeprol) significantly increased with a factor 2.5 between 2002 and 2008. Additionally, some pharmaceuticals (diclofenac, ibuprofen, bezafibrate, anhydro-erythromicine-A and trimethoprim) showed clear seasonal trends, with higher loads entering the Netherlands in winter and up to 10 times lower loads in summer.

It was observed that 25% (1-70%) of the pharmaceuticals consumed in the Rhine catchment area was recovered in the Rhine. For 15 out of 20 chemicals the actual recovered fractions deviated less than a factor 2 from predicted fractions based on literature data. This analysis illustrates that consumption data can be used as an initial estimate of average environmental concentrations if no monitoring data are available.

Estimating missing values in time series

RIWA operates a water quality monitoring network to identify (undesired) changes in quality, testing water against target values and underpinning goals and requirements.

The time series of water quality data are regularly interrupted so that it is more difficult to obtain statistically sound statements. This can be due to a multitude of causes, such as changes in analytical methodology, switching between laboratories doing the analyses, miscommunication, or (temporary) financial cuts.

X-ray contrast agents constitute an important set of variables in the network. The time series of these substances were interrupted for various reasons. Several attempts were made to estimate missing values in order to still be able to detect trends. Among these attempts were a Box-Jenkins time series model; using the X-ray con-

trast agent data from an upstream site; a linear interpolation between an upstream and a downstream site; and a neural network.

Based on the results the artificial neural network was selected. The accuracy of the estimated missing values with this network was shown to be acceptable and it also has a built-in flexibility to model both linear and non-linear relationships.

Missing values in the data series of X-ray contrast agents measured at Lobith, Nieuwegein and Andijk were estimated with reasonable precision, using this network.

Once completing these data series of X-ray contrast agents, the standard RIWA trend analysis could be applied. The estimation of the missing values prevented in this way a considerable loss of capital and information.

Anlage 1

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.		Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Allgemeine Kenngrössen																						
Abfluß	m3/s		2500	2300	2770	1810	1720	2180		1540	2260	2200	1480	2170	3250	356	1260	1380	2000	2180	3210	5690
Wassertemperatur	°C		3.5	5.1	7.75	12.5	14.7	20.4	:	24.8	21.4	18.1	15.2	11.8	4.73	26	3	3.91	13.3	13.2	22.4	26.8
Sauerstoff	mg/l		13.5	12.4	12.3	11	10.8	9.27		7.6	8.35	9.2	9.85	10.7	12.8	26	7.3	8.11	10.7	10.7	13.3	13.7
Sauerstoffsättigung	%		101	96.5	102	98.8	99.5	85.6		66.4	76.8	85.9	90.6	94.8	98.8	26	66.2	73.1	94.3	91.4	102	104
Schwebstoffgehalt	mg/l	3	15.9	11.4	15.2	8.07	11.6	12.9		9	10.4	9.82	5.66	17.8	33	365	<	5	10	13.4	25	150
Sichttiefe (Secchi)	m		0.6	0.55	0.55	1	0.85	0.733		0.75	0.55	0.7	0.75	0.45	0.217	26	0.1	0.185	0.7	0.629	0.9	1.1
Geruch, qualitativ	-		0	0	0	0	0	0		0	0	0	0	0	0	26	0	0	0	0	0	0 📃
pH-Wert	рН		7.95	8	7.95	8.1	8.1	8.07		7.85	8	8	8	7.9	7.97	26	7.8	7.87	8	7.99	8.13	8.2
Elektrische Leitfähigkeit	mS/m		60.5	68	55.5	59	61	54.3		59	46	50	60	55.5	54.7	26	46	46	56.5	56.8	65.6	74 🗖
Glührückstand, 600°C	mg/l		10	21.8	11.4	7.05	11.7	11.5		10.3	12.2	9.8	5.55	21.8	26	26	4.7	6.54	9.95	13.7	35.6	47
Gesamthärte	mmol/l		2.24	2.33	2.17	2.14	2.49	2.16		2.08	1.92	2.07	2.35	2.09	2.11	13	1.92	1.98	2.14	2.18	2.43	2.49
Gesamthärte (Mg/L CaCO3)	mg/l		224	233	217	215	249	217		208	192	208	235	209	211	13	192	198	215	218	244	249
Radioaktivität																						
Aktivität, Beta Gesamt	Bq/I		0.14	0.19	0.15	0.12	0.17	0.14		0.15	0.14	0.16	0.14	0.18	0.2	13	0.12	0.128	0.15	0.155	0.196	0.2
Aktivität, Alpha	Bq/I		0.055	0.079	0.055	0.036	0.073	0.054	0.	0.032	0.059	0.046	0.048	0.078	0.11	13	0.032	0.0336	0.055	0.0599	0.0976	0.11
Aktivität, Beta (Gesamt -K40)	Bq/I		0.036	0.065	0.045	0.012	0.019	0.03	0.	0.021	0.041	0.036	0.008	0.053	0.088	13	0.008	0.0096	0.036	0.0372	0.0788	0.088
Aktivität, Tritium	Bq/I		3.2	4.1	5.6	4.2	8.1	3.2		2.7	2	4.5	20	8.4	3	13	2	2.2	4.1	5.55	15.4	20 🖃
Strontium-90	Bq/I	0.001	<		0.002		0.003	0.001			<		0.006		0.005	7	<	*	* 0	.00257	*	0.006
Radium-226	Bq/I		0.002		0.005		0.004	0.006			0.003		0.003		0.004	7	0.002	*	* 0	.00386	*	0.006
Anorganische Parameter																						
Hydrogencarbonat	mg/l		180	170	160	160	190	170		170	170	170	180	140	140	13	140	140	170	167	186	190 🖃
Chlorid	mg/l		89.1	133	79.8	81.2	82.9	69.5		82.5	51.1	62.5	84	74.4	80.7	26	47.6	54.7	77.8	80.5	97.9	172
Chlorid (Fracht)	kg/s		173	312	194	149	138	137		132	115	121	126	172	301	25	110	116	144	178	345	411
Sulfat	mg/l		55	66	51	61.5	60	52.3		60	45.5	47.5	59	58	44	26	36	42.1	55	54.5	67	79
Silikat	mg/l		3.49	3.27	3.28	2.17	1.49	2.14		1.9	2.04	2.34	2.47	3.02	3.26	26	0.96	1.72	2.47	2.58	3.51	3.62
Bromid	mg/l		0.08	0.1	0.1	0.094	0.14	0.119	0.	0.072	0.093	0.17	0.14	1.9	0.059	13	0.059	0.0642	0.1	0.245	1.21	1.9 🖃
Fluorid	mg/l		0.08		0.13		0.13	0.11			0.11		0.15		0.12	7	0.08	*	*	0.119	*	0.15
Nährstoffe																						
Stickstoff, Ammonium-NH4	mg/l	0.0129	0.161	0.2	0.109	0.0515	0.0451	0.0322	0.0	0644	0.0161	0.0386	0.0258	0.0386	0.12	26	<	<	0.0515	0.0753	0.171	0.232
Stickstoff nach Kjeldahl	mg/l	0.2	0.6	0.55	0.54	0.435	0.41	0.21	0.	0.305	0.33	0.305	0.3	0.44	0.56	26	<	<	0.37	0.413	0.662	0.76
Stickstoff, Nitrit-NO2	mg/l	0.0328	0.131	0.164	0.0985	0.0493	<	<		<	<	<	0.0411	0.0411	0.0547	26	<	<	0.0328	0.0543	0.164	0.164
Stickstoff, Nitrat-NO3	mg/l		13.7	16.2	15	11.7	9.83	8.29		7.9	6.8	8.3	9.07	12.5	13.4	26	6.37	6.9	10.1	11	15.5	16.9
Phosphor, Ortho-Phosphat-PO4	mg/l		0.216	0.228	0.163	0.133	0.132	0.21		0.23	0.218	0.179	0.219	0.204	0.199	26	0.0736	0.128	0.201	0.195	0.249	0.297
Phosphor, Gesamt Phosphat-P04	mg/l	0.153	0.307	0.429	0.659	0.245	0.935	0.276		1.38	0.276	0.245	<	0.291	0.245	26	<	0.205	0.307	0.438	1.37	1.44
Gruppenparameter																						
Kohlenstoff, gesamter org. gebundener	mg/l		3.35	4.6	3.25	2.35	2.8	2.8		2.45	3.1	2.5	2.45	4.35	5.17	26	2.3	2.37	2.95	3.32	5.74	7
DOC (organisch gebundener Kohlenstoff)	mg/l		2.75	2.7	2.4	2.1	2.25	2.47		2.25	2.15	2.1	2.2	2.7	3.4	26	1.9	1.9	2.4	2.49	3.43	4 🗖
Biochemischer Sauerstoffbedarf (BOD)	mq/l	3	<	<	<	<	<	<		<	<	<	<	<	3	13	<	<	<	<	<	3 🖃
Färbung 410 nm	1/m		2.32	2.72	2.53	1.59	2	2.09		1.95	2.08	1.69	1.44	3.79		20	1.44	1.51	1.99	2.15	3.62	3.79
Adsorbierbare organisch gebundene																						
Halogene (CI)	μg/l		21	19	22	22	22	20.5		16	20	21	47	21	32	13	16	16.8	21	23.4	41	47
Extrahierbare org. gebundene Halogene	μg/l	1	<	<	<	<	1.3	<		<	<	<	1.7	5.5	<	13	<	<	<	1.04	3.98	5.5
VOX (Flüchtige Org. Halogene)	μg/l	0.2	<	<	<	<	<	<		<	<	<	15	<	<	26	<	<	<	1.25	<	30 🖃
Cholinesterasehemmer (als Paraoxon)	μg/l	0.1	<	<	<	<	<	<			<	<	<	<	<	13	<	<	<	<	<	<
Summenparameter	ישי	0.7		ì	,		,	,			,		,		,	.0	,	,	,	,	,	
C10-C13-Chloralkane (Summe)	μg/l	0.1	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
	P3/1	0.1	`	`	`	`	`	`		,	,	,	•	,	,		`	,	,	,	`	`

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Biologische Parameter																					
Thermotol. Bakterien Coligruppe (44 °C, Best.)	n/100 ml		400	1900	340	37	165	102	790	375	467	390	425	867	26	24	45.8	270	518	1460	3000
Fäkalstreptokokken (best.)	n/100 ml	2	110	480	78	8	4	2.5	62	26	22	44	260	450	13	<	2.2	44	119	468	480 🖃
Hydrobiologische Parameter																					
Chlorophyll A	μg/l	2	<	2.5	9.5	6.5	15.5	7	5.5	6	<	<	2.5	3.33	26	<	<	3.5	5.23	11.3	25 🖃
Metalle																					
Natrium	mg/l		43		37	40	54	38.5	45	30	40	51	31	31	13	30	30.4	40	40.4	52.8	54 🖃
Kalium	mg/l		3.8	4.4	3.7	3.9	5.3	3.9	4.5	3.6	4.3	5.1	4.6	4	13	3.6	3.6	4.2	4.23	5.22	5.3
Calcium	mg/l		72.6	74.1	69.6	67.4	78.3	69.1	65.4	61.4	66.7	75.1	66	68.6	13	61.4	63	68.6	69.5	77	78.3
Magnesium	mg/l		10.4	11.8	10.5	11.3	13	10.7	10.9	9.43	9.96	11.6	10.9	9.57	13	9.43	9.49	10.9	10.8	12.5	13 📃
Eisen, Gesamt	mg/l		0.695	0.715	0.595	0.39	0.455	0.57	0.515	0.54	0.44	0.43	0.955	1.19	26	0.28	0.347	0.58	0.644	1.33	1.4
Mangan	μg/l		11	11.3	10.4	12	2.85	3.6	1.45	1.98	4.85	7	6	7.5	26	0.85	1.47	5.85	6.57	13.6	15 🖃
Antimon	μg/l	0.5	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Arsen	μg/l		1.01	0.965	0.84	0.905	0.975	1.15	1.27	1.16	1.02	0.995	1.31	1.3	26	0.82	0.874	1.03	1.08	1.36	1.46
Barium	μg/l		95	106	87.5	99	110	83.3	97	73.5	85	103	97.5	87	26	72	74.7	90	92.9	113	130
Beryllium	μg/l	0.05	<	0.0625	0.075	<	0.0625	<	<	<	<	<	0.0625	0.12	26	<	<	<	0.0523	0.1	0.2
Bor	mg/l		0.059	0.0655	0.063	0.071	0.0555	0.0513	0.06	0.048	0.0565	0.066	0.0635	0.0487	26	0.041	0.0464	0.058	0.0583	0.0726	0.075
Cadmium	μg/l	0.05	<		<	0.0625	<	0.0573	0.0595	0.051	0.054	0.06	0.0835	0.0603	26	<	<	0.055	0.055	0.0718	0.091
Chrom, Gesamt	μg/l		1.71	1.55	1.73	1.08	1.23	1.46	1.38	1.52	1.18	1.39	2.79	2.37	26	0.969	1.05	1.54	1.64	2.69	3.94
Cobalt	μg/l		0.475	0.575	0.48	0.38	0.4	0.433	0.445	0.45	0.37	0.38	0.625	0.68	26	0.3	0.355	0.44	0.481	0.744	0.81
Kupfer	μg/l		3.68	3.83	3.63	3.25	3.54	3.85	3.9	3.64	3.38	3.65	4.55	4.1	26	2.87	3.15	3.73	3.77	4.49	5.55
Quecksilber	μg/l		0.007	0.0095	0.01	0.007	0.0155	0.01	0.011	0.0095	0.007	0.008	0.019	0.0133	26	0.007	0.007	0.0095	0.0107	0.0193	0.02
Blei	μg/l		1.29	1.5	1.6	1.15	1.15	1.33	1.35	1.3	1.06	1.38	2.7	1.97	26	0.86	0.952	1.25	1.49	2.5	2.9
Lithium	μg/l		17	19	16	23.5	17	16.7	18	12.5	16	19	19	14.7	26	12	12.7	17	17.2	21	27 🖃
Molybden	μg/l		1.35	1.6	1.35	1.65	1.85	1.7	1.8	1.45	1.65	1.9	1.9	1.21	26	0.93	1.21	1.55	1.61	2.1	2.3
Nickel	μg/l		2.22	2.39	2.38	1.8	1.87	1.98	1.9	1.92	1.88	1.99	2.67	2.92	26	1.7	1.73	2.08	2.18	3.1	3.35
Selen	μg/l		0.28		0.28		0.3	0.22		0.22		0.26		0.25	7	0.22	*	*	0.259	*	0.3
Strontium	μg/l		515	560	460	535	610	520	570	470	470	560	515	443	26	400	424	515	516	600	680 🖃
Thallium	μg/l		0.02	0.02	0.02	0.02	0.02	0.02	0.025	0.02	0.02	0.02	0.025	0.0267	26	0.02	0.02	0.02	0.0215	0.03	0.03
Tellurium	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Zinn	μg/l	0.05	0.15	<	0.1	0.1	0.1	0.1	0.095	0.095	0.1	0.15	0.2	0.2	26	<	0.081	0.1	0.122	0.2	0.2
Vanadium	μg/l		2.45	2.4	2.05	1.8	1.85	2.3	2.25	2	1.95	1.9	2.7	3.2	26	1.7	1.7	2.2	2.28	3.39	3.7
Zink	μg/l		16.5	19.5	16.5	13.5	12.5	12.7	13	13.5	10.5	14.5	20	18.7	26	10	10.7	14.5	15.2	20.9	24 🖃
Rubidium	μg/l		5.23	6.13	5.26	5.05	6.65	4.98	5.58	4.63	4.86	5.88	6.29	6.98	26	4.55	4.65	5.43	5.65	7.33	9.18
Uranium	μg/l		0.795	0.72	0.665	0.835	0.785	0.787	0.765	0.72	0.75	0.755	0.785	0.717	26	0.63	0.687	0.745	0.756	0.833	0.84
Cesium	μg/l		0.443	0.525	0.432	0.339	0.673	0.429	0.481	0.389	0.353	0.368	0.584	0.765	26	0.302	0.344	0.437	0.49	0.777	1.14
Metalle nach Filtration																					
Eisen (nach Filtr. 0.45 μM)	mg/l	0.01	0.01	0.0125	0.01	<	<	<	<	<	<	<	0.0125	0.02	26	<	<	<	<	0.02	0.03
Bor (nach Filtr. 0.45 μM)	μg/l		46.5	60	51	61	59.5	49.7	64.5	45	48.5	64	57.5	42	26	34	38.1	54.5	53.5	68.9	74 🖃
Antimon (nach Filtr. 0.45 μM)	μg/l	0.5	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Arsen (nach Filtr. 0.45 μM)	μg/l		0.695	0.685	0.565	0.665	0.72	0.887	1.05	0.95	0.855	0.865	0.84	0.783	26	0.54	0.632	0.785	0.8	0.985	1.08
Barium (nach Filtr. 0,45 μM)	μg/l		85	90.5	76	97	96.5	77	90.5	67	75.5	94.5	82	72.3	26	60	65.4	82	83	110	110 🖃
Beryllium (nach Filtr. 0,45 μM)	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Cadmium (nach Filtr. 0.45 μM)	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Chrom (nach Filtr. 0.45 µM)	μg/l	0.5	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Kobalt (nach Filtr. 0.45 μM)	μg/l		0.125	0.19	0.15	0.14	0.14	0.107	0.165	0.1	0.13	0.12	0.14	0.123	26	0.09	0.1	0.13	0.134	0.18	0.24
Kupfer (nach Filtr. 0.45 μM)	μg/l		1.88	1.82	1.76	1.79	2.04	2.07	2.31	1.86	1.93	2.1	2.03	1.85	26	1.67	1.72	1.93	1.95	2.25	2.39
Quecksilber (nach Filtr. 0.45 μM)	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	0.001	0.001
Blei (nach Filtr. 0.45 μM)	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<

Parameter	Einheit	u.b.q.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Metalle nach Filtration (Fortsetzung)		J				· ·					· ·										
Lithium (nach Filtr. 0.45 μM)	μg/l		12.9	16.5	13.2	18.3	18.7	14.9	18.2	10.5	11.3	17	14.9	11.2	26	7.91	9.93	14.5	14.7	21	23 🖃
Molybden (nach Filtr. 0.45 μM)	μg/l		1.1	1.55	1.15	1.45	2	1.53	2.05	1.3	1.5	1.95	1.75	1.13	26	0.82	0.964	1.4	1.52	2.13	2.3
Nickel (nach Filtr. 0.45 µM)	μg/l		1.11	1.35	1.27	1.16	1.17	1.06	1.11	0.914	0.996	1.18	1.37	1.2	26		0.954	1.14	1.15	1.37	1.66
Zinn (nach Filtr. 0.45 µM)	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Titan (nach Filtr. 0.45 µM)	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	1 🗏
Vanadium (nach Filtr. 0.45 µM)	μg/l	·	1.02	1.05	0.915	1.02	1.04	1.17	1.4	1.1	0.99	1.15	1.15	0.953	26	0.87	0.934	1.1	1.08	1.26	1.4
Silber (nach Filtr. 0.45 µM)	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	< ∑
Zink (nach Filtr. 0.45 µM)	μg/l	0.1	5.5	6.75	5.1	4.15	4.05	3.13	3.4	2.45	4.5	4.7	5.25	4.07	26	2.1	2.68	4.5	4.36	6.1	8.3
Rubidium (nach Filtr. 0.45 µM)	μg/l		3.62	3.98	3.43	4.31	4.8	3.64	4.56	3.21	3.52	5.1	4.12	3.34	26	2.86	3.03	3.77	3.93	5	5.55
Uranium (nach Filtr. 0.45 µM)	μg/l		0.73	0.725	0.63	0.775	0.845	0.753	0.76	0.685	0.72	0.77	0.685	0.68	26		0.634	0.73	0.729	0.829	0.92
Selenium (nach Filtr. 0.45 µM)	μg/l		0.26	0.723	0.24	0.773	0.23	0.733	0.70	0.2	0.72	0.26	0.003	0.2	7	0.33	*	*	0.229	*	0.26
Strontium (nach Filtr. 0.45 µM)	μg/l		510	535	440	540	590	513	565	455	430	550	505	427	26	350	407	500	502	593	650
Thallium (nach Filtr. 0.45 µM)	μg/I	0.01	310 <	0.01	0.01	0.015	0.015	0.01	0.02	0.01	0.01	0.01	0.01	<	26	<	<		0.0108	0.02	0.02
Tellurium (nach Filtr. 0.45 µM)		0.01	<	0.01	0.01	0.013	0.013	0.01	0.02	0.01	0.01	< 0.01	0.01	<	26	<	<	0.01	0.0100	< 0.02	<
Cesium (nach Filtr. 0.45 µM)	μg/l	0.1	0.109		0.0835		0.194	0.121	0.205	0.092	0.119	0.178	0.126		26	0.063		0.115	0.129	0.205	
Komplexbildner	μg/l		0.109	0.114	0.0000	0.147	0.134	0.121	0.203	0.032	0.119	0.176	0.120	0.0007	20	0.003	0.0067	0.113	0.129	0.203	0.220
	ma/l	0.01			,		,	0.0125	0.01					,	12			,		0.016	0.02
Anionaktive Detergentien	mg/l	0.01	< 0.6	< 1	< 0.0	< 0.7				< 0.7	< 1.1	< 1	< <	<	13	< <	< <	< 0.0	< 0.954		
Nitrilotriacetat	μg/l		0.6		0.8	0.7	1.2	0.85	2.1	0.7	1.1	4.1	0.6	0.9	13	0.6	0.6	0.9		1.74	
Ethylendinitrilotetraacetat (EDTA)	μg/l		4.6	4.3	3.5	3.6	6.5	3.8	5.1	2	2.2	4.1	3.6	3.5	13	2	2.08	3.6	3.89	5.94	
Diethylentriaminpentaacetat (DTPA)	μg/l	1	2.7	2	1.8	2.3	3.6	2.5	2.3	1	1.9	2.3	<	1.7	13	<	<	2.3	2.08	3.24	3.6
Beta-Alanindiessigsäure	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3-Propylendiamintetraacetat	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Flüchtige halogenierte Kohlenwasserst															4.0						
Bromdichlormethan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dibromchlormethan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dibrommethan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1-Dichlorethan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dichlorethan	μg/l	0.01	<	0.02	0.01	<	<	<	<	<	0.01	51	<	<	13	<	<	<	3.93	30.6	51 💻
1,1-Dichlorethen	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlormethan	μg/l	10	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexachlorbutadien	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexachlorethan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrachlorethen	μg/l	0.01	0.01	0.02	0.01	<	0.01	<	<	<	0.01	0.02	<	0.01	13	<	<	0.01	<	0.02	0.02
Tetrachlorkohlenstoff	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tribrommethan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,1-Trichlorethan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,2-Trichlorethan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Trichlorethen	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chloroform	μg/l	0.01	0.02	0.01	0.01	0.01	0.01	0.01	<	0.01	0.01	0.03	0.01	0.07	13	<	<	0.01	0.0165	0.054	0.07
1,2,3-Trichlorpropan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-1,3-Dichlorpropen	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-1,3-Dichlorpropen	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-1,2-Dichlorethen	μg/l	0.01	0.01	<	0.01	<	0.01	<	<	<	<	0.01	<	<	13	<	<	<	<	0.01	0.01
trans-1,2-Dichlorethen	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,2,2-Tetrachlorethan	μg/l	0.5	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorethylen (Vinylchlorid)	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dichlorpropan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	0.01	13	<	<	<	<	<	0.01
1,3 Dichlorpropan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< 🗷
· r · r	, 3/-																				

Hempstylianes non-Rohlemassers Hempstylianes Hempstylian	Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.		Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
2-Discript/shearol 0-Aylo	Monozyklische arom. Kohlenwasserstof		J																				
2-Discriptive plane 0-Discriptive plane	Benzol	ua/l	0.01	0.02	0.01	<	<	<	<		<	<	0.01	0.01	<	0.02	13	<	<	<	<	0.02	0.02
Ethylpherod pg/ 0,01																			<				
Ethylenzel pg 0.01					<			<	<		<	<	<	<	<			<	<		<	<	
Foreign 10 10 10 10 10 10 10 1	•										~	<								<			< >
Propulse	•										2	2		2						~			0.01
Chlorentrylbenze 99/1 0.01					•							2	-	-		-			-	,	-		< N
2-Chiemethylbenzo	• •				-							2								-			
3-Chichrotheroral 1991 0.5																							
1,2-Dichlorbenzol	•				-									-				-					
1.3-Dichlorbenze 1.9.Dichlorbenze 1.9.	•				`				-			`								-			
1.4-Dichlorbenzol 19.1 0.001	•				`	`			,				-	•				,	-		-		
Pentachorbenzol yg/l 0.000 0	•				`	-							-	-					-		-		
1,2,4-Trichlorbanzel	•																						
1,2,4-Trinchtorbenzed					<	-			-			<	-			-			-	<	-		
1,3 Frichiphenzol					-						<												
So-Propylbenzel					•				-			-											
1,2,4-Trimethylbenzol					`				,		,	`	-			-			-	,	-		<
1,2,3-Trimethylbenzol					-				-			<		-						-	-		<
3.2-Trimethylbenzol	•				<							<								<			
3-Ethyloluol	• •				<	-						<	-	-					-	<	-		
4-Ethyltoluol					<						<	<	-							<			
2-Ethyltoluol	•				<	-					<	<		<						<			
Tertiär-Butylbenzol	,				<	•		<	`		<	<	<	<		-		<	<	<			
1,3 - und 1,4 - Dimethylbenzol \(\frac{1}{9} \) 0.01 0.01 0.02 0.02 0.02 0.02 0.003 0.002 0.003 0.002 0.003					<				-		<	<	-	<	-					<			
Polyzyklische arom. Kohlenwasserstoffe (PAK's)	,				<							<		<						<			<
Acenaphthen	,		0.01	<	<	0.02	<	<	<		<	<	<	<	<	0.01	13	<	<	<	<	0.016	0.02
Acenaphthylen pg/ 0.05 C C C C C C C C																							
Anthracen	·					<		<	<			<		<		<		<	*	*	<	*	<
Benz[a]Anthracen	. ,					<		<	<			<		<		<		<	*	*	<	*	
Benz[b]Fluoranthen				<	<	<	<	<	<		<	<	<	<	<			<	<	<		<	
Benz[k]Fluoranthen μg/l 0.005 < < < < < < < < <		μg/l		<					<			<		<				<	*	*		*	
Benzo[ghi]Perylen μg/l 0.001 0.004 0.003 0.002 0.004 0.001 0.002 0.002 0.003 0.007 13 0.001 0.001 0.002 0.007 13 Benz[a]Pyren μg/l 0.01 <		μg/l		<	0.009	0.007	<	0.008	<	0.0	.006	<	<	<	0.007			<	<	< 0	0.00519	0.0114	
Benz[a]Pyren μg/l 0.01 <		μg/l	0.005		<									<					<			<	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		μg/l		0.001	0.004	0.003	0.001	0.003	0.002	0.0	.004	0.001	0.002	0.002	0.003	0.007		0.001	0.001	0.002 0	.00269	0.0058	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Benz[a]Pyren	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	0.01	13	<	<	<	<	<	0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chrysen	μg/l	0.01	<		<		<	<			<		<		0.02	7	<	*	*	<	*	0.02
Fluoranthen $\mu g/l$ 0.01 < 0.02 0.01 < 0.01 < 0.01 < 0.02 0.01 < 0.02 0.01 < 0.02 0.01 < 0.02 0.02 0.02 \blacksquare Fluoren $\mu g/l$ 0.05 < $\mu g/l$ 0.001 0.004 0.003 0.0008 0.003 0.0015 0.003 0.0009 0.001 0.002 0.003 0.007 13 0.00080.00084 0.002 0.0024 0.0058 0.007 \blacksquare Pyren $\mu g/l$ 0.01 0.01 0.01 $\mu g/l$ 0	Dibenz[a,h]Anthracen	μg/l	0.01	<		<		<	<			<		<		<	7	<	*	*	<	*	<
Fluoren $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Phenanthren	μg/l	0.01	<		<		<	0.01			<		<		<	7	<	*	*	<	*	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fluoranthen	μg/l	0.01	<	0.02	0.01	<	0.01	<		<	<	<	<	<	0.02		<	<	<	<	0.02	0.02
Pyren $\mu g/l = 0.01 = 0.01$ < < < $0.03 = 7$ < * * < $0.03 = 7$ < * * < $0.03 = 10$	Fluoren	μg/l	0.05	<		<		<	<			<		<		<	7	<	*	*	<	*	<
	Indeno[1,2,3-cd]Pyren	μg/l		0.001	0.004	0.003	0.0008	0.003	0.0015	0.0	.003 (0.0009	0.001	0.002	0.003	0.007	13	0.00080.	00084	0.002 0	.00244	0.0058	0.007
	Pyren	μg/l	0.01	0.01		<		<	<			<		<		0.03	7	<	*	*	<	*	
Naphthalin μg/l 0.1 < < < < < < < < < < < < < < < < < < <	Naphthalin	μg/l	0.1	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Polychlor Biphenyle (PCB's)	Polychlor Biphenyle (PCB's)																						
PCB 28 μg/1 0.0001 < < < < < < < < < < < < < < < < < <		μg/l	0.0001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
PCB 52 μg/l 0.0001 < < < < < < < < < < < < < 0.0001 11 < < < < < 0.0001 Ξ																							
PCB 101				<	<	<	<	<		0.00					0.0001	<		<		<			
PCB 118 μg/1 0.0001 < < < < < < < < < < < < < < < < < <				<	<							<						<		<			
PCB 138					<				-	0.00													
PCB 153 μg/1 0.0001 < 0.0001 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0001 13 < < 0.0001 < 0.0001 0.0002 =					0.0001																		

Die Deschanenheit des Kheniwass	acia nei E	ODIUI II	II Jailie	2010 (Mongren	werte unu	Kelliizailleli,															
Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jı	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. P
Polychlor Biphenyle (PCB's) (Fortsetzung	ıg)					· ·																
PCB 180	μg/l	0.0001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Halogenierte Säure																						
Trichloressigsäure	μg/l	0.05	0.08	0.1	0.09	0.17	0.15	<		<	0.09	0.07	0.07	0.06	<	13	<	<	0.07	0.0781	0.162	0.17 <
Teflubenzuron	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenole																						
3-Chlorphenol	μg/l	0.5	<		<		<	<			<		<		<	7	<	*	*	<	*	< [
4-Chlorphenol	μg/l	0.5	<		<		<	<			<		<		<	7	<	*	*	<	*	< [< [< [
2,3-Dichlorphenol	μg/l	0.02	<		<		<	<			<		<		<	7	<	*	*	<	*	<
2,6-Dichlorphenol	μg/l	0.02			<		<	<			<		<		<	7	<	*	*	<	*	<
3,4-Dichlorphenol	μg/l	0.02			<		<	<			<		<		<	7	<	*	*	<	*	<
3,5-Dichlorphenol	μg/l	0.02			<		<	<			<		<		<	7	<	*	*	<	*	<
2,3,4,5-Tetrachlorphenol	μg/l	0.02			<		<	<			<		<		<	7	<	*	*	<	*	< [< [
2,3,4,6-Tetrachlorphenol	μg/l	0.02			<		<	<			<		<		<	7	<	*	*	<	*	<
2,3,5,6-Tetrachlorphenol	μg/l	0.02			<		<	<			2		<		<	7	<	*	*	<	*	< [
2,3,4-Trichlorphenol	μg/l	0.02			<		<				<		<		<	7	<	*	*	<	*	<
2,3,5-Trichlorphenol	μg/l	0.02			<		<				-		<		<	7	<	*	*	<	*	<
2,3,6-Trichlorphenol	μg/l	0.02			2		<	<			2		<		<	7	<	*	*	<	*	<
3,4,5-Trichlorphenol	μg/l	0.02					<				~		<		<	7	<	*	*	<	*	< [
2-Chlorphenol	μg/I	0.02			<		<				<		<		<	7	~	*	*	<	*	< [
Pentachlorphenol	μg/I	0.3	<	<		<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< [
2,4,5-Trichlorphenol		0.02			<			-					<		<	7	<	*	*	<	*	< [
2,4,6-Trichlorphenol	μg/l μg/l	0.02			<		<	<			< <		<		<	7	<	*	*	<	*	< [
Aromatische Stickstoffverbindungen	μy/i	0.02			(,						\ L
4-Chloranilin	ua/l	0.01	<	<	<	<	<	<		<	<	<	0.02	<	<	13	<	<	<	<	0.014	0.02
Trifluralin	μg/l	0.01	<			<	<	<		<	<	<	0.02		<	13	<	<	<	<	0.014	0.02
Nitrosoverbindungen	μg/l	0.01		<	(<		13						<u> </u>
N-Nitrosodimethylamin	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13						
N-Nitrosomorpholin	μg/i	0.001	<							<												, ,
N-Nitrosomorphomi N-Nitrosopiperidin		0.001															<	<	0.0015 (<	0.0020	< [
N-MILIOSODIDELIAIII	μg/l	0.001	0.0026	0.0017	0.0014	<	0.0022	0.0018		< 0	.0011	0.0015	0.0019	0.0018	0.0015	13	<	<	0.0015	0.00156	0.0029	0.0031
• •	μg/l μg/l	0.001	0.0026	0.0017		< <	0.0022	0.0018		< 0	.0011 0		0.0019	0.0018	0.0015	13 13	< <	< <			0.0029	0.0031
N-Nitrosopyrrolidin	µg/l µg/l µg/l	0.001 0.001	0.0026 < <	0.0017 < <	0.0014 < <	< < <	0.0022	0.0018 < < <		< 0 < <	.0011 0	0.0015	0.0019	0.0018	0.0015 < <	13 13 13	< < <	< < <	0.0015 (< <	0.00156 < <	0.0029 < <	0.0031 (
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA)	μg/l μg/l μg/l	0.001 0.001 0.002	0.0026 < < <	0.0017 < < <	0.0014 < < <	< < <	0.0022 < < <	0.0018 < < <		< 0 < < <	.0011 0	0.0015	0.0019 < < <	0.0018	0.0015 < < <	13 13 13 13	< < <	< < <	0.0015 (0.00156	0.0029 < < <	0.0031 (
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin	µg/l µg/l µg/l µg/l	0.001 0.001 0.002 0.002	0.0026 < < <	0.0017 < < < <	0.0014 < < < < <	< < < <	0.0022 < < < < < <	0.0018 < < < < < <		< 0 < < < < < <	.0011 0	0.0015	0.0019 < < <	0.0018	0.0015 < < < < < <	13 13 13 13 13	< < < <	< < <	0.0015 (0.00156 < < < <	0.0029 < < < <	0.0031 [
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin	µg/l µg/l µg/l µg/l µg/l	0.001 0.001 0.002 0.002 0.001	0.0026 < < < < < < < <	0.0017 < < < <	0.0014 < < < < < < < <	< < < < < < < <	0.0022 < < < < < < < < <	0.0018 < < < < < < <		< 0 < < < < < < < < < < < < < < < < < <	.0011 (0.0015	0.0019 < < < < < < < < <	0.0018	0.0015	13 13 13 13 13 13	< < < < < < <	< < <	0.0015 (0.00156 < < < <	0.0029 < < < < < < < <	0.0031 [
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin	µg/l µg/l µg/l µg/l	0.001 0.001 0.002 0.002	0.0026 < < <	0.0017 < < < <	0.0014 < < < < <	< < < <	0.0022 < < < < < <	0.0018 < < < < < <		< 0 < < < < < <	.0011 0	0.0015	0.0019 < < <	0.0018	0.0015 < < < < < <	13 13 13 13 13	< < < <	< < <	0.0015 (0.00156 < < < <	0.0029 < < < <	0.0031 [
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin Sulphamide	µg/l µg/l µg/l µg/l µg/l µg/l	0.001 0.001 0.002 0.002 0.001	0.0026	0.0017	0.0014	< < < < <	0.0022	0.0018		< 0 < < < < < < < < < < < < < < < < < <	.0011 0	0.0015 < < < < <	0.0019	0.0018	0.0015 < < < < < < < < < < < < < < < < < < <	13 13 13 13 13 13 13	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.0015 (0.00156 < < < < <	0.0029 < < < < < < < < <	0.0031 [
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS)	µg/l µg/l µg/l µg/l µg/l	0.001 0.001 0.002 0.002 0.001	0.0026 < < < < < < < <	0.0017 < < < <	0.0014	< < < < < < < <	0.0022 < < < < < < < < <	0.0018 < < < < < < <		< 0 < < < < < < < < < < < < < < < < < <	.0011 (0.0015	0.0019 < < < < < < < < <	0.0018	0.0015	13 13 13 13 13 13	< < < < < < <	< < < < < < < < < < < < < < < < < < <	0.0015 (0.00156 < < < <	0.0029 < < < < < < < <	0.0031 [
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.001 0.001 0.002 0.002 0.001	0.0026	0.0017	0.0014	< < < < < < < < < < < < < < < < < < <	0.0022	0.0018	0.0	< 0 < < < < < < < < < < < < < < < < < <	.0011 0	0.0015	0.0019	0.0018	0.0015	13 13 13 13 13 13 13	<	0.024	0.0015 (0.00156	0.0029	0.0031 [
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid)	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.001 0.001 0.002 0.002 0.001 0.001	0.0026	0.0017	0.0014	<	0.0022	0.0018	0.0	< 0	.0011	0.0015	0.0019	0.0018	0.0015	13 13 13 13 13 13 13 13	<pre></pre>	< < < < < < < < < < < < < < < < < < <	0.0015 (0.00156	0.0029	0.0031 [
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid) Aldrin	µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.001 0.001 0.002 0.002 0.001 0.001	0.0026 < < < < < < < < < < < < < < < < < < <	0.0017	0.0014	< < < < < < < < < < < < < < < < < < <	0.0022	0.0018 < < < < < < < < < < < < < < < < < < <	0.0	< 0 < < < < < < < < < < < < < < < < < <	0.04	0.0015	0.0019 <	0.0018	0.0015	13 13 13 13 13 13 13 13 13	<pre></pre>	0.024	0.0015 (0.00156	0.0029	0.0031
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid) Aldrin o,p'-DDD	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.001 0.002 0.002 0.001 0.001 1 0.0005 0.001	0.0026 < < < < < < < < < < < < < < < < < < <	0.0017	0.0014	0.04	0.0022	0.0018 < < < < < < < < < < < < < < < < < < <	0.0	< 0 < < < < < < < < < < < < < < < < < <	0.04	0.0015	0.0019 <	0.0018	0.0015	13 13 13 13 13 13 13 13 13 13 7	<pre></pre>	0.024	0.0015 (0.00156 < < < < 0.0408	0.0029 < < < < < < < < < < < < < < < < < < <	0.0031
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid) Aldrin o,p'-DDD p,p'-DDD	μg/I μg/I μg/I μg/I μg/I μg/I μg/I μg/I	0.001 0.002 0.002 0.001 0.001 1 0.0005 0.001 0.001	0.0026 < < < < < < < < < < < < < < < < < < <	0.0017	0.0014 < < < < < < < < < < < < < < < < < < <	<	0.0022	0.0018 < < < < < < < < < < < < < < < < < < <	0.0	< 0	.0011 C	0.0015	0.0019 <	0.0018	0.0015	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	< < < < < < < < < < < < < < < < < < <	0.0015 (0.00156	0.0029 < < < < < < < < < < < < < < < < < < <	0.0031 < < < < < < < < <
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid) Aldrin o,p'-DDD p,p'-DDD o,p'-DDE	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	0.001 0.002 0.002 0.001 0.001 0.0005 0.001 0.001 0.001	0.0026 < < < < < < < < < < < < < < < < < < <	0.0017	0.0014 < < < < < < < < < < < < < < < < < < <	0.04	0.0022	0.0018 < < < < < < < < < < < < < < < < < < <	0.0	< 0 < < < < < < < < < < < < < < < < < <	.0011 C	0.04	0.0019 <	0.0018 <	0.0015	13 13 13 13 13 13 13 13 13 13 7 13 7	<pre></pre>	<pre></pre>	0.0015 (0.00156	0.0029 < < < < < < < < < < < < < < < < < < <	0.0031
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid) Aldrin o,p'-DDD p,p'-DDD o,p'-DDE p,p'-DDE	μg/I μg/I μg/I μg/I μg/I μg/I μg/I μg/I	0.001 0.001 0.002 0.002 0.001 0.001 1 0.0005 0.001 0.001 0.001	0.0026 < < < < < < < < < < < < < < < < < < <	0.0017	0.0014	0.04	0.0022	0.0018	0.0	< 0 < < < < < < < < < < < < < < < < < <	.0011 C	0.04	0.0019 <	0.0018 <	0.0015	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	0.024	0.0015 (0.00156 <	0.0029	0.0031 < < < < < < < < <
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodipropylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid) Aldrin o,p'-DDD p,p'-DDD p,p'-DDE p,p'-DDE o,p'-DDE	μg/I μg/I μg/I μg/I μg/I μg/I μg/I μg/I	0.001 0.001 0.002 0.002 0.001 0.001 1 0.0005 0.001 0.001 0.001	0.0026 < < < < < < < < < < < < < < < < < < <	0.0017 < < < < < < < < < < < < < < < < < < <	0.0014 < < < < < < < < < < < < < < < < < < <	<	0.0022	0.0018 < < < < < < < < < < < < < < < < < < <	0.0	< 0 < < < < < < < < < < < < < < < < < <	.0011 C	0.04	0.0019 <	0.0018	0.0015	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<	0.024	0.0015 (0.00156	0.0029 < < < < < < < < < < < < < < < < < < <	0.0031
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodiptylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid) Aldrin o,p'-DDD p,p'-DDD o,p'-DDE p,p'-DDE o,p'-DDE o,p'-DDT p,p'-DDT	#9/I #9/I #9/I #9/I #9/I #9/I #9/I #9/I	0.001 0.001 0.002 0.002 0.001 0.001 1 0.0005 0.001 0.001 0.001 0.001	0.0026 < < < < < < < < < < < < < < < < < < <	0.0017	0.0014	0.04	0.0022	0.0018	0.0	< 0 < < < < < < < < < < < < < < < < < <	.0011 C	0.04	0.0019 <	0.0018	0.0015	13 13 13 13 13 13 13 13 13 7 13 7 13 13 7 13 13 13 13	<pre></pre>	0.024	0.0015 (0.00156 <	0.0029 < < < < < < < < < < < < < < < < < < <	0.0031
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodiptylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid) Aldrin o,p'-DDD p,p'-DDD o,p'-DDE p,p'-DDE o,p'-DDE o,p'-DDT p,p'-DDT Dieldrin	#9/I #9/I #9/I #9/I #9/I #9/I #9/I #9/I	0.001 0.001 0.002 0.002 0.001 0.001 0.0005 0.001 0.001 0.001 0.001 0.001 0.001	0.0026 < < < < < < < < < < < < < < < < < < <	0.0017 < < < < < < < < < < < < < < < < < < <	0.0014 < < < < < < < < < < < < < < < < < < <	<	0.0022	0.0018 <	0.0	< 0 < < < < < < < < < < < < < < < < < <	.0011 C	0.0015	0.0019 <	0.0018	0.0015	13 13 13 13 13 13 13 13 13 13 7 13 7 13	<pre></pre>	0.024	0.0015 (0.00156	0.0029 < < < < < < < < < < < < < < < < < < <	0.0031 < < < < < < < < <
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodiptopylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid) Aldrin o,p'-DDD p,p'-DDD p,p'-DDE p,p'-DDE o,p'-DDT Dieldrin Alpha-Endosulphan	#9/I #9/I #9/I #9/I #9/I #9/I #9/I #9/I	0.001 0.001 0.002 0.002 0.001 0.001 0.0005 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.0026 < < < < < < < < < < < < < < < < < < <	0.0017 < < < < < < < < < < < < < < < < < < <	0.0014	0.04	0.0022	0.0018 <	0.0	< 0 < < < < < < < < < < < < < < < < < <	0.0011 C	0.0015	0.0019 <	0.0018	0.0015	13 13 13 13 13 13 13 13 13 13 7 13 7 13	<pre></pre>	0.024	0.0015 (0.00156	0.0029 < < < < < < < < < < < < < < < < < < <	0.0031 [
N-Nitrosopyrrolidin N-Nitrosoethylmethylamin (NMEA) N-Nitrosodiethylamin N-Nitrosodiptylamin N-Nitrosodibutylamin Sulphamide N,N-Dimethylsulfamid (DMS) Organochlorpestizide 3-Chlorpropen (Allylchlorid) Aldrin o,p'-DDD p,p'-DDD o,p'-DDE p,p'-DDE o,p'-DDE o,p'-DDT p,p'-DDT Dieldrin	#9/I #9/I #9/I #9/I #9/I #9/I #9/I #9/I	0.001 0.001 0.002 0.002 0.001 0.001 0.0005 0.001 0.001 0.001 0.001 0.001 0.001	0.0026 < < < < < < < < < < < < < < < < < < <	0.0017 <	0.0014	0.04	0.0022	0.0018 <	0.0	< 0 < < < < < < < < < < < < < < < < < <	0.04 C	0.0015	0.0019 <	0.0018	0.0015	13 13 13 13 13 13 13 13 13 13 7 13 7 13	<pre></pre>	0.024	0.0015 (0.00156	0.0029 <	0.0031

Parameter Parameter	Einheit		-	Feb.	Mrz.	Apr.	Mai	Jun.		Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Organochlorpestizide (Fortsetzung)																						
Heptachlor	μg/l	0.001	<		<		<	<			<		<		<	7	<	*	*	<	*	<
Hexachlorbenzol (HCB)	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Alpha-HCH	μg/l	0.0001	0.0002	0.0002	0.0001	0.0002	0.0005	0.00015	0.0	.0002	0.0002	0.0001	<			11	<	<	0.0002	0.000186	0.00044	0.0005
Beta-HCH	μg/l		0.0004	0.0001	0.0002	0.0002	0.0005	0.0003	0.0	.0006	0.0004	0.0005	0.0009	0.0002	0.0002	13	0.00010	0.00014	0.0003	0.000369	0.00078	0.0009
Isodrin	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Gamma-HCH	μg/l		0.0005	0.0005	0.0003	0.0003	0.0004	0.00035	0.0	.0004	0.0004	0.0003	0.0004	0.0005	0.0004	13	0.0003	0.0003	0.0004	0.000392	0.0005	0.0005
Delta-HCH	μg/l	0.0001	0.0002	<	<	<	0.0001	<		<	0.0002	<	<	0.0001	<	13	<	<	<	<	0.0002	0.0002
cis-Heptachlorepoxid	μg/l	0.001	<		<		<	<			<		<		<	7	<	*	*	<	*	<
trans-Heptachlorepoxid	μg/l	0.001	<		<		<	<			<		<		<	7	<	*	*	<	*	<
Organophosphor und -Schwefelpestizide																						
Azinphos-Ethyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<			11	<	<	<	<	<	<
Azinphos-Methyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<			11	<	<	<	<	<	<
Bentazon	μg/l	0.01	<	<	<	<	<	0.01		<	<	<	<	<	<	13	<	<	<	<	0.01	0.01
Chlorfenvinphos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<			11	<	<	<	<	<	<
Coumaphos	μg/l	0.005	<	<	<	<	<	<		<	<	<	<			11	<	<	<	<	<	< =
Demeton-S-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Diazinon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethoat	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dithianon	μg/l	0.1	<		<	<	<	<			<		<		<	8	<	*	*	<	*	<
Etroprophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenitrothion	μg/l	0.005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenthion	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Glufosinat-Ammonium	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Glyphosat	μg/l	0.03	<	<	<	0.04	0.05	<		<	<	<	0.04	0.03	<	13	<	<	<	<	0.05	0.05
Heptenophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Malathion	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Mevinphos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<			11	<	<	<	<	<	<
Parathion-Ethyl	μg/l	0.005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Parathion-Methyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Pirimiphos-Methyl	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Pyrazophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tolclophos-Methyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triazophos	μg/l	0.01	<	<	<	<	<			<	<	<	<	<	<	13	<	<	<	<	<	<
AMPA	μg/l		0.29	0.17	0.19	0.26	0.51	0.425		0.69	0.36	0.41	0.52	0.3	0.15	13	0.15	0.158	0.3	0.362	0.65	0.69
Chlorpyriphos-Ethyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<			11	<	<	<	<	<	<
Nicosulfuron	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Sulcotrion	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Organostickstoffpestizide																						
Chloridazon	μg/l	0.01	<	<	<		<			<	<	<	<			11	<	<	<	<	<	<
Dodine	μg/l	0.02	<	<	<		<			<	<	<	<	<	<	26	<	<	<	<	<	<
Chloridazon-Desphenyl	μg/l		0.09	0.1	0.09	0.08	0.08	0.05		0.04	0.04	0.06	0.05	0.07	0.08	13	0.04	0.04	0.07	0.0677	0.096	0.1
Chlorphenoxyherbizide																						
2,4-Dichlorphenoxyessigsäure (2,4-D)	μg/l	0.05	<	<	<		<			<	<	<	<	<	<	13	<	<	<	<	<	<
2,4-DB	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlorprop	μg/l	0.05	<	<	<		<			<	<	<	<	<	<	13	<	<	<	<	<	<
MCPA	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
MCPB	μg/l	0.05	<	<	<	<	<			<	<	<	<	<	<	13	<	<	<	<	<	<
Mecoprop (MCPP)	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<

Die Descharrennen des Knemwasse	IJ DEL E	ODILLI III	ii jaiiic	2010 (M	onatsiiittetv	verte una	Keiiiizaiiteii)													
Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Chlorphenoxyherbizide (Fortsetzung)						· ·					· ·										
2,4,5-T	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenoprop (2,4,5-TP)	μg/l	0.05	<		<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Phenylharnstoffpestizide	F-57 ·							-							- 10		-				
Chlorbromuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Chlortoluron	μg/l	0.01	0.02		<	<		<	<	<	<		0.0325	0.0733	26	<	,		0.0192	0.083	0.1
Chloroxuron	μg/l	0.01	< .0.02	<	<	<	<	<	<	<	<	<	<	<	26	<		<	<	<	< 🔼
Diuron	μg/l	0.01	<	<	<	<	0.01	0.0167	0.02	0.01	<	0.01	0.01	<	26	<		0.01	<	0.02	0.02
Isoproturon		0.01	0.015		<	0.025	0.01	0.0107	< 0.02	< 0.01	<	< .01	0.01	0.0633	26	<	<	0.01	0.024	0.02	0.02
·	μg/l														26						< 🔼
Linuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<		<		<	<	<	
Metabenzthiazuron	μg/l	0.01	<		<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	< 🔼
Metobromuron	μg/l	0.01	<		<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Metoxuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Metsulphuron-Methyl	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Monolinuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Monuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	< 🔼
Dinitrophenolherbizide																					
2,4-Dinitrophenol	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< -
Dinoseb	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dinoterb	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< 🔀
2-Methyl-4,6-Dinitrophenol (DNOC)	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Carbamatpestizide																					
Phenoxycarb	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pirimicarb	μg/l	0.01	<	<	<	<	<	<	<	<	0.01	<			11	<	<	<	<	<	0.01
Triazine / Triazinone / Anilide	10.																				
Alachlor	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Atrazin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Deltamethrin	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Desethylatrazin	μg/l	0.01	<		<	<	0.01	<	<	<		<	<	<	13	<			<		0.01
Metazachlor	μg/l	0.05	<		<	<	<		<	<	~	<	<	<	13	<	,	<	<		<
Metolachlor	μg/l	0.01	<		<	<	<	0.015	<	<	<	<	<	<	13	<		<	<	0.026	0.03
Propazin	μg/l	0.01	<		<	<	<	< .0.013	<	<	<	<	<	<	13	<		<	<	0.020	<
Simazin	μg/I	0.01			<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Terbutylazin	μg/I μg/I	0.01	<		<	<	<	<	<	<	<	<	<	<	13	<		<	<	<	<
Insektizide	μy/i	0.03		_		_			(_		13				_		· -
	/1	0.02													7		*	*		*	
lambda-Cyhalothrin	μg/l	0.02	<		<		<	<		<		<		<	7	<			<		<
Esfenvalerat	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Sonstige Pestizide und Metabolite		0.05													-		×	×			
Captan	μg/l	0.05		<	<		<	<		<		<		<	7	<	^	~	<	~	<
Ethofumesat	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Iprodione	μg/l	0.03	<		<	<	<	<		<	<	<	<	<	11	<	<	<	<	<	<
N,N-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST		0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethenamid	μg/l	20	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyridaben	μg/l	0.01	<		<		<	<		<		<		<	7	<	*	*	<	*	<
Pyriproxyphen	μg/l	0.01	<		<		<	<		<		<		<	7	<	×	*	<	*	<
Abamectin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Imidacloprid	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	<
Dimethenamid-p	μg/l	0.01	<		<		<	<		<		<		<	7	<	*	*	<	*	<
Biozide																					
Tributylzinn	μg/l	0.0021	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

No. Dichlorovs Ug/ 0.05 < < < < < < < < < < < < < < < < < <
Priming bental mile
Priming bental mile
Prince P
2,2,4,4-Tetrabromdiphenylether
2,27,4,47-Partabromdiphenylether
2,27,4,4.5-Pentabromdiphenylether
2,27,4,4,5-Pentabromdiphenylether pg/l 0.0005 < < < < < < < < < < < < < < < < < <
2,2',4,4',5,6'-Hexabromdiphenylether µg/l 0.0005 < < < < < < < < < < < < < < < < < <
2,2',4,4',5,6'-Hexabromdiphenylether
2,2',4',4',5'-Hexbromdiphenylether \qq \
2,2,4'-Tribromdiphenylether (Bde-028)
2,2',3,4,4',5'-Hexabromdiphenylether yg/ 0.0005 Color
Perfluorotanoat (PF0A)
Perfluorhexanoat (PFNx)
Perfluorhexanoat (PFHxA)
Perfluorheptanoat (PFhpA)
Perfluor Perfluor
Perfluor Perfluor
Perfluor Perfluor
Perfluordodecanoat (PFDoA) μg/l 0.001 < < < < < < < < < <t< td=""></t<>
Perfluorbutansulfonat (PFBS) μg/l 0.048 0.015 0.023 0.0162 0.043 0.011 0.037 0.046 0.013 0.007 13 < 0.0031 0.023 0.046 0.047 0.046 □ 0.013 0.007 13 < 0.0031 0.023 0.046 0.047 0.048 □ Perfluorhexansulfonat (PFBS) μg/l 0.001 < < < < < < < < < < < < < < < < < < <
Perfluorhexansulfonat (PFHS) μg/l 0.002 0.001 0.002 0.003 0.002 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.003 0.001 0.001 0.001 0.002 0.003 0.003 0.003 0.001 0.001 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.003 0.003 0.003 0.001 0.001 0.001 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.003 0.003 0.003 0.003 0.001 0.001 0.003 <th< td=""></th<>
Perfluordecansulfonat (PFDS) μg/l 0.001 < < < < < < < < < < < < < < < < < < <
Perfluoroctansulfonsäureamid (PFOSA) μg/l 0.001 <
7H-Dodecafluorheptanoat
2H,2H-Perfluordecanoat μg/l 0.001 < < < < < < < < < < < < < < < < < <
2H,2H,3H,3H-Perfluorundecanoat μg/l 0.001 < < < < < < < < < < < < < < < < < <
11/11/01/01/Deadly-resident 10000 0000 00000 00000 00000 000000 00000
1H,1H;2H,2H-Perfluoroctansulfonat µg/l 0.001 < < < 0.001 0.00175 < < < < < < < < < < < 13 < < < 0.0022 0.003 🖃
Perfluorbutanoat (PFBA) μg/l 0.001 0.046 0.051 0.013 0.033 0.052 0.009 0.012 0.012 0.012 0.006 0.009 < 0.007 0.004 13 < 0.0019 0.012 0.0193 0.0516 0.052 🖃
Perfluorpentanoat (PFPA) μg/l 0.001 0.001 0.002 < 0.002 0.00154 0.002 0.00154 0.003 0.002 0.001 0.003 0.002 < 13 < 0.002 0.00154 0.003 0.003 🖃
Ether
di-Isopropylether (DIPE) μg/l 0.01 < < < < < < < < < < < < < 0.01 =
Methyl-Tertiär-Butylether (MTBE) μg/l 0.01 0.05 0.04 < 0.04 0.055 0.16 0.21 0.1 0.07 0.08 0.03 0.05 13 < < 0.05 0.0608 0.166 0.21 🖼
Diglym μg/1 0.25 < < < < < < < < < < < < < < ✓ × ✓ × ✓ ×
Ethyl-Tertiär-Butylether (ETBE) μg/l 0.05 < < < < < < < < < < < < 0.347 254 < < < 0.0517 < 4 Σ
Triglym
Tetraglym $\mu g/l$ 0.5 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$
1,4-Dioxan $\mu g/l$ 0.5 0.84 0.7 1.2 1.2 0.53 < 0.5 0.59 9 < * * * 0.723 * 1.2 \square
Sonstige organische Stoffe
Cyclohexan µg/l 0.01 < < < < < < < < < < < < < 13 < < < 0.112 €
Dicyclopentadien µg/l 0.01 < < < < < < < < < < < < < < < < < < <
Dimethoxymethan $\mu g/l$ 0.1 < < < < < < < < < < < < 13 < < < 0.2 0.3 \blacksquare
Dimethyldisulfid $\mu g/l$ 0.01 < 0.02 0.01 < < < < < < < < < < < < 0.01 13 < < < < 0.016 0.02 \blacksquare
Tributylphosphat (TBP)
Triphenylphosphat (TPP)
Methylmethacrylat $\mu g/l$ 0.05 < < < < < < < < < < $<$
Benzotriazol μg/l 0.29 0.42 0.34 0.43 0.55 0.42 0.81 0.4 0.55 0.6 0.41 0.31 13 0.29 0.298 0.42 0.458 0.726 0.81 🖃

Parameter			,	Feb.	Mrz	A nr	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Sonstige organische Stoffe (Fortsetzung)	Einheit	u.b.g.	Jan.	ren.	Mrz.	Apr.	IVIdi	Juii.	Jui.	Aug.	Sep.	UKL.	INUV.	Dez.	- 11	IVIIII	FIU	F 30	III.VV.	F 90	IVIAX. FIKE
5-Methylbenzotriazol	/1		0.12	0.16	0.13	0.15	0.2	0.135	0.17	0.11	0.15	0.18	0.13	0.1	13	0.1	0.104	0.15	0.145	0.192	0.2
,	μg/l	0.05	0.13	0.10				0.133					0.13		13			0.15		0.192	
2,2,5,5-Tetramethyl-Tetrahydrofuran	μg/l	0.05	<	0.22	< 0.20	< 0.22	< C		<	< 0.20	< .	< 0.57		< 0.10		< 0.10	< .	0.22	< 0.272		0.57
4-Methylbenzotriazol	μg/l		0.3	0.33	0.28	0.33	0.52	0.375	0.55	0.29	0.45	0.57	0.3	0.18	13	0.18	0.22	0.33	0.373	0.562	0.57
Röntgenkontrastmittel	/1		0.17	0.10	0.01	0.000	0.00	0.115	0.01	0.14	0.10	0.0	0.01	0.10	10	0.000	0.0004	0.10	0 171	0.010	0.00
Amidotrizoesäure	μg/l	0.01	0.17	0.19	0.21	0.099	0.22	0.115	0.21	0.14	0.18	0.2	0.21	0.16	13	0.099		0.18	0.171	0.216	0.22
lodipamid	μg/l	0.01	<	<	<	<	<	<	<	< 0.070	<	<	<	<	13	<	<	<	<	<	
lohexol	μg/l	0.01	0.11	0.13	0.12	0.099	0.26	0.106	<	0.073	0.053	0.1	0.079	0.076	13		0.0234	0.099	0.101	0.22	0.26
lomeprol	μg/l		0.32	0.63	0.57	0.37	0.77	0.435	0.39	0.21	0.25	0.4	0.35	0.34	13		0.226	0.37	0.421	0.714	0.77
lopamidol	μg/l		0.2	0.17	0.12	0.15	0.48	0.245	0.3	0.21	0.18	0.33	0.19	0.087	13	0.087	0.1	0.2	0.224	0.42	0.48
lopromid	μg/l		0.1	0.2	0.17	0.13	0.27	0.145	0.18	0.17	0.075	0.12	0.13	0.14	13			0.14	0.152	0.242	0.27
lotalaminsäure	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
loxaglinsäure	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
loxitalaminsäure	μg/l		0.046	0.038	0.048	0.036	0.054	0.034	0.027	0.021	0.021	0.044	0.022	0.032	13	0.021	0.021	0.036	0.0352	0.0516	0.054
Antibiotika																					
Indometacin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Betablocker																					
Atenolol	μg/l	0.01	0.019	0.026	0.018	0.016	0.016	<	0.012	<	<	0.016	0.011	<	13	<	<	0.012	0.0128	0.0232	0.026
Betaxolol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Bisoprolol	μg/l	0.01	0.012	0.014	0.013	0.012	0.012	<	<	<	<	0.011	<	<	13	<	<	0.01	<	0.0136	0.014
Metoprolol	μg/l		0.072	0.085	0.07	0.07	0.076	0.074	0.14	0.053	0.059	0.086	0.069	0.049	13	0.049	0.0506	0.07	0.0752	0.118	0.14
Pindolol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Propranolol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Sotalol	μg/l		0.04	0.044	0.03	0.032	0.04	0.0265	0.029	0.021	0.031	0.047	0.029	0.015	13	0.015	0.017	0.031	0.0316	0.0458	0.047
Schmerzbehandlungsmittel																					
Phenacetin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Diclofenac	μg/l		0.071	0.074	0.057	0.038	0.064	0.0395	0.061	0.05	0.031	0.11	0.056	0.033	13	0.027	0.0286	0.056	0.0557	0.0956	0.11
Fenoprophen	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ibuprophen	μg/l	0.01	0.016	0.036	0.03	0.014	<	<	<	<	<	<	0.017	0.015	13	<	<	<	0.0125	0.0336	0.036
Ketoprophen	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cholesterinsenkende Mittel																					
Pentoxifyllin	μg/l	0.01	0.012	<	<	0.017	<	<	<	<	<	<	<	<	13	<	<	<	<	0.015	0.017
Bezafibrat	μg/l	0.01	0.026	0.033	0.019	0.02	0.017	<	<	0.012	<	0.019	0.017	0.018	13	<	<	0.017	0.0162	0.0302	0.033
Clofibrinsäure	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenofibrat	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenofibrinsäure	μg/l	0.01	0.012	0.022	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.018	0.022
Gemfibrozil	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Sonstige pharmazeutische Wirkstoffe	F-3/-												•								
Carbamazepin	μg/l		0.048	0.047	0.033	0.053	0.083	0.0555	0.11	0.043	0.041	0.07	0.039	0.026	13	0.026	0.0288	0.047	0.0542	0.0992	0.11
Oseltamivir (Tamiflu)	μq/l	0.001	0.0029			<		<	0.0017	<	<	<	<	<	13	<	<			0.00392	=
Oseltamivircarbonsäure	μg/l		0.0022			0.0023		0.00165	0.0017	<	<	<		<	13	<	<				0.0028
Endokrin wirksame Stoffe (EDC's)	P9/1	0.001	0.0022	0.0020		0.0020		0.00100	0.0017	`				`	10		`	`	0.00122	0.0020	0.0020
Di(2-Ethylhexyl)Phtalat (DEHP)	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
4-TertOctylphenol	μg/I μg/I	0.005	<	<	<	<	<	<	<		<		<	<	13	<	<	<	<	<	<
Tetrabutylzinn		0.003	<	<	<	<	<	<	<		<	<	<	<	13	<	<	<	<	<	<
Triphenylzinn	1 0.	0.0016	<		<	<	<	<		<	<	<	<	<	13	<	<		<	<	<
Dibutylzinn	1 0.	0.0017				-			<	<		-			13						
·	1 0.		<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Diphenylzinn		0.0044	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	
Summe 4-Nonylphenol Isomeren	μg/l	0.1	< 0.140	0.104	< 0.070	< 0.11	< 0.114	<	> 0.000	< 0.004	> 0.000	> 0.004	< 0.005	< 0.001	13	> 0.000	> 00000	< 0.004	< 0.150	> 0.040	<
Akitivität gegenüber 17-Beta-Estradiol (EEQ)	μg/l		0.142	0.134	0.073	0.11	0.114	0.04	0.369	0.824	0.026	0.064	0.035	0.081	13	0.026	0.0296	0.081	0.158	0.642	0.824

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Künstliche Süssstoffe																					
Acesulfam	μg/l			1.3	1.3	1.5	2.6	1.85	2.7	1.5	1.9	2.2	1.3	0.78	12	0.78	0.936	1.6	1.73	2.67	2.7
Cyclamat	μg/l			0.23	0.12	0.09	0.05	0.05	0.19	0.07	0.03	0.02	0.22	0.21	12	0.02	0.023	0.08	0.111	0.227	0.23
Sacharin	μg/l			0.2	0.16	0.12	0.07	0.245	0.1	0.07	0.06	0.06	0.27	0.14	12	0.04	0.046	0.11	0.145	0.396	0.45
Sucralose	μg/l	0.05		0.07	0.07	0.08	0.15	0.12	0.16	0.11	0.13	0.22	0.09	<	12	<	<	0.105	0.112	0.202	0.22

Anlage 2

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Allgemeine Kenngrössen Abfluß Wassertemperatur Sauerstoff Sauerstoffsättigung Trübungsgrad Schwebstoffgehalt Sichttiefe (Secchi) pH-Wert Elektrische Leitfähigkeit Glührückstand, 600°C Gesamthärte Gesamthärte (Mg/L CaCO3)	m3/s °C mg/I % FTE mg/I m pH mS/m mg/I mmol/I		378 2 12.8 92.6 42 61 0.2 8.07 53.9 51 2.18 218	316 3.5 11.2 84.2 39 20 0.15 8.06 75.5 18 2.82 283	482 5.3 11.2 88 39 25 0.15 8.08 50.2 22 1.94	187 10.1 10 86.8 20 14.5 0.35 8.16 55.9 11.9 2.15	139 12.9 8 72.4 15 14 0.4 8.18 61.6 13 2.27	338 18.9 8.4 77.9 48.5 48 0.325 8.22 53.2 37 2.18 218	40.7 22.2 9.8 89.4 31 29 0.3 8.11 52.7 26 1.99	368 21.3 8.2 75.5 23 26 0.35 8.15 47.6 22 1.91	255 16.7 7 65.2 19 18 0.4 8.18 53.5 16 2.01 201	58.3 12.4 8.8 79.1 19 20 0.5 8.21 54.3 17 2.19	304 8.9 9.7 82.4 12 15 0.3 8.05 59.9 13 2.22	539 3.6 12.7 95.7 32 49 0.25 8.1 68.8 41 2.54	364 13 13 13 14 14 14 13 13 14 13	0.327 2 7 65.2 12 10 0.15 8.05 47.6 8.8 1.91	17.8 2.6 7.2 66.8 13.2 12 0.15 8.05 48.1 10.9 1.92	269 12.4 9.7 84.2 31 22.5 0.3 8.14 54.3 20 2.18 218	283 12.1 9.71 82.1 29.8 28.7 0.311 8.14 56.9 24.1 2.2	598 21.8 12.8 94.5 52.8 63 0.45 8.26 72.8 49.5 2.71 271	1020
Radioaktivität Aktivität, Beta Gesamt Aktivität, Alpha Aktivität, Beta (Gesamt -K40) Aktivität, Tritium Anorganische Parameter	Bq/I Bq/I Bq/I Bq/I	0.5 0.05 0.5 5	<	< < 7.9	< < <	<	<	< < <	< <	< < <	< <	< <	< < <	<	13 4 13 5	< < <	< * < *	< * < *	< < <	< * < *	<
Hydrogencarbonat Carbonat Chlorid Chlorid (Fracht) Sulfat Silikat Bromid Fluorid Cyanid-CN, Gesamt	mg/l mg/l mg/l kg/s mg/l mg/l µg/l	2	153 0 73 19.4 47.9 3.18	188 0 116 62 72.7 3.32	143 0 69 32.3 45.9 3.18 64 0.12	163 0 73 27.9 57.4 2.43	178 0 86 2.93 63.2 1.54	181 0 64.5 13.6 54.1 1.59 96 0.115	165 0 69 9.47 59.1 1.64	156 0 56 21.7 49.2 2.06 100 0.11	163 0 70 3.47 55 2.34	173 0 67 2.04 54.9 2.38	166 0 83 55.9 67.2 2.85 130 0.13	183 0 105 107 61.4 3.09	13 13 13 13 13 13 4 13 4	143 0 56 2.04 45.9 1.31 64 0.11	147 0 56 2.4 46.7 1.4 *	166 0 73 19.4 57.4 2.38 * 0.12	169 0 76.6 28.5 57.1 2.4 97.5 0.121	190 0 112 88.8 70.5 3.26 * 0.136	191
Nährstoffe Stickstoff, Ammonium-NH4 Stickstoff nach Kjeldahl N org. gebunden Stickstoff, Nitrit-NO2 Stickstoff, Nitrat-NO3 Phosphor, Ortho-Phosphat-PO4 Phosphor, Gesamt Phosphat-PO4 Gruppenparameter	mg/l mg/l mg/l mg/l mg/l mg/l		0.14 0.7 0.5 0.051 14.7 0.26	0.27 0.7 0.5 0.082 17.9 0.29 0.5	0.11 0.6 0.5 0.078 17 0.24 0.4	0.06 0.6 0.5 0.052 14.8 0.21	0.09 0.3 0.2 0.048 12 0.2 0.3	0.045 0.55 0.5 0.136 9.56 0.235 0.65	0.08 0.5 0.4 0.048 5.58 0.32 0.5	0.04 0.3 0.3 0.011 8.55 0.31 0.4	0.04 0.4 0.3 0.022 8.62 0.27 0.4	0.06 0.5 0.4 0.026 9.15 0.28 0.4	0.12 0.5 0.4 0.057 13.2 0.32 0.4	0.19 0.6 0.4 0.044 13.8 0.26 0.5	13 13 13 13 13 13 13	5.58	0.04 0.3 0.24 0.0114 6.77 0.204 0.3	0.08 0.5 0.4 0.048 12 0.26 0.4	0.0992 0.523 0.415 0.0608 11.9 0.264 0.45	0.238 0.7 0.62 0.188 17.5 0.32 0.67	0.27
Kohlenstoff, gesamter org. gebundener DOC (organisch gebundener Kohlenstoff) Chemischer Sauerstoffbedarf Biochemischer Sauerstoffbedarf (BOD) Spektraler Absorptionskoeffizient bei 254 nm Färbung , Pt/Co Skala Mineralöl (GC-Methode) Adsorbierbare organisch gebundene Halogene (CI) VOX (Flüchtige Org. Halogene) AOBr	mg/l mg/l mg/l mg/l 1/m mg/l µg/l µg/l µg/l	1 10 5 0.2	4.06 10.2 19 8	3.76 3.2 8.2 11 10 <	4.13 3.41 18 < 10.7 20 19 8	3.14 2.73 7.3 11 10 < 5.5	2.91 2.92 7.2 9 6 5.5	2.97 2.66 20 < 7.15 11.5 20 < 4.7	3.12 2.92 7.9 12 9 < 3.9	3.02 2.52 10 < 7.6 11 11 < 5.3	2.84 2.54 7 9 5	3.34 2.89 8.4 11 8 < 6.1	3.35 3.13 11 1.4 8.7 14 < 9 < 6.7	3.66 3.08 9.1 17 8 5.8	13 12 4 4 13 13 4 13 7	2.84 2.52 10 < 7 9 < < < 3.9	2.86 2.53 * * 7 9 * < * 4.06	3.14 2.91 * * 7.9 11 * 8 *	3.33 2.89 14.8	4.1 3.35 * * 10.5 19.6 * 10 *	4.13

Parameter	Einheit	u.b.q.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Ju	d	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Gruppenparameter (Fortsetzung)	Einneit	u.b.g.	Jan.	reb.	IVIT Z.	Apr.	iviai	Jun.	Ju	11.	Aug.	Sep.	UKL.	IVOV.	Dez.	П	IVIIII	PIU	P50	III.W.	P90	Max. Pik
AOJ	μg/l	2	<	4.2	3.7	4.1	5.8	5.45	5.	7	5.3	5.6	5.9	6.9	4.2	13	<	2.08	5.3	4.87	6.78	6.9
Adsorbierbare Organische Schwefelverbindungen		25	55	4.2	38	43	43	34.5		36	29	5.0	52	56	56	13	<	2.00	41	40.8	56	56
Cholinesterasehemmer (als Paraoxon)	μg/I μg/I	0.2	33	41 <	30	43	43	0.2		<	23		<	30 <	30	7		*	*	40.0	30 *	0.2
Summenparameter	μy/i	0.2		_				0.2		_						/						0.2
Summe Trihalogenmethane	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	0.05	<	13	<	<	<	<	<	0.05
C10-C13-Chloralkane (Summe)		0.03	<	<	<	<	<	<	0.		<	<	<	0.03	<	14	<	<	<	<	0.25	0.03
Biologische Parameter	μg/l	0.1		_					0.	. 2				0.3		14					0.23	0.5
Koloniezahl 22°C, 3 Tage GGA	n/ml		2000	3	3600	260	270	1040	43	20	350	400	62	3400	15	13	3	7.8	400	989	3520	3600 =
Hygienisch verdächtige Bakterien	11/1111		2000	3	3000	200	270	1040	43	00	330	400	02	3400	13	13	3	7.0	400	303	3320	3000
(37 °C, nicht best.)	n/100 ml		700	2000	680	590	330	680	46	20	440	120	660	990	1800	13	120	204	660	779	1920	2000 🗏
	n/100 ml		580		680	590					440	500	660	990	1800		330	374	620	799	1920	2000
Bakterien Coligruppe				2000			330	680	46							13						
Thermotol. Bakterien Coligruppe (44 °C, Best.)		10	280	160	98	85	71	155	12		340	170	130	470	1700	14	40	55.5	145	287	1090	
Fäkalcoliforme Bakterien	n/100 ml	10	170	<	<	240	66	135	18		350	<	<	<	350	13	<	<	120	126	350	350
Enterokokken	n/100 ml		100	160	33	4	2	14.5	5		64	55	80	140	340	13	2	2.8	55	81.6	268	340
Enterokokken (nicht best.)	n/100 ml		110	270	33	5	2	53.5	5		180	55	130	140	340	13	2	3.2	62	110	312	340
Clostr. Perfringens (mit Sporen)	n/100 ml		140	160	120	160	66	165	37		40	62	140	160	270	13	40	48.8	140	155	330	370
F-spezifische RNA-Bakteriofagen	n/ml	10	370	50	20	<	<	<		<	10	10	30	180	460	13	<	<	10	88.8	424	460 🗀
Hydrobiologische Parameter																						
Chlorophyll A	μg/l	2	<	<	7	2.5	4	6		4	4	4	<	<	2	14	<	<	3.5	3.29	7.5	8
Cryptosporidium Spp.	n/l		0.093		0.249	0		0.0555	0.03		0.28	0		0.896	0.237	13	0	0	0.056	0.15	0.65	0.896
Giardia Spp.	n/l		4.36	1.39	3.25	0.89	0.351	0.188	0.0)8	3.37	0.923	0	3.99	5.67	13	0	0	0.923	1.9	5.15	5.67
Metalle																						_
Natrium	mg/l		34.4	55.9	32.3	36.1	44.4	34.6	39.		30.5	37.9	37.5	44.5	47.5	13	29	29.6	37.9	39.2	52.5	55.9
Kalium	mg/l		3.29	4.8	3.56	3.67	4.3	3.67	4.1		3.69	4.19	4.32	5.14	4.68	13	3.22	3.25	4.12	4.08	5	5.14
Calcium	mg/l		71.6	91.3	62	68.8	72.4	70.1	63.	.6	60.7	64.6	69.8	70.3	82.5	13	60.7	61.2	69.8	70.6	87.8	91.3
Magnesium	mg/l		9.57	13.3	9.5	10.6	11.3	10.5	9.8	37	9.52	9.6	11	11.4	11.6	13	9.5	9.5	10.6	10.6	12.6	13.3
Eisen, Gesamt	mg/l		3.7	2.2	1.7	0.75	0.63	2.5	1.	.4	0.93	0.83	1	0.64	1.7	14	0.5	0.565	1.2	1.52	3.6	3.7
Mangan, Gesamt	mg/l		0.1	0.09	0.08	0.04	0.07	0.285	0.0)9	0.2	0.06	0.05	0.04	0.07	14	0.02	0.03	0.075	0.107	0.315	0.43
Mangan	μg/l		26	32	19	21	45	17.5	1	11	8	17	13	11	15	14	8	9.5	17.5	19.6	38.5	45
Antimon	μg/l	0.5	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	< □
Arsen	μg/l		3.37	2.06	1.49	1.14	1.28	2.31	2.5	51	1.72	1.57	1.75	1.16	1.76	14	1.03	1.1	1.74	1.83	3.11	3.37
Barium	μg/l		110	120	87	89	98	104	9	99	76	88	91	87	96	14	76	81.5	93.5	95.6	115	120 =
Beryllium	μg/l	0.05	0.2	0.2	0.1	0.0525	<	0.145	0.0)9	0.06	0.05	0.06	<	0.1	14	<	<	0.085	0.0932	0.2	0.2
Bor	mg/l		0.037	0.068	0.046	0.0565	0.06	0.054	0.05	56 0	0.051	0.056	0.06	0.07	0.053	14	0.037	0.0415	0.056	0.0556	0.069	0.07
Cadmium	μg/l		0.41	0.309	0.135	0.088	0.102	0.266	0.16	66 (0.113	0.097	0.131	0.088	0.141	14	0.065	0.0765	0.133	0.171	0.385	0.41
Chrom, Gesamt	μg/l		8.9	6.22	3.68	2.08	1.63	6.79	4.0)1	2.49	2.2	2.99	1.83	4.03	14	1.37	1.5	3.34	3.98	9.25	9.59
Cobalt	μg/l		1.9	1.3	0.94	0.575	0.56	1.38	0.9	91	0.63	0.58	0.65	0.45	0.99	14	0.45	0.45	0.805	0.916	1.85	1.9
Kupfer	μg/l		11.4	6.79	5.19	3.82	3.58	8.44	5.6		4.62	3.79	5.08	4.2	6.11	14	3.25	3.42	5.14	5.78	11.3	11.4
Quecksilber	μg/l	0.02	0.06	0.06	0.03	<	<	0.065	0.0)4	0.02	<	0.03	<	0.03	13	<	<	0.03	0.0338	0.072	0.08
Blei	μg/l		10	5.8	7.4	1.95	1.6	6.35	3.		2.5	2.2	3	1.9	3.9	14	1.2	1.4	3.35	4.19	9.4	10 🗏
Lithium	μg/l		13	20	13	15.5	15	20.5		17	12	14	14	17	16	14	12	12.5	15.5	15.9	22	24
Molybden	μg/l		1	1.6	1	1.45	1.5	1.55	1.		1.5	1.7	1.6	2	1.4	14	1	1	1.5	1.5	1.85	2 =
Nickel	μg/l		6.63	4.94	3.77	2.49	2.37	5.09	3.5		2.51	2.3	2.81	2.53	3.86	14	2.02	2.16	3.27	3.6	6.62	6.63
Selen	μg/l		0.33	0.35	27	0.24	,	0.24	0.2			0	0.24	0.24		8	0.23	*	*	0.269	*	0.35
Strontium	μg/l		450	630	390	465	520	520	50		480	490	490	520	560	14	390	420	495	500	595	630
Thallium	μg/l		0.08	0.05	0.04	0.025	0.03	0.055	0.0		0.03	0.03	0.03	0.02	0.04	14	0.02	0.02		0.0393	0.075	0.08
Tellurium	μg/I	0.1	0.00	0.03	0.04	0.023	0.03	0.033		<	< .03	0.03	< 0.03	0.02	< 0.04	14	< 0.02	0.02	< 0.033	0.0000	0.073	< □
Zinn		0.1	0.7	0.5	0.2	0.15	0.2	0.45	0.	-	0.2	0.2	0.2	0.2	0.3	14	0.1	0.15	0.2	0.3	0.65	0.7
Vanadium	μg/l		6.9	5.2	3.8	2.45	2.4	5.25	4.		2.9	2.5	3	2.3	4.1	14	2	2.15	3.35	3.79	6.85	6.9
vandululli	μg/l		0.9	5.2	3.8	2.40	2.4	5.25	4.	.0	2.9	2.5	3	2.3	4.1	14	2	2.13	3.33	3.79	0.83	0.9

Parameter	Einheit	u.b.q.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Metalle (Fortsetzung)		<u> </u>								J											
Silber	μg/l	0.1			<			<		<			<		4	<	*	*	<	*	<
Zink	μg/l		67	40	25	15	13	41.5	24	16	15	19	16	29	14	11	12	21.5	26.9	62	67 🖃
Kupfer	mg/l	0.003			0.0054			0.0071		0.0039			<		4	<	*		0.00447	*	0.0071
Zink	mg/l		0.0319	0.0244	0.0235	0.0099	0.007	0.0296	0.0512	0.0128	0.0165	0.0168	0.0161	0.0215	13	0.007	0.00816	0.0168	0.0224	0.048	0.0512
Rubidium	μg/l		9.25	8.79	6.27	5.16	5.14	8.22	6.62	5.13	5.3	5.89	5.76	7.51	14	4.64	4.89	6.08	6.6	9.43	9.61
Uranium	μg/l		0.82	0.88	0.68	0.705	0.84		0.82	0.69	0.74	0.76	0.63	0.81	14	0.63	0.655	0.785	0.772	0.88	0.88
Cesium	μg/l		1.32		0.694	0.384		0.988	0.609	0.44	0.432	0.451	0.35	0.766	14	0.269	0.285	0.554	0.647	1.34	1.36
Metalle nach Filtration	1 3,																				
Eisen (nach Filtr. 0.45 μM)	mg/l	0.01	0.01	<	0.01	<	<	<	<	<	<	<	0.01	0.01	14	<	<	<	<	0.01	0.01
Bor (nach Filtr. 0.45 μM)	μg/l		34	56	41	56.5	52	47.5	53	48	54	53	63	48	14	34	37.5	53	50.7	60	63 🖃
Aluminium (nach Filtr. 0.45 µM)	μg/l				8.1			9.9		8.4	•		4.4		4	4.4	*	*	7.7	*	9.9
Antimon (nach Filtr. 0.45 µM)	μg/l	0.5	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Arsen (nach Filtr. 0.45 µM)	μg/l	0.0	1.11	0.99	0.7	0.805	0.99	1.1	1.84	1.21	1.17	1.24	0.92	0.89	14	0.7	0.745	1.01	1.06	1.54	1.84
Barium (nach Filtr. 0,45 µM)	μg/l		69	94	68	83	90	73.5	82	67	79	78	79	78	14	67	67	79	78.4	92	94
Beryllium (nach Filtr. 0,45 μM)	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	< □
Cadmium (nach Filtr. 0.45 µM)	μg/l	0.05	<	<	<	<	<	<	<	2	<	<	<	<	14	<	<	<	<	<	< ፟፟፟፟፟፟
Chrom (nach Filtr. 0.45 µM)	μg/l	0.5	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Kobalt (nach Filtr. 0.45 µM)	μg/l	0.0	0.15	0.27	0.17	0.2	0.26	0.205	0.2	0.15	0.18	0.16	0.14	0.15	14	0.14	0.145	0.175	0.189	0.265	0.27
Kupfer (nach Filtr. 0.45 µM)	μg/l		1.71	1.66	1.98	2.13	2.08	2.29	2.36	2.34	2.16	2.32	2.5	1.96	14	1.66	1.69	2.17	2.14	2.45	2.5
Quecksilber (nach Filtr. 0.45 μM)	μg/l	0.001	<	<	<	<	2.00	< .23	2.00	0.001	<	< .02	<	<	14	<	<	<	<	< .43	0.001
Blei (nach Filtr. 0.45 µM)	μg/l	0.001	<	<	<	<	<	<	<	0.001	<	<	<	<	14	<	<	<	<	<	< 🖸
Lithium (nach Filtr. 0.45 µM)	μg/l	0.1	8.57	14.6	9.36	14.1	13.2	13.3	13	10	12.5	12	14.8	12.8	14	8.57	8.97	12.9	12.5	14.7	14.8
Molybden (nach Filtr. 0.45 µM)			0.87	1.6	0.97	1.45	1.4	1.5	1.6	1.4	1.7	1.5	1.9	1.3	14	0.87	0.92	1.5	1.44	1.8	1.9
Nickel (nach Filtr. 0.45 µM)	μg/l		1.09	1.4	1.29	1.45	1.36	1.23	1.46	1.12	1.13	1.3	1.47	1.21	14	1.09	1.11	1.3	1.27	1.47	1.47
Zinn (nach Filtr. 0.45 μM)	μg/l	0.05	1.05	1.4	1.23	1.20	1.30	1.23	1.40	1.12	1.13	1.3	1.47	1.21	14	1.03	1.11	1.3	1.27	1.47	<
Titan (nach Filtr. 0.45 µM)	μg/l μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Vanadium (nach Filtr. 0.45 µM)		'	1.2	1.4	0.98	1.1	1.4	1.45	2	1.4	1.3	1.3	1.2	1.1	14	0.98	1.04	1.3	1.31	1.75	2 🗏
Silber (nach Filtr. 0.45 µM)	μg/l	0.1								1.4	1.3			1.1	14			1.3	1.31		< ⊠
Zink (nach Filtr. 0.45 µM)	μg/l	0.1	2 0	< 4.7	3.5	< 4.7	3.4	2.65	< 2.1	3	3	< 3.7	< 5.6	4	14	2.4	< 2.6	3.45	3.68	< 5.45	5.6
Rubidium (nach Filtr. 0.45 µM)	μg/l		2.82	4.13	2.74	3.61	3.84	3.51	3.1 3.72	3.4	3.67	3.75	5.0 4.48	4.02	14	2.74	2.78	3.45	3.63	4.31	4.48
• •	μg/l												0.63		14				0.741		0.85
Uranium (nach Filtr. 0.45 µM)	μg/l		0.71	0.85	0.66	0.71	0.84	0.8	0.79	0.67	0.74	0.72		0.75		0.63	0.645	0.73	0.741	0.845	
Selenium (nach Filtr. 0.45 µM)	μg/l		0.22	0.3	0.2 370	0.225 480	0.25	480	0.25	0.2 470	0.2 470	0.21 460	0.23	0.21	14		0.195 380	0.215		0.275 555	0.3 = 590 =
Strontium (nach Filtr. 0.45 µM)	μg/l	0.01	390	590			500		480				500 0.02	520	14	370		480	476		
Thallium (nach Filtr. 0.45 µM)	μg/l	0.01	<	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.01	0.01		0.01	14	<	<	0.01	0.0139	0.02	0.02
Tellurium (nach Filtr. 0.45 µM)	μg/l	0.1	<		<		<	<	<	> 0.004	> 0.000	< 0.05	< 0.00	< 0.001	14	<	<	< 0.0505	<	< 0.0055	0.09
Cesium (nach Filtr. 0.45 μM)	μg/l	0.05	<	0.051	<	0.053	<	<	<	0.064	0.068	0.05	0.09	0.081	14	<	<	0.0505	<	0.0855	0.09
Komplexbildner	/I	0.01													4		*	*		*	
Anionaktive Detergentien	mg/l	0.01			<			<		<			<		4	<	×	*	<	*	<
Nichtionische & kationische Detergentien	· · · ·	0.02			0.06			<		<			<		4	<	*		0.0225		0.06
Nitrilotriacetat	μg/l	3	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ethylendinitrilotetraacetat (EDTA)	μg/l		4.6	6.4	3.1	3.8	4.6	3.55	2.6	2.8	5	4.1	6.1	6.5	13	2.6	2.68	4.2	4.36	6.46	6.5
Diethylentriaminpentaacetat (DTPA)	μg/l	3	<	3.5	<	<	<	<	<	3.2	<	<	<	<	13	<	<	<	<	3.38	3.5
Flüchtige halogenierte Kohlenwassersto															4.0						
Bromchlormethan	μg/l	0.02	<		<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Bromdichlormethan	μg/l	0.02	<		<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dibromchlormethan	μg/l	0.02	<		<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dichlorethan	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlormethan	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexachlorbutadien	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Flüchtige halogenierte Kohlenwassers						<u> </u>				J											
Hexachlorethan	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< 🗷
Tetrachlorethen	μg/l	0.02	<	0.02	<	<	0.06	<	<	<	<	<	<	0.03	13	<	<	<	<	0.048	0.06
Tetrachlorkohlenstoff	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tribrommethan	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,1-Trichlorethan	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,2-Trichlorethan	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Trichlorethen	μg/l	0.02	<	<		<	<	<			<	<	0.02	<	13		<		<	<	0.02
Chloroform	μg/l	0.05	<	<	~	<	<	<	~	<	<	<	<	<	13	~	<	<	<	<	<
1,2,3-Trichlorpropan	μg/l	0.02	<	<	-	<	<	,	,	2	<	<	<	<	13	_	<	<		<	<
cis-1,3-Dichlorpropen	μg/l	0.02	<	<	<	<	<	<	,	2	<	<	<	<	13	<	<	<		<	< 🗷
trans-1,3-Dichlorpropen	μg/l	0.02	<	<	<	<	<	<	2	2	<	<	<	<	13	<	<	<	<	<	< 🗷
cis-1,2-Dichlorethen	μg/l	0.02	<	<	2	2	<	~			<	<	0.02	<	13	2	<	2	~	<	0.02
trans-1,2-Dichlorethen	μg/I	0.02	<	<	~	<	<	~			<	<	< .02	<	13		<	<	<	<	< 🗷
1,1,2,2-Tetrachlorethan	μg/I	0.02	<	<	<	<	<	<	<		<	<	<	<	13		<	<	<	<	<
1,2-Dibrom-3-Chlorpropan		0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dichlorpropan	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	-	<	<	<	<	
1,3 Dichlorpropan	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< 2
Monozyklische arom. Kohlenwassersto	μg/l		<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	_	< 2
Benzol			0.03	0.02	<							<			13			<	<	0.026	0.03
Butylbenzol	μg/l				-	<	<	<	<	<	<	-	<	<	13	<	<				
,	μg/l	0.02	<	<	<	<	<	<	< 0.00	<	< 0.00	<	< 0.00	<		<	<	<	<	> 0.000	
1,2-Dimethylbenzol (o-Xylol)	μg/l	0.02	<	<	<	<	<	<	0.02	<	0.02	<	0.03	< 0.00	13	<	<	<	<	0.026	0.03
Ethenylbenzol	μg/l	0.02	<	<	<	<	<	<	< 0.00	<	< 0.00	<	<	0.02	13	<	<	<	<	< 0.00	0.02
Ethylbenzol	μg/l	0.02	<	<	<	<	<	<	0.02	<	0.02	<	<	<	13	<	<	<	<	0.02	
Toluol	μg/l	0.02		0.05	<	<	0.02	<	0.03	<	<	<	<	<	12	<	<	<	<	0.044	0.05
Propylbenzol	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorbenzol	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Chlormethylbenzol	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dichlorbenzol	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3-Dichlorbenzol	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,4-Dichlorbenzol	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pentachlorbenzol	μg/l	0.0001	<	<	<	<		0.000225	<	<	<	<	<	<	14	<	<	<	<0	.000225	
1,2,3,4-Tetrachlorbenzol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,4,5-Tetrachlorbenzol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,3-Trichlorbenzol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,4-Trichlorbenzol	μg/l	0.01	<	<	<	<	<	<	<	<	0.01	<	<	<	13	<	<	<	<	<	0.01
1,3,5-Trichlorbenzol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< 🗷
Iso-Propylbenzol	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	0.02	13	<	<	<	<	<	0.02
1,3,5-Trimethylbenzol	μg/l	0.02	<	<	<	<	<	<	0.02	<	<	<	0.03	0.03	13	<	<	<	<	0.03	0.03
1,2,4-Trimethylbenzol	μg/l	0.02	<	<	<	<	0.02	<	0.02	<	<	<	0.02	0.02	13	<	<	<	<	0.02	0.02
Isobutylbenzol	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3- und 1,4-Dimethylbenzol	μg/l	0.04	<	<	<	<	<	<	0.04	<	0.04	<	<	<	13	<	<	<	<	0.04	0.04
P-Isopropylmethylbenzol	μg/l	0.02	<	<	<	<	<	<	0.02	<	0.02	<	0.03	0.03	13	<	<	<	<	0.03	0.03
Polyzyklische arom. Kohlenwasserstof	fe (PAK's)																				
Acenaphthen	μg/l	0.05		<		<		<	<			<	<		7	<	*	*	<	*	<
Acenaphthylen	μg/l	0.05		<		<		<	<			<	<		7	<	*	*	<	*	<
Anthracen	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Benz[a]Anthracen	μg/l	0.01		0.03		<		0.02	<			0.02	<		7	<	*	* (0.0129	*	0.03
Benz[b]Fluoranthen	μg/I	0.005	0.032	0.016	0.01 0	.00725	<	0.03	0.021	0.007	0.01	0.007	0.006	0.008	14	<	<	0.01	0.0139	0.041	0.05
Benz[k]Fluoranthen	μg/l	0.005	0.009	0.007	<	<	< 0	.00925	0.009	<	<	<	<	<	14	<	<	<	<	0.0125	0.016
	. •																				

-		_			(molldts	e.werte	unu Kelliiz	anten)			_			_							
Parameter	Einheit		Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul	. Aı	ug. Sep	. Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Polyzyklische arom. Kohlenwasserstof		Fortsetzu	•																		
Benzo[ghi]Perylen	μg/l		0.01			0.0035		0.0125	0.0		0.00!		0.003	0.004	14	0.002	0.002	0.005	0.006	0.015	0.02
Benz[a]Pyren	μg/l	0.01	0.02		<	<	<	0.0125	0.0	1	< <		<	<	14	<	<	<	<	0.02	0.02
Chrysen	μg/l	0.01		0.02		<		0.02	•	<		0.01	<		7	<	*	*	<	*	0.02
Dibenz[a,h]Anthracen	μg/l	0.01		<		<		<		<		<	<		7	<	*	*	<	*	<
Phenanthren	μg/l	0.01		0.03		<		0.02		<		<	<		7	<	*		0.0107	*	0.03
Fluoranthen	μg/l	0.01	0.06	0.03	0.02	0.0125	<	0.03	0.0	2 0.	.01 0.02	0.01	<	0.01	14	<	<	0.02	0.0196	0.05	0.06
Fluoren	μg/l	0.05		<		<		<		<		<	<		7	<	*	*	<	*	<
Indeno[1,2,3-cd]Pyren	μg/l		0.02	0.008	0.005	0.0035	0.001	0.0125	0.0	1 0.0	0.00!	0.003	0.003	0.004	14	0.001	0.0015	0.005 (0.00671	0.02	0.02
Pyren	μg/l	0.01		0.04		<		0.04		<		0.03	0.02		7	<	*	*	0.0207	*	0.04
Naphthalin	μg/l	0.02	<	<	<	<	<	<		<	< <	<	<	<	13	<	<	<	<	<	<
Polychlor Biphenyle (PCB's)																					
PCB 28	μg/l		0.0005	0.0005	0.0001	0.0002	0.0002	0.00045	0.000	4 0.00	0.0002	0.0003	0.0002	0.0002	14	0.0001 0	0.00015	0.00020	.000293	J.00055	0.0006
PCB 52	μg/l		0.0004	0.0005	0.0001	0.00015	0.0002	0.00045	0.000	0.00	0.0002	0.0003	0.0002	0.0002	14	0.0001	0.0001	0.00020	.000293	0.0006	0.0006
PCB 101	μg/l		0.0005	0.0004	0.0001	0.0002	0.0002	0.00045	0.000	0.00	0.000	0.0003	0.0002	0.0002	14	0.00010	0.00015	0.000250	.000307	0.0006	0.0006
PCB 118	μg/l	0.0001	0.0002	0.0001	<	<	<	0.00015	0.000	2	< 0.000	0.0001	<	<	14	<	<	<	<	0.0002	0.0002
PCB 138	μg/l	0.0001	0.0003	0.0002	<	0.0001	0.0001	0.00015	0.000	2	< 0.0002	2 <	<	<	14	<	<	0.00010	.000125).00025	0.0003
PCB 153	μg/l		0.0004	0.0003	0.0001	0.00015	0.0001	0.0003	0.000	6 0.00	0.000	0.0003	0.0002	0.0002	14	0.0001	0.0001	0.0002	0.00025	0.0005	0.0006
PCB 180	μg/l	0.0001	0.0002		<			0.00015	0.000		< 0.000	0.0001	<	0.0001	14	<		0.0001			0.0002
Halogenierte Säure																					
Tetrachlorortho-Phtalsaure	μg/l	0.02	<	<	<	<	<	<		<	< <	0.02	0.02	<	13	<	<	<	<	0.02	0.02
Monochloressigsäure	μg/l	0.5	<	<	<	<	<	<		<	< .	<	<	<	13	<	<	<	<	<	<
Dichloressigsäure	μg/l	0.1	<	<	<	<	<	<		< 0.	.36	<	<	<	13	<	<	<	<	0.236	0.36
Monobromessigsäure	μg/l	0.5	<	<	<	<	<	<		<	< <	<	<	<	13	<	<	<	<	<	<
Dibromessigsäure	μg/l	0.1	<	<	<	<	<	<		<	< .	<	<	<	13	<	<	<	<	<	<
Bromchloressigsäure	μg/l	0.1	<	<	<			<		<	< .		<	<	10	<	<	<	<	<	< [
2,2-Dichlorpropionsäure	μg/l	0.02	<	<	<	<	<	<			< <		<	<	12		<		<	<	<
Trichloressigsäure	μg/l	0.1	0.22		0.14	<	<	0.195		< 0	.16			0.18	13	<	<	0.14	0.123	0.22	0.22
Teflubenzuron	μg/l	0.05	<		0.11		`	0.100			.10	` `	`	0.10	3	*	*	*	*	*	*
2,6-Dichlorbenzoësäure	μg/l	0.02	<		<	<	<	<		<	< .	<	<	<	13	_	<	<	<	<	<
Phenole	P9/1	0.02		`				`		`			`						`		
3-Chlorphenol	μg/l	0.02	<	<	<	<	<	<		<	< <	<	<	<	13	<	<	<	<	<	<
4-Chlorphenol	μg/l	0.02	<		<	<	<	<		2	< <		<	<	13	<	<	<	<	<	<
2,3-Dichlorphenol	μg/l	0.02	<	<	2	<	<	<			< <			<	13	2	<	<	<	<	<
2,6-Dichlorphenol	μg/l	0.02	<	<		<	<	<			< <		<	<	13		<	<	<	<	< 🗷
3,4-Dichlorphenol	μg/I	0.02	<	<		<	<	<			<		<	<	13		<	<	<	<	< 🗷
3,5-Dichlorphenol		0.02	<	<			<				< <		<	<	13		<	<	<	<	< 🗷
2,3,4,5-Tetrachlorphenol	μg/l μg/l	0.02	<	<			<	<			< <		<	<	13		<	<	<	<	<
2,3,4,6-Tetrachlorphenol		0.02													13		-		-		< 🗷
2,3,5,6-Tetrachlorphenol	μg/l	0.02	<	<	< <	<	<	<			< <		<	< <	13	<	<	<	< <	<	
•	μg/l			<		<		<					<		13	<	•		-		
2,3,4-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<	•	<	< <		<	<		<	<	<	<	<	
2,3,5-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<	•		<		<	<	13	<	<	<	<	<	< >
2,3,6-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<	•	<	< <		<	<	13	<	<	<	<	<	
3,4,5-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<	•	<	< <		<	<	13	<	<	<	<	<	<
2-Chlorphenol	μg/l	0.02	<	<	<	<	<	<	•	<	< <		<	<	13	<	<	<	<	<	<
2-Phenylphenol	μg/l	0.03	<	<	<	<	<	<	•	<	< <		<	<	13	<	<	<	<	<	<
Pentachlorphenol	μg/l	0.02	<	<	<	<	<	<	•	<	< <		<	<	13	<	<	<	<	<	<
2,4,5-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	< <		<	<	13	<	<	<	<	<	<
2,4,6-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<	•	<	< <	<	<	<	13	<	<	<	<	<	<

Parameter	Einheit		Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Aromatische Stickstoffverbindungen		J																			
Anilin	μg/l	0.05	0.06	<	<	<	<	<		<	<		0.06	0.09	13	<	<	<	<	0.094	0.11
N-Methylanilin	μg/l	0.05	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	<
3-Chloranilin	μg/l	0.03	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	<
2,3,4-Trichloranilin	μg/l	0.03	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	
2,4,5-Trichloranilin	μg/l	0.03	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	<
2,4,6-Trichloranilin	μg/l	0.05	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	<
3,4,5-Trichloranilin	μg/l	0.05	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	<
3-Methylanilin	μg/l	0.05	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	<
N,N-Diethylanilin	μg/l	0.05	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	<
N-Ethylanilin	μg/l	0.05	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	<
2,4,6-Trimethylanilin	μg/l	0.05	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	<
4-Isopropylanilin	μg/l	0.03	<	<	<	<	<	<		<	<		<	<	13	<	<	<	<	<	<
3,4-Dimethylanilin	μg/l	0.05	<	<	<	<	<	<		<	<		<	<	13	<		<	<	<	< =
2,3-Dimethylanilin	μg/l	0.05	<	2	<	<	<			<	2			<	13	<	2	<	<		\[\begin{align*}
3-Chlor-4-Methylanilin	μg/l	0.03	<	<	<	<	<			<			<	<	13	<	2	<	<	<	\[\begin{align*}
4-Methoxy-2-Nitroanilin	μg/l	0.1	<	<	<	<	<			<				<	13	<	2	<	<		\[\begin{align*}
2-Nitroanilin	μg/l	0.03	<	2	~	<	<			<	2			<	13	<	2	2	<		\[\begin{align*}
3-Nitroanilin	μg/l	0.1	<	<	<		<			<	<		<	<	13	<	2	<	<	-	
2-(Phenylsulphon)Anilin	μg/l	0.05	<	2	<		<			<	<		<	<	13	<	2	<	<	-	
4- und 5-Chlor-2-Methylanilin	μg/l	0.05	<	<	<	<	<	<		<	<		<	<	13	<		<	<	<	
N,N-Dimethylanilin	μg/l	0.05	<		<		<			<	<		<	<	13	<		<	<	<	
2,4- und 2,5-Dichloranilin	μg/l	0.03	<	2	<	<	<	<		<	<		<	<	13	<		2	<	<	
2-Methoxyanilin	μg/l	0.05	<	<	<	<	<	<		<	<		<	<	13	<		<	<	<	
2- und 4-Methylanilin	μg/l	0.03	<	2	<	<	<	<		<	2		<	<	13	<		2	<	~	
2-(Trifluormethyl)Anilin	μg/l	0.1	<	2	<	<	<	<		<	<		<	<	13	<		<	<	<	<
2,5- und 3,5-Dimethylanilin	μg/l	0.05	<	2	<	<	<	<		<	<		<	<	13	<		<	<	<	<
2,4- und 2,6-Dimethylanilin	μg/l	0.03	<	<	<	<	<	<		<	<		<	<	13	<		<	<	<	<
4-Bromoanilin	μg/l	0.03	<	<	<	<	<	<		<	<		<	<	13	<		<	<	<	<
2-Chloranilin	μg/l	0.03	<	<	<	<	<	<		<	<		<	<	13	<		<	<	<	<
4-Chloranilin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	14	<		<	<	<	<
2,6-Dichloranilin	μg/l	0.01	<	<	<	<	<	<	`	<	<	`	<	<	13	<		<	<	<	<
3,4-Dichloranilin	μg/I	0.05	<	<	<	<	<	<		<	<		<	<	13	<		<	<	<	< < < < < < < < < < < < < < < < < < <
3,5-Dichloraniline	μg/l	0.03	<	<	<	<	<	<		<	2		<	<	13	<		2	<		<
2,6-Diethylanilin	μg/I	0.05	<	~			<	~		<	~		<	<	13	<		~	<		<
Pendimethalin	μg/I	0.05		`		_		~	<	<	<	<	<	<	7	<	*	*	<	*	<
Quizalofop-ethyl	μg/I	0.05						~	<	<	<	<	<	<	7	<	*	*	<	*	<
Trifluralin	μg/I	0.03	<		<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
flonicamid	μg/I	0.01		`		_			<	<	0.02	<	<	<	6	<	*	*	<	*	0.02
Sulphamide	μ	0.01									0.02				U						0.02
Sulfacetamid	μg/l	1			<			<		<			<		4	<	*	*	<	*	<
Sulfadoxine	μg/l	1			<					<			<		4	<	*	*	<	*	<
Sulfapyridin	μg/l	1											<		4	<	*	*	<	*	<
Sulfaphenazol	μg/l	1						<					<		1	<	*	*	<	*	<
Sulfaguanidin	μg/I μg/I	1											<		4	<	*	*	<	*	<
Sulfamethoxypyridazin		1						<		<					4	<	*	*	<	*	<
Sulfathiazol	μg/l	1						<		<			< <		4	<	*	*	<	*	<
Sulfatroxazol	μg/l	1			<			<		<			,		4		*	*		*	<
	μg/l	1			<			<		<			<		4	<	*	*	<	*	<
Sulfisoxazol	μg/l	- 1			<			<		<			<		4	<			<		<

Parameter		u.b.g.	-		Mrz.	Apr.	Mai Mai	Jun.		Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	
Sulfonate	Limit	u.b.g.	ouii.	1 00.	IVII Z.	Apr.	ividi	ouil.		Jui.	Aug.	ocp.	OKL.	IVOV.	D02.	"	141111	. 10	1 30		1 30	
4,4-Diamino-1,1-Bianthrachinon-3,3-Disulfonat	μg/l	0.2			<		<				<			<		4	<	*	*	<	*	
2-Amino-5-Methylbenzolsulfonat	μg/l	0.2			<		<				<					4	<	*	*	<	*	
3-Nitrobenzolsulfonat	μg/l	0.2			<		<				<			<		4	<	*	*	<	*	
2-Aminonaphthalin-1,5-Disulfonat	μg/l	0.02			0.09		<				0.06			0.15		4	<	*	* (0.0775	*	
2-Hydroxy-4,6-Bis(4-Sulphanilo)-1,3,5-Trisulfonat	μg/l	0.2			<		<				<			<		4	<	*	*	<	*	
2-Amino-5-Chlor-4-Methylbenzolsulfonat	μg/l				<		<				<			<		1	<	*	*	<	*	
Naphthalene-1,3,6-Trisulfonat	μg/l				0.08		0.25				0.2			0.35		1	0.08	*	*	0.22	*	
Naphthalin-2,6-Disulfonat					0.00		0.23				0.04			0.06		4	0.00	*	*	0.22	*	
Naphthalin-1-Sulfonat	μg/l	0.02			0.02		0.04				0.04			0.00		4	< 0.02	*	* (0.04	*	
Naphthalin-1,7-Disulfonat	μg/l	0.02			0.06		0.03				0.02			0.03		4	0.06	*		0.0225	*	
Naphthalin-1,6-Disulfonat	μg/l				0.00		0.12				0.14			0.16		4	0.00	*		0.113	*	
•	μg/l															4		*			*	
Naphthalin-1,5-Disulfonat	μg/l				0.11		0.39				0.29			0.47		4	0.11	×		0.315	*	
Naphthalin-2,7-Disulfonat	μg/l	0.00			0.08		0.11				0.13			0.19		4	0.08	*	*	0.128	×	
Naphthalene-1,3,7-Trisulfonat	μg/l	0.02			<		<				<			<		4	<	*	*	< <	*	
Naphthalin-2-Sulfonat	μg/l	0.02			<		0.03				0.06			0.07		4	<	*		0.0425	*	
Naphthalene-1,3,5-Trisulfonat	μg/l				0.04		0.12				0.09			0.16		4	0.04	*	*	0.103	*	
Naphthalin-1,3-Disulfonat	μg/l	0.02			<		<				<			<		4	<	*	*	<	*	
3-Aminonaphthalin-1,5-disulfonat	μg/l				<		<				<			0.08		4	<	*	* 0	0.0275	*	
-Hydroxynaphthalin-2,7-disulfonat	μg/l	0.02			<		<				<			<		4	<	*	*	<	*	
Organochlorpestizide																						
Aldrin	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	
hlorbufam	μg/l	0.02						<		<	<	<	<	<	<	7	<	*	*	<	*	
Chlorthal	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Chlortalonil	μg/l	0.05			<			<				<		<		4	<	*	*	<	*	
,p'-DDD	μg/l	0.001		<		<		<		<			<	<		7	<	*	*	<	*	
p,p'-DDD	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	
p,p'-DDE	μg/l	0.001		<		<		<		<			<	<		7	<	*	*	<	*	
p,p'-DDE	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	
,p'-DDT	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	
o,p'-DDT	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	
Dichlobenil	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Dichlorbenzamid	μg/l	0.01	<		<		<				0.01	<		<	0.02	13	<		<	<	0.016	
Dichloran	μg/l	0.05					<	< 0.01		<	<	<	< .0.01	<	< 0.02	13	<	<	<	<	< 0.010	
Dicophol	μg/I						<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Dieldrin	μg/I μg/l						<	<		<	<	<	<	<	<	14	<	<	<	<	<	
Alpha-Endosulphan	μg/I μg/I						<	<		<	<	<	<	<	<	14	<	<	<	~	<	
Beta-Endosulphan							<	<		<	<	<	<	<	<	14	<	<	<	<	<	
·	μg/l											-		-						-		
ndrin	μg/l							0.000625			<	<	<	<	<	13	<	<	<	<	0.001	
enpiclonil	μg/l	0.05	<				<	<		<	<	<	<	<	<	13	<	< *	< *	<	< *	
leptachlor	μg/l	0.001		<		<		<		<			<	<		7	<	<u> </u>		<	^	
exachlorbenzol (HCB)	μg/l		<	<			< 0.0004	<		<	<	> > > > > > > > > > > > > > > > > > > >	<	<	<	14	<	<	<	<	<	
Alpha-HCH	μg/l			0.0002							0.0002			0.0001	0.0003	14	<		0.00010.0			
Beta-HCH	μg/l			0.0002			0.0003		0.00		0.0003			0.0004	0.0003	14	<		0.00030.0			
sodrin	μg/l						<			<	<	<	<		<	14	<	<	<	<	<	
lamma-HCH	μg/l			0.0004	0.0003	0.0004	0.0004	0.0004	0.0	.0002	0.0004	0.0003	0.0005	0.0005	0.0004	14	0.0002 0.0	0025	<mark>0.00040</mark> .0	000386	0.0005	1
etradifon	μg/l							<		<	<	<	<	<	<	7	<	*	*	<	*	
Delta-HCH	μg/l	0.0001	<	<	<	<	<	<		<	0.0001	<	<	<	<	14	<	<	<	<	<	(
																-						
cis-Heptachlorepoxid	μg/l	0.001		<		<		<		<			<	<		7 7	<	*	*	<	*	

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.		Jul.	Aug.	Sep.	0kt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Organochlorpestizide (Fortsetzung)																						
Chlorthal-dimethyl	μg/l	0.04	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
zoxamide	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Organophosphor und -Schwefelpestizide																						
Azinphos-Ethyl	μg/l	0.04	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Azinphos-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Bentazon	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	0.02	<	13	<	<	<	<	<	0.02
Bromophos-methyl	μg/l	0.02						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Chlorfenvinphos	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorpyriphos-Methyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Coumaphos	μg/l	0.005	<	<	<	<	<	<		<	<	<	<			12	<	<	<	<	<	<
Demeton-S-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	< -
Demeton-S-methylsulfon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Diazinon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Dicamba	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dicrotophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethoat	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Disulphoton	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dithianon	μg/l	0.1	<	<		<	<	<		<			<	<		9	<	*	*	<	*	<
S-Ethyl-N,N-Dipropylthiocarbamaat (EPTC		0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Etroprophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Etrimfos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	< =
Fenchlorphos (ronnel)	μg/l	0.01						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Phenitrothion	μg/l	0.005	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Phenthion	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Phonofos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fosalone	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phosphamidon	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Glyphosat	μg/l	0.05	<	<	<	<	0.05	0.08	0.08	825	< (0.0575	0.06	<	<	26	<	<	<	<	0.099	0.14
Heptenophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Malathion	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Methamidophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Methidathion	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Mevinphos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Monocrotophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Omethoat	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Oxydemeton-Methyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Paraoxon-Ethyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Parathion-Ethyl	μg/l	0.005	<	<			<	<		2	<	<	<	<	<	14	2	<	<	<	<	<
Parathion-Methyl	μg/l	0.01	<	<			<	<		2	2	<	<	<	<	14	2	<	<	<	<	<
Pirimiphos-Methyl	μg/l	0.001	<	<	<	<	<	<		2	<	<	<	<	<	14	<	<	<	<	<	<
Pyrazophos	μg/l	0.01	<	<	<	<	<	<		2	-	<	<	<	<	14	<	<	<	<	<	<
Sulphotep	μg/l	0.01	<	<	<	<	<	<		-	<	<	<	<	<	13	<	<	<	<	<	<
Terbufos	μg/l	0.01	<	<	<	<	<	<		2	<	<	<	<	<	13	<	<	<	<	<	<
Tetrachlorvinphos	μg/l	0.05	<	<	<	<	<	<		2	<	<	<	<	<	13	<	<	<	<	<	<
Thiometon	μg/l	0.03	<	<	<	<	<	<		<		<	<	<	<	13		<	<	<	<	<
Tolclophos-Methyl	μg/l	0.02	<	<	<	<	<	<		<		<	<	<	<	14		<	<	<	<	<
Triazophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Trichorfon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
HIGHOLIUH	μg/I	0.02	-	(<	<	<	<		((13		(((

Parameter		u.b.g.	Jan.		Mrz.	Apr.	Mai	Jun.	Ju	ul	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Organophosphor und -Schwefelpestizide (oun.	1 00.	IVII Z.	7101.	IVIGI	oun.	ou de la company	u1.	rtug.	оор.	OKt.	1404.	D 0 2.		141111	1 10	1 00	111.00.	1 00	WIUX. TIKE
AMPA	μg/l	9/	0.21	0.195	0.15	0.235	0.41	0.373	0.5	52	0.46	0.325	0.395	0.395	0.223	26	0.13	0.167	0.34	0.322	0.46	0.59
cis-Chlorphenvinphos	μg/l	0.05	<		<		<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Chlorphenvinphos	μg/l	0.05	<	<	<		<	<		2	2	<	<	<	<	13	<	<	<	<	<	<
cis-Phosphamidon	μg/l	0.05	<	<	<		<	<		2	<	<	<	<	<	13	<	<	<	<	<	<
trans-Phosphamidon	μg/l	0.05	<	<	<		<	<		2		<	<	<	<	13	<	<	<	<	<	< ■
Chlorpyriphos-Ethyl	μg/l	0.01	<	<	<		<	<)		<	<	`	`	12	<	<	<	<	<	< ■
Ediphenphos	μg/l	0.05	<	<			<	<		<		<	<	<	<	13		<	<	<	<	<
Nicosulfuron	μg/l	0.05	<	<	<		<	<			<	<	<	<	<	13		<	<	<	<	<
Sulcotrion	μg/l	0.03	<		<		<			<		~	<	~	<	13		<		<	<	<
Amidosulfuron	μg/l	0.02	`			`	<			`		`		~		3	*	*	*	*	*	* 🗏
Azimsulfuron		0.03			<		<							<		4		*	*	<	*	<
Ethoxysulfuron	μg/l	0.03			<		<							<		4		*	*	<	*	< □
Foramsulfuron	μg/l	0.03														4		*	*		*	
Fosthiazat	μg/l	0.03			<		<	<			<		<	<		13	<			<		<
	μg/l		<	<			<	<		<	<	<	<	<	<	4	<	< *	*	<	< *	
lodosulfuron-Methyl-Natrium	μg/l	0.03			<		<				<			<		4	<	*	*	<	*	< L
Mesotrion	μg/l	0.03			<		<				<			<		4	<	*	*	<	*	<
Oxasulfuron	μg/l	0.03			<		<				<			<		4	<	×	· *	<	~ *	<
Prosulfuron	μg/l	0.03			<		<				<			<		4	<	×	· ×	<	~ ×	<
Rimsulfuron	μg/l	0.03			<		<				<			<		4	<	×	×	<	~	<
Sulfosulfuron	μg/l	0.03			<		<				<			<		4	<	*	*	<	*	<
Thiacloprid	μg/l	0.01	<	<	<		<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triflusulfuron-Methyl	μg/l	0.05			<		<				<			<		4	<	*	*	<	*	<
Buprofezin	μg/l	0.08	<	<	<		<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Acetamiprid	μg/l	0.02	<		<		<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Disulfoton-sulfone	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Disulfoton-sulfoxide	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,3-bis-Sulfanylbutanedioic acid (Succimer, DMSA)	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos-sulfon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos-sulfoxid	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fensulfothion	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-sulfoxid	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Terbufos-sulfone	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Terbufos-sulfoxide	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Demeton	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-sulfon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Organostickstoffpestizide																						
Bromacil	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	65	<	<	<	<	<	<
Chloridazon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<			12	<	<	<	<	<	0.01
Dodine	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fuberidiazol	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Lenacil	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tebuphenpyrad	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Azoxystrobin	μg/l	0.25	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Imazamethabenz-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
boscalid	μg/l	0.01						<		<	<	<	0.02	<	<	7	<	*	*	<	*	0.02
fenamidone	μg/l	0.01						<		<	<	<	<	<	<	7	<	*	*	<	*	<
fipronil	μg/l	0.01						<		<	<	<	<	<	<	7	<	*	*	<	*	<
picoxystrobin	μg/l	0.01						<		<	<	<	<	<	<	7	<	*	*	<	*	<
trifloxystrobin	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	*	<
•																						

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	J	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Chlorphenoxyherbizide												0.0										
2,4-Dichlorphenoxyessigsäure (2,4-D)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,4-DB	μg/l	0.05	<	<		<										3	*	*	*	*	*	*
Dichlorprop	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
MCPA	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<		<	<	<
MCPB	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Mecoprop (MCPP)	μg/l	0.02	<	<	<	0.05	0.02		0	.02	<	<	<	<	<	13	<	<	<	<	0.038	0.05
2,4,5-T	μg/l	0.02	<	<	<	<	<	<		<	2	<	<	<	<	13	<	<	<	<	<	<
Phenoprop (2,4,5-TP)	μg/l	0.05	<	<	`	<	Ì	`		`	`	ì	`	`	`	3	*	*	*	*	*	*
Phenylharnstoffpestizide	F-3/-			-																		
Chlorbromuron	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	65	<	<	<	<	<	<
Chlortoluron	μg/l	0.01	0.04	0.02	0.01	<	<	<		~	~	<	<	0.01	0.04	13	<			0.0123	0.04	0.04
Chloroxuron	μg/l	0.02	<	<	<	<	<	<		2	~	<	<	<	<	13	<	<	2	<	<	<
Difenoxuron	μg/l	0.02	<	2	<	<	<	<		~	~	<	<	<	<	13	<	<	2	<	<	< =
Diflubenzuron	μg/l	0.01	<	2	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Diuron	μg/l	0.01	<	<	<	<	<	0.01	0	0.01	0.01	0.01	0.01	0.01	<	13	<	<	0.01	<	0.01	0.01
Isoproturon	μg/l	0.01	0.03	<	0.01	<	0.02	<	0.	<	0.01	<	<	0.06	0.07	13	<	<	<	0.0181	0.066	0.07
Linuron	μg/l	0.01	<	2	<	<	< .0.02	<		2	2	<	<	<	<	13	<	<	<	<	<	<
Metabenzthiazuron	μg/l	0.01	<		<	<	<	<				<	<	<	<	13	<	<		<	<	<
Metobromuron	μg/l	0.01	<	2	<	<	<	<			2	<	2	<	<	13	<	<		<	<	<
Metoxuron	μg/l	0.01	<	2	<	<	<	<				<	<	<	<	13	<	<		<	<	<
Metsulphuron-Methyl	μg/l	0.02	<		<	<	<	<			<	<	<	<	<	13	<	<		<	<	<
Monolinuron	μg/l	0.02	<		<	<	<	<				<	<	<	<	65	<	<		<		<
Monuron	μg/l	0.01	<	<	<	<	<	<		2	<	<	<	<	<	13	<	<		<		<
Pencycuron	μg/I	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<		<	<	<
3-(3,4-Dichlorphenyl)-1-Methyl-Harnstoff	μg/l	0.01	<		<	<	<	<		<				<	<	52	<	<	<	<	<	<
1-(3,4-dichloorfenyl)harnstoff	μg/l	0.03	<		<	<	<	<		`				`		46	<	<		<	<	<
Triflumuron	μg/l	0.03	<		<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
3,4-Dichlorphenylharnstoff	μg/I μg/I	0.01				`	<	<		<					0.0119	16	<	<	~		0.0215	0.06
Dinitrophenolherbizide	μg/i	0.01													0.0113	10					0.0213	0.00
2,4-Dinitrophenol	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Dinoseb	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dinoterb	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Vamidothion	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Carbamatpestizide	μy/i	0.01			_										_	13			_		_	
Aldicarb	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Aldicarb-Sulphon	μg/I	0.01	<	<	<	<	<	<		~	<	<	<	<	<	13	<	<		<	<	<
Aldicarb-Sulphoxide	μg/I	0.01	<	<	<	<	<	<		~	<	<	<	<	<	13	<	<		<	<	<
Bendiocarb		0.01	<		<	<	<	<			<	<	<	<	<	13	<	<		<	<	<
Butocarboxim	μg/l	0.01	<		<	<	<	<				<		<	<	13	<	<		<	<	< =
Butoxycarboxim	μg/l	0.01	<	<	<	<	<	<			<	<	<	<	<	13	<	<	<	<	<	<
Carbaryl	μg/l	0.05				<		<						<	<	13	<			<	<	<
Carbetamid	μg/l	0.03	<	< <	0.01		<	-			<	<	< <		<	13	-	<				0.01
Carbophuran	μg/l					<	<	<				<	-	<		13	<	<	<	<	<	0.01
Carboxin	μg/l	0.01	<	<	<	<	<	<			<	<	<	<	<	13	<	<	<	<	<	
Desmedipham	μg/l	0.01	<	<	<	<	<	<			<	<	<	<	<	13	<	<	<	<	<	
•	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<		<	<	<	<	<	
Diethofencarb	μg/l	0.04	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Ethiophencarb Phanmadinham	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13 13	<	<	<	<	<	< =
Phenmedipham	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Carbamatpestizide (Fortsetzung)	2	ag.	Juli.	. 55.		рі.	.au	Juli.	Jui.	, lag.	υ эρ.	J.Kt.		232.	"			. 50		. 00	a i int
Phenoxycarb	μg/l	0.01	<	<	<	<	<	<	 <	<	<	<	<	<	14	<	<	<	<	<	<
Methiocarb	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = <
Methomyl	μg/l	0.1	<	<	<	<	<	<	<	<		<	<	<	12	<	<	<	<	<	<
Oxadixyl	μg/l	0.05						<	<	<	<	<	<	<	7	<	*	*	<	*	ζ Π
Oxamyl	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Oxycarboxin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pirimicarb	μg/l	0.01	<	<	<	<	<	<	<	<	<	<			12	<	<	<	<	<	0.01
Propham	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Propamocarb	μg/l	0.01	<	<	~	<	<		<	~	<	<		<	12	2	<	<	<	<	<
Thiodicarb	μg/l	0.01	<	<	~	<	<		2	~	<	2		<	13	2	<	2	<	<	<
Thiofanox	μg/l	0.04	<	<	~	<	<	<	<	-		<	<	<	13	2	<	<	<	<	<
Triallat	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chloorpropham	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Butocarboximsulphoxide	μg/l	0.02	<	<	<	<	<								5		*	*	<	*	₹ □
Ethiophencarbsulphoxide	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13		<	<	<	<	<
Methiocarbsulphon	μg/I μg/I	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13		<	<	<	<	<
Thiofanosulphoxid		0.01	<	<	<	<	<	<	<	<	<	<	<	<	13		<	<	<	<	<
Thiofanoxsulphon	μg/l μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13		<	<	<	<	<
3-Hydroxycarbofuran		0.01	<	<	<	<	<								5		*	*	<	*	
Prosulphocarb	μg/l	0.02	<	<	<		<	<	<		<	<	<	<	13	<	<	<	<	<	<
Pyraclostrobin	μg/l	0.02	<		•	<	<	<				<		-	13		-	7			
Ethiofencarb sulfon	μg/l	0.01		<	<	<				<	<		<	<	13	<	<	<	<	<	<
Iprovalicarb	μg/l	0.01	<	<	<	<	<	<		<	< <	<	< <	<	13	<	<	< <	<	<	
Methiocarb Sulfoxide	μg/l	0.01	<	<	<	< <	<	<	< <	<		<		<	13	< <	<	<	< <	<	< =
Desmethyl-pirimicarb	μg/l	0.01		<	-					-	<	-	<	<	13		<	-		-	
Methyl-N-(3-hydroxyphenyl) carbamat (MHPC)	μg/l	0.01	<	<	<	<	<	<	< <	<	< <	<	< <	<	13	<	<	<	< <	<	< =
Triazine / Triazinone / Anilide	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u></u>
Alachlor	μg/l	0.01	<	<	<	<	0.01	<	<	<	<	<	<	<	14	<	<	<	<	<	0.01
Ametryn	μg/l	0.01	<	<	<	<	0.01	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Atrazin	μg/l	0.01	<	<	<		<	0.0125	<	<	<	<	<	<	13	<	<	<		0.014	0.02
Cyanazin	μg/l	0.01	<	<	<	<	<	0.0123		<	<	<	<	<	13	<	<	<	<	0.014	
Deltamethrin		0.05	<	<	<	<	<	<	<		<	<	<	<	14	<	<	<	<	<	<
Desethylatrazin	μg/l	0.03	<	<	<	<	<	<	<		<	<	<	<	14	<	<	<	<	<	<
Desisopropylatrazin (Desethylsimazin)	μg/l	0.05	<	<	<	<	<	<	<		<	<	<	<	13	<	<	<	<	<	
Desisopropylatraziii (Desettiyisiiilaziii) Desmetryn	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexazinon	μg/l	0.05	<	<		<	<	<	<		<	<	<	<	12		<	<	<	<	<
Metalaxyl	μg/l	0.05						<				-	<		13			-		<	
Metanitron	μg/l	0.05	<	< <	< <	< <	<	<	<	<	<	<	< <	<	13	< <	<	< <	< <	<	
Metazachlor	μg/l	0.05						-	<	`	<	<		<	14	`	<	-		-	
Metolachlor	μg/l		<	0.02	<	<	<	< 0.015	0.01	<	<	<	<	<	14	<	<	<	<	0.02	0.02
Metribuzin	μg/l	0.01	<		<	<	<	0.015	0.01	<	<	<	<	<	13	<	<	<	<		
	μg/l	0.05	<	<	<	<	<	-	<	<	<	<	<	<		<	<	<	<	<	
Myclobutanil	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Procymidon	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Prometryn	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Propachlor	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Propazin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Simazin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	65	<	<	<	<	<	<
Terbutryn	μg/l	0.05	<	<	<	<	<	< 0.0005	< 0.00	<	<	<	<	<	13	<	<	<	<	< 0.000	< 🗾
Terbutylazin	μg/l	0.01	<	<	<	<	<	0.0225	0.02	<	<	<	<	<	13	<	<	<	<	0.032	0.04

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Triazine / Triazinone / Anilide (Fortsetzu						<u> </u>				- 5											
Triadimefon	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Vinclozolin	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Phlutolanil	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Diflufenican	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Desethylterbutylazin	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pymetrozin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Conazole	7 3,																				
Cyproconazol	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Diniconazol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Etridiazol	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Paclobutrazol	μg/l	0.01	<	<		<	<	<	~	<	<	<	<	<	13	<	<	<	<	<	< =
Penconazol	μg/l	0.01	<	<	<	<	<	<	2	<	<	<	<	<	13	<	<	<	<	<	<
Prochloraz	μg/l	0.01	<	<	2	<	<		2	<	<	~	<	<	13	<	<	2	<	<	<
Terbuconazol	μg/l	0.01	<	<	<	<	<	<	<	-	<	<	<	<	13	2	<	<	<	<	<
Triadimenol	μg/l	0.05	<	<	<	<	<	<	<	2	<	<	<	<	13	2	<	<	<	<	<
Expoxiconazol	μg/l	0.05	<	<	<	<	<	<	<		<	<	<	<	13		<	<	<	<	<
Diphenoconazol	μg/l	0.25	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Azaconazol	μg/I	0.25	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tricyclazole	μg/I	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Insektizide	μу/і	0.02													10						
lambda-Cyhalothrin	ua/l	0.02	<	<		<			<			<	<		8	<	*	*	<	*	<
Esfenvalerat	μg/l	0.02	<					< <	<			<			14			<	<	<	<
Sonstige Pestizide und Metabolite	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	\ <u> </u>
Acephat	ua/l	0.01	<		<	<				<		<			13	<		<	<		
Acloniphen	μg/l	0.01	<	< <	<	<	<	< <	< <	<	< <	<	< <	<	13	<	<	<	<	<	< =
Asulam	μg/l	0.03	<	-		-	<	-	-	-	-	<		-	13	<	<	<		<	
Bitertanol	μg/l			<	<	<	<	<	<	<	<	-	<	<	13	<	<	-	<	-	< =
	μg/l	0.01 0.02	<	<	<	<	<	<	<	<	<	<	<	<	7	<	< *	< *	<	< *	
Brompropylaat	μg/l							<	<	<	<	<	<	<		<			<		< 🗀
Bupirimaat	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13 7	<	< *	< *	<	< *	
Captan	μg/l	0.05		<	<	<		<	<			<	<			<			<	n î	<
Cymoxanil	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Dimethirimol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Dodemorf	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ethirimol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ethofumesat	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenarimol	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenpropiomorph	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Pholpet	μg/l	0.06	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phorate	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Furalaxyl	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Imazalil	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Iprodione	μg/l	0.2	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nitrothal-Isopropyl	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Piperonylbutoxid	μg/l	0.01						<	<	<	<	<	<	<	7	<	*	*	<	*	<
Propyzamid	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	0.02	13	<	<	<	<	<	0.02
Pyriphenox	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Rotenon	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Sethoxydim	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Tetramethrin	μg/l	0.1						<	<	<	<	<	<	<	7	<	*	*	<	*	<

Parameter	Einheit	uveseiii	lon	Eob	MAra	Λnr	Mai	Lun	Jul.	Λua	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m 14/	P90	Max. Pikt
Sonstige Pestizide und Metabolite (Fortset:		u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jui.	Aug.	Sep.	UKL.	NOV.	Dez.	n	IVIIII	PIU	P50	m.w.	P90	IVIAX. PIKL
Thiabendazol	zung/ μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Thiocyclam hydrogenoxalate	μg/l	0.02	<	<	<		<	<	<	<	<	<	<	<	12	<	<	<	<	<	<
Thiophanat-methyl	μg/l	0.02	<	<	<		<	<			<	<	<	<	13	<	<	<	<	<	<
Triforine	μg/l	0.02	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Dimethomorf	μg/l	0.05	<	<	<		<	<	<		<	<	<	<	13	<	<	<	<	<	<
N,N-Dimethyl-N'-(4-Methylphenyl)	μg/i	0.03													13						
Sulfamid (DMST)	μg/l	0.05	<	<	<	<	<	<	<		<	<	<	<	13		<	<	<	<	<
Pyrimethanil		0.03	<	<	<		<	<	<	<	<	<	<	<	13		<	<	<	<	< =
Kresoxim-Methyl	μg/l	0.01	<	<			<	<	<		<	<	<	<	13		<	<	<	<	<
Pyridaben	μg/l	0.02	<	<		<		<					<		8		*	*	<	*	\ \ \ \ \
Pyriproxyphen	μg/l	0.01	<	<		`		<					<		8		*	*	<	*	
Abamectin	μg/l	0.01				<		<	<			<	-		13	<					` =
Cyprodinil	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
**	μg/l		<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Imidacloprid	μg/l	0.05	<	<	<		<	<	<	<	<	<	<	<		<	<	<	<	<	
Clomazone	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	< *	
Dimethenamid-p	μg/l	0.01	<	<		0.0225		<	<			<	<		8	<			<		0.04
Florasulam	μg/l	0.05	<	<	<		<	<	<	<	<	<	< 0.00	<	13	<	<	<	<	< *	<
Mefenpyr Diethyl	μg/l	0.03			<		<			<			0.03		4	<	^	~	<	^	0.03
Famoxadone	μg/l	0.01	<	<	<	`	<	<	<	<	<	<	<	<	13	<	<	<	<	<	0.01
Fenhexamid	μg/l	0.01	0.01	<	<	`	<	<	<	<	<	<	<	<	13	<	<	<	<	<	0.01
Isoxaflutole	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methoxyfenozide	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phorate-sulfone	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phorate-sulfoxide	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyridafol (CHPP)	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Spinosad	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tebufenozide	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Thiametoxam	μg/l	0.01	<	<	<		<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triazoxid	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Biozide																					
Tributylzinn	μg/l		<	<	<		<		<	<	<	<	<	<	14	<	<	<	<	<	<
Carbendazim	μg/l	0.01	<	0.01	0.02	0.02		0.0167	0.0186	0.02	0.013	0.0183	0.017	0.0115	65	<	0.01	0.02	0.0161	0.02	0.03
Cyromazine	μg/l	0.03			<		<			<			<		4	<	*	*	<	*	<
N,N-Diethyl-3-Methylbenzamid (DEET)	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlofluanid	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlorvos	μg/l	0.05	<	<	<	`	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Propiconazol	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Propoxur	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Flammschutzmittel																					
2,2',4,4'-Tetrabromdiphenylether	μg/l		<	<	<		<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,5'-Tetrabromdiphenylether	μg/l		<	<	<		<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4'-Pentabromdiphenylether		0.0005	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5-Pentabromdiphenylether	μg/l		<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',6-Pentabromdiphenylether	μg/l		<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,5'-Hexabromdiphenylether	μg/l	0.0005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,6'-Hexabromdiphenylether	μg/l		<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2,4'-Tribromdiphenylether (Bde-028)	μg/l		<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4',5'-Hexabromdiphenylether		0.0005	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4',5-hexabromodiphenylether (BDE-138)	μg/l	0.0005			<			<		<			<		4	<	*	*	<	*	<

		uwesei	III IIII Ja		(mullats	mintelweite	unu Kennz	anten)														
Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Ju	ul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
(per)Fluorierte Stoffe		0.005																×	*			
Perfluoroctanoat (PFOA)	μg/l	0.005			<			<			<			<		4	<	~		<		<
Perfluoroctansulfonat (PFOS)	μg/l				0.0087			0.0089		(0.0085			0.0098		4	0.0085	*	* (0.00898	*	0.0098
Ether		0.00												0.00		10					0.000	0.00
di-Isopropylether (DIPE)	μg/l	0.02	<		<	<		< .		<	<	<	<	0.03	<	13	<	<	<	> > > >	0.022	
Methyl-Tertiär-Butylether (MTBE)	μg/l	0.05	0.05	<	<	<	0.06	0.155	0.1		0.06	<	0.1	<	<	13	<	<		0.0708	0.208	0.22
Diglym	μg/l	0.25	<		<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Ethyl-Tertiär-Butylether (ETBE)	μg/l	0.02	<		<	<	<	0.03		<	<	<	<	0.02	0.03	13	<	<	<	<	0.036	0.04
Triglym	μg/l	0.25	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tetraglym	μg/l	0.3	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Tertiair-Amyl-Methylether (TAME)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Sonstige organische Stoffe																						
Cyclohexan	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	0.03	0.03	13	<	<	<	<	0.03	0.03
Tributylphosphat (TBP)	μg/l	0.1	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Triethylphosphat	μg/l	0.05			<			<			<			<		4	<	*	*	<	*	<
Triphenylphosphat (TPP)	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	14	<	<	<	<	<	<
Triphenylphosphinoxid (TPPO)	μg/l	0.1	<	<	<	<	<	<								46	<	<	<	<	<	0.11
Tri-Isobutylphosphat	μg/l				0.06			0.07			0.1			0.18		4	0.06	*	*	0.103	*	0.18
2-Aminoacetofenon	μg/l	0.1	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
Hexa(Methoxymethyl) Melamine (HMMM)	μg/l		0.554	0.74	0.45	0.386	0.517	0.256								45	0.2	0.276	0.45	0.496	0.796	1 😐
Röntgenkontrastmittel																						
Amidotrizoesäure	μg/l		0.218	0.282	0.322	0.114	0.147	0.152	0.12	23	0.206	0.209	0.162	0.31	0.359	12	0.114	0.117	0.208	0.217	0.348	
lodipamid	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<	<
lohexol	μg/l		0.0666	0.0499	0.102	0.0224	0.11	0.137	0.023	38 (0.0265	0.0321	0.0513	0.0259	0.111	12	0.0224	0.0228	0.0506	0.0631	0.129	0.137
Iomeprol	μg/l		0.0372	0.393	0.515	0.103	0.515	0.518	0.093	35	0.17	0.0465	0.146	0.0522	0.518	12	0.0372	0.04	0.158	0.259	0.518	0.518
lopamidol	μg/l		0.249	0.0893	0.0936	0.0883	0.111	0.309	0.15	58	0.264	0.0887	0.135	0.252	0.0928	12	0.0883	0.0884	0.123	0.161	0.295	0.309
lopansäure	μg/l	0.01	<	<	<	<	<	<		<	<	<	<		<	12	<	<	<	<	<	< 🗾
lopromid	μg/l		0.046	0.594	0.581	0.057	0.596	0.0646	0.30		0.385	0.0599		0.0463	0.497	12	0.046	0.0461	0.199	0.277	0.596	0.596
lotalaminsäure	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<	<
loxaglinsäure	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<	< ▶!
loxitalaminsäure	μg/l		0.0418	0.0414	0.0429	0.0315	0.0282	0.0437	0.021	11 (0.0247	0.0115	0.012	0.0306	0.0347	12	0.0115	0.0117	0.031	0.0303	0.0434	0.0437
Antibiotika	1 3,																					
Chloramphenicol	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Clarithromycin	μg/l	0.05	<		<	<	<	<								7	<	*	*	<	*	< [
Cloxacillin	μg/l	0.01	<		<	<	<									7	<	*	*	<	*	<
Dapson	μg/l	1	`	ì		`	ì				<			<		4		*	*	<	*	<
Dicloxacillin	μg/l	0.01	<	<	<	<	<				,			`		7		*	*	<	*	<
Erythromycin	μg/l	0.01	<	-	<	<	<									7	<	*	*	<	*	<
Furazolidin	μg/l	0.1	<		<	<	<	<								7	<	*	*	<	*	< [
Nafcillin	μg/l	0.01	<		<	<	<	<								7	<	*	*	<	*	<
Oleandomycin	μg/l	0.02	<	<	<	<	<	<								7	<	*	*	<	*	<
Oxacillin	μg/l	0.011	<		<	<	<	<		<				<	<	13	<		<	<	<	< 🗾
Roxithromycin		0.011					<	<								7		*	*	<	*	<
Spiramycin	μg/l	0.01	<		<	<										7	<	*	*		*	< [
	μg/l	0.05	<	<	<	<	<	<								1	<	*	*	<	*	
Sulfadiazin Sulfadimidin	μg/l	1			<			<			<			<		4	<	*	*	<	*	. =
	μg/l	1			<			<			<			<		4	<	*	*	<	*	< _
Sulfamerazin	μg/l	1			<			<			<			<		4	<	*	· ·	<	×	<
Sulfamethoxazol	μg/l	0.00			<			<			<			<		4	<	^	~	<	*	<
Trimethoprim	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	< *	<	< *	
Indometacin	μg/l	0.02	<	<	<	<	<	<								7	<	*	*	<	*	<

Parameter Parameter		u.b.g.	-		Mrz.	Apr.	Mai	Jun.	J	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pik
Antibiotika (Fortsetzung)																						
Azithromycin	μg/l	0.05	<	<	<	<	<	<								7	<	*	*	<	*	<
Lincomycin	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Monensin	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
Tiamulin	μg/l	0.01	<	<	<	<	<	<	0.	0.01	<	0.038	<	<	<	13	<	<	<	<	0.0268	0.038
Sulfaquinoxalin	μg/l	1	·	•		•	·	<	-		<			<	-	4	<	*	*	<	*	<
Sulfachlorpyridazin	μg/l	1			2						<			<		4	<	*	*	<	*	ζ [
Sulfadimethoxin	μg/l	1						<						<		4	<	*	*	<	*	<
Sulfanilamid	μg/l	1			<			<						<		4	<	*	*	<	*	< [
Clothianidin	μg/I	0.02	<	<		<	<	<		<	<	<	<	<	<	13	<		<	<	<	<
hydrochlorthiazide		0.02	`	`					0.0		0.019	0.034	0.02	0.11	0.11	6	0.004	*		0.0495	*	0.11
•	μg/l	0.015														6		*			*	0.11
theophylline	μg/l	0.015							0.0	010	<	<	0.027	0.12	0.058	0	<			0.0397		0.12
Betablocker	/1								0.0	004	0.000	0.000	0.000	0.000	0.011	C	0.004	*	* O	00007	*	0.000
Atenolol	μg/l	0.0000							0.0		0.006	0.009	0.006	0.022	0.011	6	0.004	×		.00967	*	0.022
Bisoprolol	μg/l									<	<		0.006	0.014	0.014	5	<	*		.00684		0.014
Metoprolol	μg/l	0.05	0.08	0.13	0.07	0.1	0.09			<	<	<	<	<	<	13	<	<		0.0517	0.118	0.13
Propranolol	μg/l	0.01	<	<	<	<	<	<		<	<	0.025	<	0.056	<	13	<	<	<		0.0436	0.056
Sotalol	μg/l	0.05	<	0.06	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	0.06
Schmerzbehandlungsmittel																						_
Lidocaïn	μg/l	0.01	<		<	<	<	<		<	<	<	<	0.012	0.01	13	<	<	<		0.0112	0.012
Diclofenac	μg/l	0.02	0.04	0.08	0.06	0.18	<	<		<	<	0.02	<	0.08	0.07	13	<	<	0.02	0.0454	0.14	0.18
4-Dimethylaminoantipyrin	μg/l	0.05	<	<	<	<	<	<								7	<	*	*	<	*	<
Fenoprophen	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
Ibuprophen	μg/l	0.02	0.02	0.06	0.03	0.07	<	<		<	<	<	<	<	0.04	13	<	<	<	0.0231	0.066	0.07
Ketoprophen	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Naproxen	μg/l	0.02	<	0.02	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	0.02
Phenazon	μg/l	0.01	0.02	0.04	<	<	0.01	<	0.	0.01	<	0.23	0.018	0.015	<	13	<	<	0.01	0.0291	0.154	0.23
Tolfenaminsaüre	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
Primidon	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Clofentezin	μg/l	0.02	<		<	<				<	<		<	<	<	13	<	,	<	<	,	<
paracetamol	μg/l	0.001	`	`	`	`	`	`		<	0.003	<	<	<	<	6	<	*	*	<	*	0.003
Salicylcsäure	μg/l	0.011								<	< .003		<	<	<	5	<	*	*	<	*	<
Antidepressiva und Drogen	μg/1	0.011														J						` [
Diazapam	μg/l	0.0002								<	<	<		0.0002	<	6	<	*	*	<	*	0.0002
fluoxetine	μg/I	0.0002								<		`	<	0.0002	<	3	*	*	*	*	*	* F
		0.003							0.0	014	0.009	0.012		0.014		6	0.009	*	*	0.013	*	0.017
oxazepam	μg/l	0.002							0.0		0.009	0.013		0.014	0.011	3	0.005	*	*	0.013	*	0.017 L
paroxetine	μg/l	0.003							0.0	< 0.0E	0.000	0.002	<	0.002	< 0.002		0.000	*	* 0		*	0.005
temazepam Chalacteria and Mittal	μg/l								0.0	005	0.002	0.003	0.005	0.003	0.002	6	0.002		·· U.	.00333	**	0.005
Cholesterinsenkende Mittel	/1	0.01					0.02									7		*	*		*	0.00
Pentoxifyllin	μg/l	0.01	< 0.00	< 0.04	< 0.02	< 0.00	0.02	< 0.0125				0.014		0.027	0.022	7	<		0.02	< 0.017E		0.02
Bezafibrat	μg/l	0.01	0.02	0.04	0.02	0.02	0.01	0.0125		<	<	0.014	<	0.027	0.033	13	<	<		0.0175	0.0372	0.04
Clofibrinsäure	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fenofibrat	μg/l	0.01	<	<	<	<	<	<	0.0		<	<	<	<	<	13	<	<	<	<	<	0.011
Fenofibrinsäure	μg/l	0.004								<	<	<	<	<	0.005	6	<	*	*	<	*	0.005
Gemfibrozil	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Clofibrat	μg/l	0.085	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
atorvastatine	μg/l	0.003								<	<	<	<	<	<	6	<	*	*	<	*	<
pravastatine	μg/l	0.05								<	<	<	<	<	<	6	<	*	*	<	*	<
Sonstige pharmazeutische Wirkstoffe																						
Coffein	μg/l		0.18	0.33	0.14	0.22	0.09	0.105	0.	.09	0.067	0.1	0.15	0.28	<	13	<	<	0.11	-7690	0.31	0.33

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Sonstige pharmazeutische Wirkstoffe (Fo	rtsetzun	g)																			
Carbamazepin	μg/l	0.05	0.07	0.1	0.1	0.07	0.1	<		0.06	0.05	0.05	0.05	0.09	12	<	<	0.065	0.0679	0.1	0.1
Cyclofosfamid	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ifosfamid	μg/l	0.0002							<	<	<	<	0.0003	<	6	<	*	*	<	*	0.0003
Fenoterol	μg/l	0.02	<	<	<	<	<	<							7	<	*	*	<	*	<
enalapril	μg/l	0.0002							<	<	<	<	0.003	0.0008	6	<	*	*	0.0007	*	0.003
furosemide	μg/l	0.003							<	<	<	<	0.03	0.023	6	<	*	* (0.00983	*	0.03
losartan	μg/l								0.005	0.005	0.005	0.009	0.011	0.012	6	0.005	*	* (0.00783	*	0.012
metformin	μg/l								0.32	0.56	0.34	0.24	0.87	0.41	6	0.24	*	*	0.457	*	0.87
Endokrin wirksame Stoffe (EDC's)																					
Di(2-Ethylhexyl)Phtalat (DEHP)	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Estron	μg/l	0.05	<	<	<	<	<	<							7	<	*	*	<	*	<
17-Alpha-Ethinylestradiol	μg/l	0.5	<	<	<	<	<	<							7	<	*	*	<	*	<
Progesteron	μg/l	0.01	<	<	<	<	<	<							7	<	*	*	<	*	<
4-TertOctylphenol	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Tetrabutylzinn	μg/l	0.0018	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Triphenylzinn	μg/l	0.0017	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Tricyclohexylzinn	μg/l	0.005			<			<		<			<		4	<	*	*	<	*	<
Dibutylzinn	μg/l	0.0051	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Dicyclohexylzinn	μg/l	0.01			<			<		<			<		4	<	*	*	<	*	<
Diphenylzinn	μg/l	0.0044	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Summe 4-Nonylphenol Isomeren	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	14	<	<	<	<	<	<
Akitivität gegenüber 17-Beta-Estradiol (EEQ)	μg/l		0.000089	0.000204	0.000073	0.00012	0.000112	0.0000615	0.000071	0.000265	0.000029	0.000024	0.000137	0.000021	13	0.000021 0.	0000222 0	0.000073	0.0000975 <mark>0</mark> .	000241	0.000265

Anlage 3

March Marc	Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul	ıl.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Sum case of first life light 1	Allgemeine Kenngrössen						· ·						· ·										
Same staffstriggring Simple Simpl	Wassertemperatur	°C		2.3	3	6.3	8.7	13.2	20	23	.4	22	16.4	12.5	10	2.7	13	2.3	2.46	12.5	12.3	22.9	23.4
Same staffstriggring Simple Simpl	Sauerstoff	ma/l		11	10.5	11.2	10.7	9.2	8.4		7	7.6	8.3	8.9	8.9	11.6	13	7	7.24	8.9	9.36	11.4	11.6
Tribungsgrafe FE 15 18 18 19 10 10 10 10 10 10 10	Sauerstoffsättigung									62.5	.9							62.9					
Schemen Sche	3. 3.																						
Seminary Seminary	0 0																						
PM West MS MS MS MS MS MS MS M	· ·	0.			10.1	1.0	7.0	0.0	10.0	10.		10.0	11.0	12.0	20.0	21.0	1	*	*	*	*	*	*
Electrice LairHillipskint MS/m Q28 641 618 G74 609 505 505 505 507 628 505					701	0.01	7 02	0 02	0 12	0	1	0 11	9 00	0 12	7.0	7 00	12	7 02	7 02	0 02	0 02	0 1/	9.16
Communificial Mys Comm	•																						
Case marker May Lack Case Lack Case C	ŭ																						
Page																							
Flytforgenerationat mg/l 188 175 179 179 178 175 189 189 180 180 181		mg/i		235	243	232	213	222	214	20) /	193	193	216	213	240	13	193	193	216	218	242	243 ∑
Charlest	Ü				405	4	407	470	470			400	400	400	400	400	40	407	400	4.55	470		100
Sulfate Mg	, ,	-																					
Stickstoff Ammonium-NH4		0.																					
Scientif Ammonium-NH4 mg/l 0.31 0.64 0.32 0.21 0.22 0.085 0.04 0.68 0.5 0.7 0.08 0.12 0.11 0.31 0.32 0.3 0.05 0.05 0.02 0.22 0.085 0.04 0.68 0.5 0.7 0.7 0.13 0.02 0.02 0.0746 1.26 1.3 0.05 0.05 0.09 0.06 0.06 0.08 0.05 0.09 0.06 0.06 0.08 0.05 0.09 0.06 0.06 0.08 0.02 0.07 0.0746 1.26 0.05 0.05 0.09 0.06 0.06 0.09 0.06 0.08 0.02 0.07 0.0746 1.26 0.05 0.05 0.09 0.08 0.08 0.01 0.02 0.0746 1.26 0.05 0.05 0.09 0.08 0.08 0.01 0.02 0.07 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0.09 0.08 0.05 0		mg/l		57.2	67.5	58.9	59.6	61.6	59.1	54.:	.2	50.1	46.9	60.6	62.6	57.9	13	46.9	48.2	58.9	58.1	65.5	67.5
Stickstoff Nictor Stic																							
Norgebunden Morgebunden	•	-																					
Stickstoff, Nitrit-NO2	Stickstoff nach Kjeldahl	mg/l		1.3	1.2					0.1	.6				1.1	0.7		0.2			0.746		1.3 🖳
Sticksoff, Nitrat-NO3	N org. gebunden	mg/l	0.2	1	0.6	0.6	0.4	0.4	0.35	0.	.5	0.4	0.6	0.6	0.7	0.4	13	<	0.22	0.6	0.531	0.88	
Phosphof, Ortho-Phosphat-PO4 mg/l 0.23 0.43 0.33 0.32 0.28 0.295 0.5 0	Stickstoff, Nitrit-NO2	mg/l		0.126	0.134	0.133	0.215	0.124	0.05	0.06	35 O	0.039	0.094	0.06	0.122	0.077	13	0.039	0.0394	0.094	0.0992	0.183	
Phosphor, Gesamt Phosphare PO4 mg/l 0.5	Stickstoff, Nitrat-N03	mg/l		14.6	13.8	15.9	14.6	10.6	9.72	6.9	16	7.46	7.24	10.5	9.94	13.2	13	6.96	7.07	10.6	11.1	15.4	15.9
Supplemparameter Schwefelverbindungen Mg Supplemparameter Molenstoff, gesamter org. gebundener Molenstoff, gesamter org. ge	Phosphor, Ortho-Phosphat-PO4	mg/l		0.23	0.43	0.33	0.32	0.28	0.295	0.3	88	0.36	0.37	0.36	0.4	0.25	13	0.23	0.238	0.33	0.331	0.418	0.43
Chamischer Seametr org. gebundener mg/ 4.3 6.02 4.54 4.93 3.94 3.15 3.24 2.57 5.08 3.72 7.8 4.24 13 2.57 2.77 4.24 4.36 7.03 7.32 7.32 7.33 4.24 7.35 7.32 7.33 7.	Phosphor, Gesamt Phosphat-P04	mg/l		0.5	0.5	0.5	0.3	0.3	0.5	0.5	55 0	0.667	0.5	0.5	0.6	0.5	18	0.3	0.3	0.5	0.506	0.63	0.9
DOC forgraisch gebundener Kohlenstoff)	Gruppenparameter																						
Chemischer Sauerstoffbedarf (BOD) Mg/l 1	Kohlenstoff, gesamter org. gebundener	mg/l		4.3	6.02	4.54	4.93	3.94	3.15	3.2	24	2.57	5.08	3.72	7.8	4.24	13	2.57	2.77	4.24	4.36	7.09	7.8
Spektraler Absorptionskeefficient heiz E54 nm Mg/l 1 1.09 17 11.7 12.1 9.3 7.45 7.9 6.9 15.4 10.4 25.5 11.6 13 6.9 7.1 10.9 17 22.1 25.5 26 Adsorptionskeefficient heiz E54 nm Adsorbtientare organische gbundene Halogene (Cl) µg/l 5 9 10 10 12 7 5.75 8 6 7 8 12 7 13 < < 8 8.27 12 12 25 26 Adsorbtientare organische gbundene Halogene (Cl) µg/l 5 9 10 10 12 7 5.75 8 6 7 8 12 7 13 < < 8 8.27 12 12 25 26 Adsorbtientare organische gbundene Halogene (Cl) µg/l 2.8 5.6 4.5 4.8 5.4 4.55 4.55 4.5 4.8 5.4 4.55 4.55 4.5 4.8 5.4 4.55 4.5	DOC (organisch gebundener Kohlenstoff)	mg/l		4.02	5.78	4.26	4.51	3.66	3.1	2.9	96	2.54	4.78	3.75	7.32	4	13	2.54	2.71	4	4.14	6.7	7.32
Flower F	Chemischer Sauerstoffbedarf	mq/l				16			10			11			26		4	10	*	*	15.8	*	26
Spektraler Absorptionskoeffizient bei 254 mm	Biochemischer Sauerstoffbedarf (BOD)	-	1			1.5			<			<			1.1		4	<	*	*	<	*	1.5
Adsorbierbare organisch gebundene Halogene (Cl) µg/l 5 9 10 10 12 7 5.75	Spektraler Absorptionskoeffizient bei 254 nm	0.		10.9	17	11.7	12.1	9.3	7.45	7.5	.9	6.9	15.4	10.4	25.5	11.6	13	6.9	7.1	10.9	11.8	22.1	25.5
AOBr	·		5	9	10	10	12	7	5.75		8	6	7	8	12	7		<	<	8	8.27	12	_
AOJ Adsorbierhae Organische Schwefelverbindungen µg/l 0.8 5.6 4.1 4.2 6.7 6.5 6.5 6.3 4.9 4.1 8.3 8.3 5 13 2.8 3.32 5.6 5.62 8.18 8.3 5				5.7	5.5			5.4		4	2	4.3	6.8	5.8		6.5		4 1	4 14	5.4			
Adsorbierbare Organische Schwefelverbindungen pg/l 64 91 57 83 41 35 34 35 58 68 170 100 13 25 28.6 58 67 142 170 10 10 10 10 10 10 10															-								
Summer																							
Summe Trihalogenmethane		1 μg/1		04	31	37	00	71	0.0	0.	, ,	00	30	00	170	100	10	23	20.0	30	07	172	170
C10-C13-Chloralkane (Summe)		ua/l	0.05		0.11						_						12					0.076	0.11
Roloniezahl 22°C, 3 Tage GGA	3													-									
Koloniezahl 22°C, 3 Tage GGA n/ml 1800 1800 3000 2800 660 830 830 470 680 320 660 9900 1600 13 260 284 1400 3200 14800 18000 5400		μg/i	0.1				0.5										10					0.2	0.5
Hygienisch verdächtige Bakterien (37 °C, nicht best.) n/100 ml 4300 1300 670 11000 5400 265 280 1100 840 1000 840 1000 840 1000 840 1000 840 1000 840 1000 840 1000 840 1000 130 260 264 1100 2390 8760 11000	- Company of the Comp	n/ml		1000	10000	2000	2000	660	920	47	70	600	220	660	0000	1600	12	260	201	1400	2200	1/1000	19000
Clostr. Perfringens (mit Sporen) N/100 ml 100 ml	.,,.	11/1111		1000	10000	3000	2000	000	030	47	U	000	320	000	9900	1000	13	200	204	1400	3200	14000	10000
Bakterien Coligruppe n/100 ml 4300 1300 670 11000 5400 265 220 1100 840 630 3000 1600 13 220 236 1100 2350 8760 11000	73	/100l		4000	1000	070	11000	F 400	205	200		1100	040	1000	2000	1000	10	200	004	1100	2200	0700	11000
Fäkalcoliforme Bakterien n/100 ml 0 250 130 6700 1100 107 Enterokokken n/100 ml 730 180 45 320 120 20 6 33 9 18 120 80 13 6 6 45 131 566 730 Enterokokken (nicht best.) n/100 ml 1700 200 45 320 160 20 Clostr. Perfringens (mit Sporen) F-spezifische RNA-Bakteriofagen n/ml 10 560 250 120 70 80 22.5 10 20 10 40 130 130 13 0 21.6 220 875 4500 6700 Enterokokken 120 210 500 210 1200 640 13 0 21.6 220 875 4500 6700 Enterokokken 13 33 28 28 180 160 13 6 8.8 45 224 1150 1700 ENTEROKOKEN 14 96 80 13 3 18.2 88 199 868 1200 ENTEROKOKEN 15 25 26 120 70 80 22.5	,,																						
Enterokokken n/100 ml 730 180 45 320 120 20 6 33 9 18 120 80 13 6 6 45 131 566 730 5 5 5 5 5 5 5 5 5	0 11																						
Enterokokken (nicht best.) n/100 ml 1700 200 45 320 160 20 13 33 28 28 180 160 13 6 8.8 45 224 1150 1700											_												
Clostr. Perfringens (mit Sporen) n/100 ml 1200 290 120 370 59 87 88 66 3 41 96 80 13 3 18.2 88 199 868 1200 🖃 F-spezifische RNA-Bakteriofagen n/ml 10 560 250 120 70 80 22.5 10 20 10 40 130 130 13 < < 70 113 436 560											-		-					·	-				
F-spezifische RNA-Bakteriofagen n/ml 10 560 250 120 70 80 22.5																		-					
		n/100 ml																3	18.2				
Campylobacter n/l 250 90 65 840 55 40 4 370 89 75 120 140 13 4 8.8 89 168 652 840 🖃	,		10							1	10							<					
	Campylobacter	n/l		250	90	65	840	55	40		4	370	89	75	120	140	13	4	8.8	89	168	652	840 🖃

Parameter	Einheit		Jan.	Feb.	Mrz.	Apr.	(Monatsmit Mai	Jun.	Kennzanten) Ju	ul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Hydrobiologische Parameter																						
Cryptosporidium Spp.	n/l			0.824	0.242	0	0.413	0.0975	0.01	17	0.063	0	0	0	0.112	13	0	0	0.087	0.207	0.889	1.15
Giardia Spp.	n/l			2.25	2.77	1.28	2.05	1.66	0.05	53	0.684	1.23	0.348	0.608	0.454	13	0.045	0.0482	1.03	1.33	3.79	4.46
Metalle																						
Natrium	mg/l			45.4	42.9	37.7	40.6	39.4	40.).1	35.2	31.3	40.9	36.4	44.1	12	31.3	32.5	40.4	39.5	45	45.4
Calcium	mg/l		77.2	79.5	74.9	69.3	71.2	68.1	66.	.8	61.9	62.5	69.6	69.2	78.3	13	61.9	62.1	69.6	70.5	79	79.5
Magnesium	mg/l		10.3	10.9	10.9	9.77	10.8	10.7	9.7	73	9.38	8.9	10.3	9.7	10.7	13	8.9	9.09	10.3	10.2	11.1	11.2
Eisen, Gesamt	mg/l		0.96		0.85	0.59	0.44	0.545	0.5	59	0.82	0.39	0.91	1.1	1.1	12	0.39	0.405	0.715	0.737	1.1	1.1 🖃
Mangan, Gesamt	mg/l		0.14		0.12	0.11	0.092	0.074	0.07	73	0.081	0.047	0.09	0.15	0.17	12	0.047	0.0545	0.091	0.102	0.164	0.17
Mangan	μg/l	10	120	240	120	110	100	65	8	80	80	80	60	150	<	13	<	27	80	98.1	204	240 🖃
Antimon	μg/l	0.5	<		<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<	<
Arsen	μg/l	0.5	1.4	1.6	1.2	1.2	1.3	1.35		2	1.8	1.8	<	1.5	1.4	13	<	0.63	1.4	1.4	1.92	2 🖃
Barium	μg/l		80		83	80	85	85	8	86	81	63	86	80	92	12	63	68.1	83.5	82.2	90.2	92 🖃
Beryllium	μg/l	0.05	<		<	<	<	<		<	<	<	<	0.06	<	12	<	<	<	<	<	0.06
Bor	mg/l		0.04	0.05	0.44	0.05	0.05	0.05	0.0	04	0.05	0.04	0.05	0.04	0.04	13	0.04	0.04	0.05	0.0762	0.284	0.44
Cadmium	μg/l	0.05	0.067		0.061	0.05		0.0605	0.07	77	0.068	<	0.078	0.065	0.083	12	<	<	0.0635		0.0815	0.083
Chrom, Gesamt	μg/l	1	1.5	2.2	1.4	1.3	<	<		.5	1	<	<	<	<	13	<	<	<	<	1.92	2.2
Cobalt	μg/l		0.49		0.49	0.43	0.41	0.395	0.4		0.43	0.27	0.56	0.6	0.59	12	0.27	0.306	0.435	0.458	0.597	0.6
Kupfer	μg/l		3.74		3.76	3.22	3.05	3.94		4	3.61	3.68	4.74	4.66	4	12	3.05	3.1	3.75	3.86	4.72	4.74
Quecksilber	μg/l	0.02	<	<	<	<	<	<			<	<	<	<	· <	13	<	<	<	<	<	< 🗏
Blei	μg/l	1	1.9	1.9	1.6	1.6	1.4	<	2	2.1	1.9	2.4	<	2.1	2	13	<	<	1.9	1.65	2.28	2.4
Lithium	μg/l	·	9.6		12	12	13	14		15	13	9.8	13	12	15	12	9.6	9.66	13	12.7	15	15 🖃
Molybden	μg/l		0.94		1.2	1.2	1.4	1.5		.6	1.5	1.3	1.5	1.4	1.4	12	0.94	1.02	1.4	1.37	1.57	1.6
Nickel	μg/l	2	3	3.7	2.7	2.3	2.7	<	2.		2.4	2.4	<	3.3	2.5	13	<	<	2.4	2.43	3.54	3.7
Selen	μg/l	-	0.2	0.7	2.,	0.22	2.,	0.19	0.2		2	0.2		0.19	2.0	6	0.19	*	*	0.203	*	0.22
Strontium	μg/l		460		460	430	480	500	50		480	370	490	420	500	12	370	385	480	466	514	520
Thallium	μg/l		0.02		0.02	0.02	0.01	0.02	0.0		0.02	0.01	0.02	0.02	0.02	12	0.01	0.01		0.0192	0.027	0.03
Tellurium	μg/l	0.1	< .02		< .0.02	<	0.01	<		<	<	0.01	<	<	<	12	<	<	< .0.02	<	< .0.027	< □
Zinn	μg/l	0.1	0.2		0.06	0.1	0.1	0.1).1	0.1	0.1	0.2	0.1	0.2	12	0.06	0.072	0.1	0.122	0.2	0.2
Vanadium	μg/I		2.1		2.1	1.6	1.6	2		.5	2.3	1.9	2.3	2.5	2.1	12	1.6	1.6	2.1	2.08	2.5	2.5
Zink	μg/l		15		16	12	12	11.5		12	11	9.6	18	16	17	12	9.6	9.72	12.5	13.5	17.7	18
Kupfer	mg/l		0.00374	(0.00376					12		3.0	10	10	"	6 (*		0.00361		.00419
Zink	mg/l		0.015	·	0.016	0.012		0.0115								6	0.01	*	*	0.013	*	0.016
Rubidium	μg/l		5.07		4.94	4.47	4.98	4.96	5.2	20	4.68	4.03	5.58	5.43	5.38	12	4.03	4.16	5.03	4.98	5.54	5.58
Uranium	μg/I		0.69		0.7	0.63	0.73	0.735	0.7		0.67	0.62	0.72	0.72	0.7	12	0.62	0.623	0.71	0.699	0.747	0.75
Cesium	μg/I		0.326		0.29	0.03		0.733	0.25			0.127	0.283	0.72	0.35	12	0.02	0.023	0.258	0.251	0.747	0.35
Metalle nach Filtration	μу/т		0.320		0.23	0.101	0.177	0.222	0.23	J J	0.203	0.127	0.203	0.010	0.00	12	0.127	0.142	0.230	0.231	0.545	0.55
Eisen (nach Filtr. 0.45 µM)	mg/l	0.01	0.02		0.01	0.02	0.01	<		<	<	0.05	<	0.07	0.02	12	<	<	0.01	0.0187	0.064	0.07
Bor (nach Filtr. 0.45 µM)	μg/l	0.01	41		56	60	59	55		57	55	45	62	56	55	12	41	42.2	56	54.7	61.4	62
Antimon (nach Filtr. 0.45 µM)		0.5	4 1		<	<	<	<		<	<	40	<	<	<	12	4 1	42.2	30 <	34. <i>1</i>	01.4	<
Arsen (nach Filtr. 0.45 μM)	μg/l	0.5	0.64			0.61	0.8	0.91			1.14	1.06	0.97	0.91	0.65	12	0.57	0.582	0.87	0.873	1.26	1.31
Barium (nach Filtr. 0,45 µM)	μg/l		73		0.57 75	73	81	78.5	1.3	80	75	60	75	71	81	12	60	63.3	75	75.1	81	81
	μg/l	0.05																				
Beryllium (nach Filtr. 0,45 µM)	μg/l	0.05 0.05	<		<	<	<	<		<	<	<	<	<	<	12 12	<	<	<	<	<	
Cadmium (nach Filtr. 0.45 µM)	μg/l		<		<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<	
Chrom (nach Filtr. 0.45 µM)	μg/l	0.5	0.10		< 0.22	< 0.24	< 0.00	< 0.17E		<	< 0.1E	< n 1E	< 0.17	< 0.20	< 0.21		< 0.1E	< 0.15	<	0.100	< 0.275	
Kobalt (nach Filtr. 0.45 µM)	μg/l		0.18		0.22	0.24	0.23	0.175	0.1		0.15	0.15	0.17	0.29	0.21	12	0.15	0.15	0.185	0.196	0.275	0.29
Kupfer (nach Filtr. 0.45 µM)	μg/l	0.004	2.23		2.4	1.99	2.22	2.78		1.7	2.22	2.93	2.56	3.02	2.14	12	1.99	2.04	2.42	2.5	3.1	3.13
Quecksilber (nach Filtr. 0.45 µM)	μg/l	0.001	<		<	<	<	<		<	<	< 0.17	<	0.001	<	12	<	<	<	<	< 0.101	0.001
Blei (nach Filtr. 0.45 µM)	μg/l	0.1	< 0.00		< 10.7	< 11.0	10.5	< 10.0		<	< 10.1	0.17	< 11.5	0.14	< 10.0	12	< 0.10	> 0.00	< 11.0	<	0.161	0.17
Lithium (nach Filtr. 0.45 μM)	μg/l		8.82		10.7	11.2	12.5	12.8	13.	.4	12.1	8.16	11.5	9.87	12.9	12	8.16	8.36	11.8	11.4	13.4	13.4

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Remizantenj	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Metalle nach Filtration (Fortsetzung)	Lillieit	u.b.g.	Jan.	ı eb.	IVII Z.	Apr.	IVIGI	oun.		Jui.	Aug.	oep.	UKI.	NOV.	Dez.	- "	IVIIII	1 10	1 30	III.VV.	1 30	WIGX. TIKE
Molybden (nach Filtr. 0.45 μM)	μg/l		0.93		1.1	1.2	1.4	1.45		1.6	1.4	1.3	1.5	1.3	1.4	12	0.93	0.981	1.4	1.34	1.57	16 🖂
Nickel (nach Filtr. 0.45 µM)	μg/l		1.34		1.57	1.48	1.47	1.25		1.51	1.21	1.46	2.04	2.46	1.37	12	1.16	1.18	1.47	1.53	2.33	1.6 = 2.46 =
Zinn (nach Filtr. 0.45 µM)	μg/l	0.05	<		<	<	<	<		<	<	<	<	<	<	12	<	1.10	<	<	2.00	<
Titan (nach Filtr. 0.45 µM)	μg/l	1	<		<	<	<	<		<	<	<	<	1.1	<	12	<		<	<		1.1
Vanadium (nach Filtr. 0.45 µM)	μg/l	'	0.75		0.74	0.88	0.99	1.2		1.5	1.4	1.3	1	0.99	0.74	12	0.74	0.74	0.995	1.06	1.47	1.5
Silber (nach Filtr. 0.45 µM)	μg/I	0.1	0.73		< .74	0.00	< 0.55	<		<	<	1.5	<	0.55	< .74	12	< .74	0.74	< 0.555	1.00	<	1.5
Zink (nach Filtr. 0.45 μM)	μg/I	0.1	5.9		4.9	6	5	3.7		3.3	2.6	3.9	4.9	5.9	5.3	12	2.6	2.81	4.9	4.59	5.97	6
Rubidium (nach Filtr. 0.45 µM)	μg/I		3.8		3.55	3.82	4.38	4.12		4.23	3.71	3.73	4.34	3.85	4.06	12	3.55	3.6	3.84	3.98	4.44	4.46
Uranium (nach Filtr. 0.45 µM)	μg/l		0.7		0.69	0.63	0.76	0.735		0.7	0.64	0.6	0.69	0.72	0.69	12	0.6	0.609	0.695	0.691	0.757	0.76
Selenium (nach Filtr. 0.45 µM)			0.18		0.03	0.03	0.70	0.733		0.7	0.04	0.19	0.03	0.72	0.03	6	0.17	0.003 *	0.033 *	0.031	0.737 *	0.70
Strontium (nach Filtr. 0.45 µM)	μg/l		450		440	420	470	500		480	480	380	480	410	480	12	380	389	475	458	508	520
Thallium (nach Filtr. 0.45 µM)	μg/l	0.01	430		0.01	0.01	0.01	0.02		0.02	0.01	0.01	0.01	410	0.01	12		303		0.0117	0.02	0.02
Trialium (nach Filtr. 0.45 µM)	μg/l	0.01	<			0.01		0.02		0.02	0.01		0.01	<		12	<		0.01	0.0117	0.02	<
Cesium (nach Filtr. 0.45 µM)	μg/l		0.061		O 0E3		< O 054	0.053				<		-	O 050	12	<				0.0601	0.061
Komplexbildner	μg/l	0.05	0.001		0.053	<	0.054	0.053		0.054	0.053	<	<	<	0.058	12	<	<	0.053	<	0.0601	0.061
Nitrilotriacetat	ua/l	3	,	<		_	13.6	,				<		3.3		13		<	,		9.48	12.6
Ethylendinitrilotetraacetat (EDTA)	μg/l	3	10.1	12.2	10.3	< 9.6	7.9	6.3		< 5.8	< 4.8	8.5	13.2	13.5	10.7	13	< 4.8	4.96	9.6	9.17	13.4	13.6 = 13.5 =
Diethylentriaminpentaacetat (DTPA)	μg/l	3		3.2	10.5		7.5				4.0	0.0			4.2	13		4.50	3.0	5.17	3.8	4.2
, , , , , , , , , , , , , , , , , , , ,	μg/l	3	<	3.2	<	<	<	<		<	<	<	<	<	4.2	13	<	<	<	<	3.0	4.2
Flüchtige halogenierte Kohlenwasserstof Bromchlormethan		0.02														13						<
Bromdichlormethan	μg/l	0.02	<	<	<	<	<	<		<	<	< <	<	<	<	13	<	<	< <	<	<	
Dibromchlormethan	μg/l	0.02	<	<	<	<	<	<		<	<		<	<	<	13	<	<	,	<	<	
	μg/l		<	<	<	<	<	<		<	<	<	<	<	<		<	<	<	<	<	
1,2-Dichlorethan	μg/l	0.02	<	<	<	< 0.04	<	<		<	<	<	<	<	<	13	<	<	<	<	< 0.000	0.04
Dichlormethan	μg/l	0.02	<	<	<	0.04	<	<		<	<	<	<	<	<	13	<	<	<	<	0.028	
Hexachlorbutadien	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Hexachlorethan	μg/l	0.01		<	<	<	<	<		<	<	<	<	< 0.00	< 0.02	12	<	<	<	<	0.02	
Tetrachlorethen	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	0.02	0.02	13	<	<	<	<	0.02	0.02
Tetrachlorkohlenstoff	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Tribrommethan	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,1-Trichlorethan	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,2-Trichlorethan	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Trichlorethen	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	> > 7	<
Chloroform	μg/l	0.05	<	0.1	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	0.07	0.1
1,2,3-Trichlorpropan	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
cis-1,3-Dichlorpropen	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
trans-1,3-Dichlorpropen	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< 🗾
cis-1,2-Dichlorethen	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	0.02	<	13	<	<	<	<	<	0.02
trans-1,2-Dichlorethen	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,2,2-Tetrachlorethan	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dibrom-3-Chlorpropan	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dichlorpropan	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
1,3 Dichlorpropan	μg/l	0.02	<	0.03	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	0.022	0.03
Monozyklische arom. Kohlenwasserstoff															0.00	4.0					2 2 2 2	
Benzol	μg/l	0.02	<		<	<	<	<		<	<	<	<	0.02	0.02	13	<	<	<	<	0.032	0.04
Butylbenzol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	0.8
1,2-Dimethylbenzol (o-Xylol)	μg/l	0.02	<	0.8	0.02	<	<	<		0.02	0.3	0.02	<	0.02	0.02	13	<	<		0.0969	0.6	0.8
Ethenylbenzol	μg/l	0.02	<	0.5	<	<	<	<		<	<	0.03	<	0.02	0.02	13	<	<		0.0508	0.312	0.5
Ethylbenzol	μg/l	0.02	<	3	<	<	<	<		0.02	0.13	0.02	<	0.02	<	13	<	<	<	0.252	1.85	3
Toluol	μg/l	0.02		2.5	0.06	0.03	0.02	<		0.05	0.09	0.03	<	<	0.02	12	<	<	0.025	0.237	1.78	2.5

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	J	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50 m.w	. P90	Max. Pikt
Monozyklische arom. Kohlenwasserstof	fe (MAK's)	(Fortset	zung)			· ·															
Propylbenzol	μg/l	0.02	<	0.17	<	<	<	<		<	0.03	<	<	<	<	13	<	<	< 0.023	0.114	0.17
Chlorbenzol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	< .	<	<
2-Chlormethylbenzol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	0.02	13	<	<	<	<	0.02
1,2-Dichlorbenzol	μg/l	0.05		<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<
1,3-Dichlorbenzol	μg/l	0.05		<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<
1,4-Dichlorbenzol	μg/l	0.05		<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<
Pentachlorbenzol	μg/l	0.0001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<
1,2,3,4-Tetrachlorbenzol	μg/l	0.01		<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<
1,2,4,5-Tetrachlorbenzol	μg/l	0.01		<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<
1.2.3-Trichlorbenzol	μg/l	0.01		<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<
1,2,4-Trichlorbenzol	μg/l	0.01		<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<
1,3,5-Trichlorbenzol	μg/l	0.01		<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<
Iso-Propylbenzol	μg/l	0.02	<	0.06	<	<	<	<		<	<	0.02	<	<	<	13	<	<	<	0.044	0.06
1,3,5-Trimethylbenzol	μg/l	0.02	<		0.02	<	<	<	0	.02	0.06	0.02	<	0.03	0.03	13	<		0.02 0.024		0.08
1,2,4-Trimethylbenzol	μg/l	0.02	<		0.02	<	<	<		.02	0.24	<	<	0.02	<	13	<	<	< 0.042		0.24
Isobutylbenzol	μg/l	0.02	<		<	<	<	<		<	<	<	<	<	<	13	<	<	<		<
1,3- und 1,4-Dimethylbenzol	μg/l	0.04	<		<	<	<	<	0	.06	0.7	0.05	<	0.05	<	13	<	<	< 0.2		2.1
P-Isopropylmethylbenzol	μg/l	0.02	<		2	<	<	<		.02	0.03	0.02	<	0.03	0.03	13	2	<		0.03	0.03
Polyzyklische arom. Kohlenwasserstoffe		0.02		0.02	`				0.	.02	0.00	0.02		0.00	0.00	10			0.02	0.00	0.00
Acenaphthen	μg/l	0.05		<		<		<		<		<		<		6	<	*	*	*	<
Acenaphthylen	μg/l	0.05		<		<		<		2		<		<		6	<	*	*		₹ □
Anthracen	μg/l	0.01	<		<	<	<	2		2	<	<	<	<	<	13	<	<	<	•	<
Benz[a]Anthracen	μg/l	0.01	`	<		<	`			2		0.02		<	`	6		*	*		0.02
Benz[b]Fluoranthen	μg/l	0.005	_	0.006	0.007	<	0.005	<			0.008	0.059	<	<	<	13	<	<		0.0386	0.059
Benz[k]Fluoranthen	μg/l	0.005	<		<	<	<	<		2	0.000	0.029	<	<	<	13	<	<		0.0184	0.029
Benzo[ghi]Perylen	μg/l	0.000	0.002		0.003	0.002	0.003	0.002	0.0	-	0.004	0.02	0.002	0.001	0.002	13	0.001	0.001	0.002 0.0036		0.02
Benz[a]Pyren	μg/l	0.01	< 0.002	< 0.000	< 0.000	< 0.002	< .000	0.002	0.0	<	0.004	0.02	< 0.002	< .001	< 0.002	13	0.001	< 0.001		0.026	0.04
Chrysen	μg/l	0.01	`	<		0.01		<		<		0.03		~		6		*	*		0.03
Dibenz[a,h]Anthracen	μg/l	0.01		<		< .0.01		<		2		< .00		<		6		*	*		0.00 L
Phenanthren	μg/I	0.01		0.02		0.02		0.01		<		0.08		<		6		*	* 0.023		0.08
Fluoranthen		0.01	0.01	0.02	0.01	0.02	0.01	< 0.01		<	<	0.00	<	0.01	<	13	<	<	0.023		0.21
Fluoren	μg/l μg/l	0.01	0.01	0.02	0.01	0.01	0.01	<				< .21		< .0.01		6		*	*		<
Indeno[1,2,3-cd]Pyren	μg/I	0.03	0.002	0.003	0.003	0.002	0.002		0.0	າດວ	0.004	0.03	0.002	0.001	0.001	13	0.001	0.001	0.002 0.0043		0.03
Pyren		0.01	0.002	0.003	0.003	0.002	0.002	0.002	0.0	<	0.004	0.03	0.002	0.001	0.001	6	0.001	0.001 *	* 0.025		0.07
Naphthalin	μg/l	0.01	<		<		<	< 0.01		<	0.07	0.07	<	0.02		13				0.058	0.07
Polychlor Biphenyle (PCB's)	μg/l	0.02		0.04	_					_	0.07				<	13	<	<		0.030	0.07
PCB 28	μg/l	0.0001	0.0001	0.0002	0.0002	0.0001	0.0001	<	0.00	102		0.0001	1 0002	0.001	0.0002	13	<		0.00010.00013	1 0 0002	0.0002
PCB 52	μg/I μg/I	0.0001		0.0002			0.0001		0.00			0.0001			0.0002	13	<		0.00010.00013		
PCB 101				0.0001			0.0001		0.00			0.0002			0.0002	13	<		0.00010.00011		=
PCB 118	μg/l μg/l	0.0001	0.0001		0.0001	<		0.0001	0.00	<	J.0001 (0.0002	J.0001 <	0.0001	13	-	<			0.0002
PCB 138		0.0001	<		<		0.0001	<			0.0002		J.0001 <		0.0001	13	<	<		0.00016	
PCB 153	μg/l μg/l			0.0001			0.0001	<	0.00			0.0001			0.0001	13	< <		0.00010.00011		=
PCB 180		0.0001			0.0001				0.00				J.000Z <		0.0001	13	<	<			<
	μg/i	0.0001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<		<	\ <u></u>
Halogenierte Säure Tetrachlorortho-Phtalsaure	ug/l	0.02			<	<		<		<	<		<	0.02		13		<	< .	<	0.02
Monochloressigsäure	μg/l	0.02	<		< <	<	<	<		< <	< <	< <	<	0.02	<	13	< <	<	< .		
Dichloressigsäure	μg/l	0.5	<		<	<	<	0.25				<	<	<	<	13	<	<	<		0.45
Monobromessigsäure	μg/l	0.1	<		<						<		<		-	13	<	-			
Dibromessigsäure	μg/l	0.5		<	<	<	<	<		< <	<	<	-	<	<	13	<	<	< .		
Dini diliessidsani e	μg/l	0.1	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<

Die Deschaffenner des Amsterdam-Rijm	LYCHICLOGUAA	ussels N	or raicu	TTCIOLUIS	, jaiii	C 2010	(mondt511111	rermerre mil	Remizanten)													
	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.		Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Halogenierte Säure (Fortsetzung)																						
Bromchloressigsäure	μg/l	0.1	<	<	<			<		<	<	<	<	<	<	11	<	<	<	<	<	< -
2,2-Dichlorpropionsäure	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Trichloressigsäure	μg/l	0.1	0.19	0.21	0.16	0.24	<	<		0.15	<	<	<	<	0.22	13	<	<	0.13	0.123	0.232	0.24
Teflubenzuron	μg/l	0.05	<	<												2	*	*	*	*	*	*
2,6-Dichlorbenzoësäure	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenole																						
3-Chlorphenol	μg/l	0.5	<			<		<		<		<		<		6	<	*	*	<	*	<
4-Chlorphenol	μg/l	0.5	<			<		<		<		<		<		6	<	*	*	<	*	<
2,3-Dichlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
2,6-Dichlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
3,4-Dichlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
3,5-Dichlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
2,3,4,5-Tetrachlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
2,3,4,6-Tetrachlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
2,3,5,6-Tetrachlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
2,3,4-Trichlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
2,3,5-Trichlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
2,3,6-Trichlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
3,4,5-Trichlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
2-Chlorphenol	μg/l	0.5	<			<		<		<		<		<		6	<	*	*	<	*	<
2-Phenylphenol	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Pentachlorphenol	μg/l	0.1	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,5-Trichlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
2,4,6-Trichlorphenol	μg/l	0.02	<			<		<		<		<		<		6	<	*	*	<	*	<
Aromatische Stickstoffverbindungen																						
4-Chloranilin	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	0.01	13	<	<	<	<	<	0.01
3,4-Dichloranilin	μg/l	0.1	<	<	<	<										4	<	*	*	<	*	<
Pendimethalin	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Quizalofop-ethyl	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Trifluralin	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
flonicamid	μg/l	0.01						<		<	<	0.03	<	<	<	7	<	*	*	<	*	0.03
Sulfonate																						
4,4-Diamino-1,1-Bianthrachinon-3,3-Disulfonat	μg/l	0.2			<			<			<			<		4	<	*	*	<	*	<
2-Amino-5-Methylbenzolsulfonat	μg/l	0.2			<			<			<			<		4	<	*	*	<	*	<
3-Nitrobenzolsulfonat	μg/l	0.2			<			<			<			<		4	<	*	*	<	*	<
2-Aminonaphthalin-1,5-Disulfonat	μg/l	0.02			<			0.06			0.06			0.04		4	<	*	*	0.0425	*	0.06
2-Hydroxy-4,6-Bis(4-Sulphanilo)-1,3,5-Trisulfonat	μg/l	0.2			<			<			<			<		4	<	*	*	<	*	<
2-Amino-5-Chlor-4-Methylbenzolsulfonat	μg/l	0.2			<			<			<			<		4	<	*	*	<	*	<
Naphthalene-1,3,6-Trisulfonat	μg/l				0.23			0.32			0.37			0.39		4	0.23	*	*	0.328	*	0.39
Naphthalin-2,6-Disulfonat	μg/l				0.03			0.05			0.04			0.04		4	0.03	*	*	0.04	*	0.05
Naphthalin-1-Sulfonat	μg/l				0.05			0.03			0.17			0.02		4	0.02	*	*	0.0675	*	0.17
Naphthalin-1,7-Disulfonat	μg/l				0.1			0.17			0.12			0.15		4	0.1	*	*	0.135	*	0.17
Naphthalin-1,6-Disulfonat	μg/l				0.12			0.17			0.14			0.18		4	0.12	*	*	0.153	*	0.18
Naphthalin-1,5-Disulfonat	μg/l				0.23			0.5			0.48			0.41		4	0.23	*	*	0.405	*	0.5
Naphthalin-2,7-Disulfonat	μg/l				0.13			0.13			0.1			0.15		4	0.1	*	*	0.128	*	0.15
Naphthalene-1,3,7-Trisulfonat	μg/l	0.02			<			0.02			<			<		4	<	*	*	<	*	0.02
Naphthalin-2-Sulfonat	μg/l				0.03			0.05			0.04			0.05		4	0.03	*	*	0.0425	*	0.05
Naphthalene-1,3,5-Trisulfonat	μg/l				0.1			0.18			0.18			0.18		4	0.1	*	*	0.16	*	0.18
Naphthalin-1,3-Disulfonat	μg/l	0.02			<			<			<			<		4	<	*	*	<	*	<
	1 0																					

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jı	lul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Sulfonate (Fortsetzung)																						
3-Aminonaphthalin-1,5-disulfonat	μg/l	0.02			<			<			0.02			0.04		4	<	*	*	<	*	0.04
3-Hydroxynaphthalin-2,7-disulfonat	μg/l	0.02			<			<			<			<		4	<	*	*	<	*	<
Organochlorpestizide																						
Aldrin	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorbufam	μg/l	0.02						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Chlorthal	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
o,p'-DDD	μg/l	0.001	<			<		<		<		<		<		6	<	*	*	<	*	<
p,p'-DDD	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
o,p'-DDE	μg/l	0.001	<			<		<		<		<		<		6	<	*	*	<	*	<
p,p'-DDE	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
o,p'-DDT	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
p,p'-DDT	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlobenil	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlorbenzamid	μg/l	0.01	0.02	0.02	<	0.02	0.02	0.02	0.0	.02	0.01	0.02	0.02	0.06	0.02	13	<	<	0.02	0.0212	0.044	0.06
Dichloran	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dicophol	μg/l	0.25	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dieldrin	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Alpha-Endosulphan	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Beta-Endosulphan	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Endrin	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fenpiclonil	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Heptachlor	μg/l	0.001	<			<		<		<		<		<		6	<	*	*	<	*	<
Hexachlorbenzol (HCB)	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Alpha-HCH	μg/l	0.0001	0.0001	<	0.0001	0.0001	0.0001	0.00015		< 0	0.0004	<	<	0.0001	<	13	<		0.00010.	000112	.00032	
Beta-HCH	μg/l		0.0001	0.0002				0.0003	0.000					0.0003	0.0002	13	0.00010		0.00030.			0.0004
Isodrin	μg/l	0.0005	<	<	<			<		<	<	<	<	<	<	13	<	<	<	<	<	
Gamma-HCH	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Tetradifon	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Delta-HCH	μg/l	0.0001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Heptachlorepoxid	μg/l	0.001	<			<		<		<		<		<		6	<	*	*	<	*	<
trans-Heptachlorepoxid	μg/l	0.001	<			<		<		<		<		<		6	<	*	*	<	*	<
Chlorthal-dimethyl	μg/l	0.04	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
zoxamide	μg/l	0.05	Ì	ì	ì	`	`			<	<	<	<	<	<	7	<	*	*	<	*	<
Organophosphor und -Schwefelpestizide																						
Azinphos-Ethyl	μg/l	0.04	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Azinphos-Methyl	μg/l	0.05	<		<					<	<	<	<	<	<	13	<	<	<	<	<	<
Bentazon	μg/l	0.02	<		<					<	<	<	0.02	0.03	0.03	13	<	<	<	<	0.03	0.03
Bromophos-methyl	μg/l	0.02	`	0.02	`	`	`	<		<	<	<	< .02	<	<	7	<	*	*	<	*	<
Chlorfenvinghos	μg/l	0.02	<	<	<	<	<			2	2	<	<	<	<	13	2	<	<	2	<	<
Chlorpyriphos-Methyl	μg/l	0.02	<			`					~	<	<	<	<	13	2	<	<	<	<	<
Coumaphos	μg/l	0.005	<	<	<	`					<	<	<	`		11	<	<	<	<	<	<
Demeton-S-Methyl	μg/l	0.05	<	<	<							<	<	<	<	13	<	<	<	<	<	<
Demeton-S-methylsulfon	μg/I μg/I	0.03	<	<	<						<	<	<	<	<	13	<	<	<	<	<	<
Diazinon		0.01	<								~	<	<	<	<	13	<	<	<	<	<	<
Dicamba	μg/l	0.01	<	<	<	`					<	<	<	<	<	13	<	<	<	<	<	<
Dicrotophos	μg/l	0.02	<	-	<						<		<	<	-	13	<	<	< <		<	<
Dimethoat	μg/l	0.01		<							<	<			<	13	<			<		
Dimethoat Disulphoton	μg/l		<	<	<						<	<	<	<	<	13	<	<	<	<	<	
•	μg/l	0.02	<	<	<					<	<	<	<	<	<	7	<	< *	< *	<	< *	
Dithianon	μg/l	0.1	<			<	<	<		<		<		<		1	<			<		<

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Terminal Ter	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Organophosphor und -Schwefelpestizide	(Fortsetz	ung)																				
S-Ethyl-N,N-Dipropylthiocarbamaat (EPTC)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Etroprophos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Etrimfos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fenchlorphos (ronnel)	μg/l	0.01						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Phenitrothion	μg/l	0.005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenthion	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phonofos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fosalone	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phosphamidon	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Glyphosat	μg/l	0.05	<	<	<	<	0.065			0.105	<	0.07		0.0517	<	26	<	<	<	<	0.083	0.15
Heptenophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Malathion	μg/l	0.05	<	<	<		<			<	2	<	<	<	<	13	<	<	<	<	<	<
Methamidophos	μg/l	0.01	<	<	<		<	<		<	,	<	<		<	13	<	<	<	<	<	<
Methidathion	μg/l	0.02	<	<	<	<	<	<		<	-	<	<	<	<	13	2	<	<	<	<	<
Mevinphos	μg/l	0.05	<	<	<	<	<	<		<		<	<	<	<	13		<	<	<	<	<
Monocrotophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13		<	<	<	<	<
Omethoat	μg/I	0.01	<	<		<	<	<		<		<	<	<	<	13		<	<	<	<	<
Oxydemeton-Methyl		0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Paraoxon-Ethyl	μg/l	0.01	<	<	<	<	<	<				<	<	<	<	13	<	<	<	<	<	<
Parathion-Ethyl	μg/l	0.05	<	<	<		<	<				<	<			13		<	<		<	
Parathion-Methyl	μg/l					<				<			-	<	<	13				<		< =
Pirimiphos-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<		<	<	<	<	<	
Pyrazophos Sulphotep	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Terbufos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Tetrachlorvinphos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Thiometon	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tolclophos-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triazophos	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Trichorfon	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
AMPA	μg/l		0.225	0.18	0.195	0.3	0.46	0.6		0.62	0.595	0.49	0.44	0.37	0.195	26	0.14	0.174	0.41	0.397	0.615	0.68
cis-Chlorphenvinphos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Chlorphenvinphos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Phosphamidon	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Phosphamidon	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorpyriphos-Ethyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<			11	<	<	<	<	<	<
Ediphenphos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Nicosulfuron	μg/l	0.05	<	0.05	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	0.05
Sulcotrion	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Amidosulfuron	μg/l	0.03						<			<			<		3	*	*	*	*	*	*
Azimsulfuron	μg/l	0.03			<			<			<			<		4	<	*	*	<	*	<
Ethoxysulfuron	μg/l	0.03			<			<			<			<		4	<	*	*	<	*	<
Foramsulfuron	μg/l	0.03			<			<			<			<		4	<	*	*	<	*	<
Fosthiazat	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Iodosulfuron-Methyl-Natrium	μg/l	0.03			<			<			<			<		4	<	*	*	<	*	<
Mesotrion	μg/l	0.03			<			<			<			<		4	<	*	*	<	*	<
Oxasulfuron	μg/l	0.03			<			<			<			<		4	<	*	*	<	*	<
Prosulfuron	μg/l	0.03			<			<			<			<		4	<	*	*	<	*	<

Cyanageape and Schoele Personal Content Cyanageape	Section Sect	Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	,	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Salfoundran	Solitation Sol	Organophosphor und -Schwefelpestizide	(Fortsetzu	ıng)				· ·																
Salfoundran	Solitation Sol	Rimsulfuron	μg/l	0.03			<			<			<			<		4	<	*	*	<	*	<
This lay fund Sup	Thissalfund Admy 190	Sulfosulfuron		0.03			<			<			<			<		4	<	*	*	<	*	<
Tribust/trea-Methyl Mg D85	Formation Part Pa	Thiacloprid		0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Department September Sep	Page	•					<			<			<			<		4	<	*	*	<	*	<
Disalfation-sulforme ggf 0.01	Disalforon-sulforde 198 0.07	,			<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Disalfation-sulforme ggf 0.01	Disalforon-sulforde 198 0.07	•			<	<	<	<	<	<		<	<	<	<	<	<		<	<	<	<	<	<
Distribution-authoridate Page Dist	Displications sulfoxing Part Pa				<	<	<	<	<	<		<	<		<	<	<		<	<	<	<	<	<
2,3-bis. Sultany bistance for a consideration of the consideration of th	2,5 bird synthate delicies												<											<
Section MSA)	Securing (MSA)		F-3/ ·		·		·	·	·	·					·				•		·		·	
Femallotholine	Femalication	•	ua/l	0.05	<	<	<	<	<	<		0.06	<	<	<	<	<	13	<	<	<	<	<	0.06
Femallotholine	Femalication					2	-	-					~								~	-		< =
Femallotholine	Femalication					,							-								2			
Femtion-authories	Feminon-sulfond	•						-					-		-								-	
Torbufos-sulforde	Terbufos-surfone					`		-	-				`		-	-						-		
Feminic Seminic Semi	Female 19/1 0.01 0.0					`		-	-					-								-	-	
Feminic Seminic Semi	Female 19/1 0.01 0.0					-																	-	
Feminic Seminic Semi	Female 19/1 0.01 0.0																							
Ormacil	Display Disp												-											
Bromaci	Bromael		μy/i	0.01		_		_										13						
Chloridazen	Chioridaten	·	ua/l	0.02														12						
Define	Doding																							0.01
Fuberidiated	Fluendiazor					<	<	<	<	0.01		<	<	<	<			11	*		*	*	U.U1 *	
Loneid	Lenaci				<													7		*	*		*	
Tebuphenpyrad	Total									<			<											
Azoxystobin	Azonystrobin				<	<	<	<	<	-			<			-					*		*	
boscalid	September Sept									,			<	-	,	-						-		
boscalid	September Sept					<		-	-				<	-	-	-				-	<			
Fenandone	Fenandone				<	<	<	<	<				<							< *	< *		< *	0.00
Fipronil	Fipronii									<			-						`	· *	~ ¥		, *	
p coxystrobin p g/l 0.01	Picaystrobin pg/ 0.01									<			-							· ×	~ ¥		, v	
Trifloxystrobin pg/l 0.05	trifloxystrobin μg/l 0.05	•								<			`	-							×		~	
Chlorphenoxyerbizide	Chlorphenoxyesigsaure (2,4-D) µg/l 0.02									<			-		-			-			×		~	
2,4-Dichlorphenoxyessigsäure (2,4-D)	2,4-Dichlorphenoxyessigsäure (2,4-D)		μg/l	0.05						<		<	<	<	<	<	<	1	<	*	*	<	*	< 🗀
2,4-DB	2,4-DB																	40						79
Dichlorprop μg/l 0.02	Dichlorprop					`	<	<	<	<		<	<	<	<	<	<		<		<	<	<	
MCPA MCPB MCPB MCPB MCPB Mcoprop (MCPP)	MCPA MCPB μg/l 0.02 < < < < < < < < < < < < < 0.04 <	,				-													*		*	*	~	
MCPB Mcoprop (MCPP) Mcoprop (MCPP) Mg/l 0.02 < < < 0.07 0.04 < 0.04 0.02 0.03 < 0.04 0.02 13 < < 0.02 0.0254 0.058 0.07 2,4,5-T μg/l 0.02 < < < 0.04 < < < < < < < < < < < < < < 0.02 0.0254 0.058 0.07 Phenoprop (2,4,5-TP) Phenylharnstoffpestizide Chlorbromuron μg/l 0.02 < < < < < < < < < < < < < < < < < < <	MCPB					<	-	-					<								<			<
Mecoprop (MCPP) μg/l 0.02 < < < 0.07 0.04 < 0.04 0.02 0.03 < 0.04 0.02 13 < < 0.02 0.0254 0.058 0.07 2.4,5-T μg/l 0.02 < < < 0.04 < < < < < < < < < < < < < < 0.02 0.0254 0.058 0.07 2.4,5-T Phenoprop (2,4,5-TP) μg/l 0.05 < <	Mecoprop (MCPP) μg/l 0.02 < < 0.04 0.02 0.03 < 0.04 0.02 13 < < 0.05 0.07 □ 2,4,5-T μg/l 0.02 <					<	<	<	0.04	<		0.03	<	<	<				<		<	<		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,4,5-T					<																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Phenoprop (2,4,5-TP) μg/l 0.05 < * <td></td> <td></td> <td></td> <td></td> <td><</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.04</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><</td> <td></td> <td>0.02</td> <td></td> <td></td> <td>0.07</td>					<						0.04							<		0.02			0.07
Phenylharnstoffpestizide Chlorbromuron μg/l 0.02 < < < < < < < < < < < < < <	Phenylharnstoffpestizide Chlorbromuron μg/l 0.02 < < < < < < < < < < < < < < 13	• •				<	<	0.04	<	<		<	<	<	<	0.02	0.02		<		<	<		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorbromuron \[\frac{\pmu_f}{\pmu_f}\] \[\frac{0.02}{\pmu_f}\] \[\frac{\pmu_f}{\pmu_f}\] \[\frac{0.02}{\pmu_f}\] \[\frac{\pmu_f}{\pmu_f}\] \[\frac{\pmu_f}{\pmu_f}\pmu_f}\] \[\frac{\pmu_f}{\pmu_f}\pmu_f\pmu_f}\] \[\frac{\pmu_f}{\pmu_f}\pmu_f\pmu_f}\pmu_f\pmu		μg/l	0.05	<	<												2	*	*	*	*	*	* 📙
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chlortoluron																							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chloroxuron					<	<	<	<	<		<	<	<	<	<			<	<	<	<		
Difenoxuron	Difenoxuron μg/l 0.02 <		μg/l		0.02	<	<	<	<	<		<	<	<	<	<	0.03		<	<	<	<	0.026	0.03
Diflubenzuron μg/l 0.01 < < < < < < < < < < < < < < < < < < <	Diflubenzuron μg/l 0.01 < < < < < < < < < < < < < < < < < < <					<	<	<	<	<		<	<	<	<	<	<		<	<	<	<	<	<
Diflubenzuron μg/l 0.01 < < < < < < < < < < < < < < < < < < <	Diuron μg/l 0.01 < < 0.01 < < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <		μg/l		<	<	<	<	<	<		<	<	<	<	<	<		<	<	<	<	<	<
Diuron ua// 0.01 < < 0.01 < < 0.015 0.01 0.01 < 0.01 < 0.01 < < 13 < < < < 0.016 0.02 ■			μg/l		<	<		<	<					<		<	<		<	<	<	<		<
	Isoproturon		μg/l			<	0.01	<		0.015		0.01	0.01	<	0.01	<			<	<				
Isoproturon μg/I 0.01 0.02 < < < 0.011 < < < < < < < < < 0.06 13 < < < 0.0112 0.044 0.06 ■		Isoproturon	μg/l	0.01	0.02	<	<	<	0.01	<		<	<	<	<	<	0.06	13	<	<	<	0.0112	0.044	0.06

Die Deschanennen des Amsterdam-Kiji		433613	oci ilicul	TC: Stuis	jailie	010 ((monal51111t)	rermerte mi	i Kellizailleli)													
Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.		Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Phenylharnstoffpestizide (Fortsetzung)																						
Linuron	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Metabenzthiazuron	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Metobromuron	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Metoxuron	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Metsulphuron-Methyl	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Monolinuron	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Monuron	μg/l	0.1	<	<	<	<	<	<		<					<	8	<	*	*	<	*	< -
Pencycuron	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
3-(3,4-Dichlorphenyl)-1-Methyl-Harnstoff		0.03	<	<	<	<	<	<		<					<	8	<	*	*	<	*	<
1-(3,4-dichloorfenyl)harnstoff	μg/l	0.03	<	<	<	<										4	<	*	*	<	*	<
Triflumuron	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
3,4-Dichlorphenylharnstoff	μg/l	0.01					<	<		<					<	4	<	*	*	<	*	<
Dinitrophenolherbizide																						
2,4-Dinitrophenol	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dinoseb	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dinoterb	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Vamidothion	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Carbamatpestizide	1 3,																					
Aldicarb	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Aldicarb-Sulphon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Aldicarb-Sulphoxide	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Bendiocarb	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Butocarboxim	μg/l	0.1	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Butoxycarboxim	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Carbaryl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Carbetamid	μg/l	0.01	<		<	<	<	<		<	<	<	<	<	<	13	<		<	<	<	< =
Carbophuran	μg/l	0.01	<	2	<	<	<			<	<	2	<	<	<	13	<	2	~		2	-
Carboxin	μg/l	0.01	<	2	<	<	<			<	<	2	<		<	13	<	2	<		~	< = = = = = = = = = = = = = = = = = = =
Desmedipham	μg/l	0.01	<	<	<	<	<			<	<	<	<	<	<	13	<	2	<	<	2	< = = = = = = = = = = = = = = = = = = =
Diethofencarb	μg/l	0.04	<	<	<	<	<	<		<	<	<	<	<	<	13	<	,	<	<	-	
Ethiophencarb	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	2	<	<	<	
Phenmedipham	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<		<	<	-	
Phenoxycarb	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	-	<	<	-	<
Methiocarb	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	-	<	<		<
Methodarb	μg/l	0.01	<	<	<	<	<	<		<	<	ì	<	<	<	12	<	-	<	<	-	<
Oxadixyl	μg/I	0.05		`	`	`				<	<	<	<	<	<	7	<	*	*	<	*	<
Oxamyl	μg/l	0.03	<	<	<	<	<			<	<	<	<	<	<	13	<	_	<	<	,	<
Oxycarboxin	μg/l	0.01	<		<	<	<	<		<	<	<	<	<	<	13	<		<	<	<	0.01
Pirimicarb	μg/l	0.01	<		<	<	<	<		<	<	0.01	<			11	<		<	<	<	0.01
Propham		0.01	<	<	<	<	<	<		<	<	0.01	<	<	<	13	<		<	<		<
Propamocarb	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	12	<		<	<		< ■
Thiodicarb	μg/l	0.01	<	<	<	<	<	<			<	<		<	<	13	<		<	<		< ■
Thiodicard	μg/l			<						<			<			13			-			<
Triallat	μg/l	0.04	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<		<	<	<	<	<	<
Chloorpropham	μg/l	0.02	<	<	< 0.2	<	<	<		<	<	<	<	<	<	13	<	< *	< *	<	< *	
Butocarboximsulphoxide	μg/l	0.1	<	<	0.3	<	<									5	<			<		0.3
Ethiophencarbsulphoxide	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Methiocarbsulphon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Kemzanen	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Carbamatpestizide (Fortsetzung)												0.00										
Thiofanosulphoxid	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Thiofanoxsulphon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
3-Hydroxycarbofuran	μg/l	0.1	<	<	<	<	<									5	<	*	*	<	*	<
Prosulphocarb	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Pyraclostrobin	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Ethiofencarb sulfon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Iprovalicarb	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Methiocarb Sulfoxide	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Desmethyl-pirimicarb	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Methyl-N-(3-hydroxyphenyl) carbamat (MHPC)		0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triazine / Triazinone / Anilide	1 0																					
Alachlor	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Ametryn	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Atrazin	μg/l	0.01	<	<	<	<	0.07	<		<	<	<	<	<	<	13	<	<	<	<	0.044	0.07
Cyanazin	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Deltamethrin	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Desethylatrazin	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Desisopropylatrazin (Desethylsimazin)	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Desmetryn	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Hexazinon	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Metalaxyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Metamitron	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Metazachlor	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Metolachlor	μg/l	0.01	<	0.01	0.01	<	<	0.02		0.01	<	<	<	<	<	13	<	<	<	<	0.022	0.03
Metribuzin	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Myclobutanil	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Procymidon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Prometryn	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Propachlor	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Propazin	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Simazin	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Terbutryn	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Terbutylazin	μg/l	0.01	<	<	<	<	<	0.0125		0.01	<	<	<	<	<	13	<	<	<	<	0.016	0.02
Triadimefon	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Vinclozolin	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phlutolanil	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Diflufenican	μg/l	0.04	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Desethylterbutylazin	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Pymetrozin	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Conazole																						
Cyproconazol	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Diniconazol	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Etridiazol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Paclobutrazol	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Penconazol	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Prochloraz	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Terbuconazol	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triadimenol	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Expoxiconazol	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<

Parameter	Einheit	u.b.g.	Jan.		Mrz.	Apr.	Mai	Jun.	nnzahlen) J i	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Conazole (Fortsetzung)		J									- 3											
Diphenoconazol	μg/l	0.25	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Azaconazol	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tricyclazole	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Insektizide	F-97 ·	****	-	•		-		•														
lambda-Cyhalothrin	μg/l	0.02	<	<		<		<		<		<		<		7	<	*	*	<	*	<
Esfenvalerat	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Sonstige Pestizide und Metabolite	P 97 ·	0.01	,	,	,	`	`	,		,	,		,	,	,	.0	,	,	,	,	,	
Acephat	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Acloniphen	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Asulam	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Bitertanol	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Brompropylaat	μg/l	0.02						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Bupirimaat	μg/l	0.05	<	<	<	<	<			<	<	<	<	<	<	13		<	<	<	<	<
Captan	μg/l	0.05	<	<	·	<	·	<		<		<		<	·	7		*	*	<	*	<
Cymoxanil	μg/l	0.01	<	<	<	<	<	<		~	<	<	<	<	<	13	~	<	<	<	<	<
Dikegulac	μg/l	0.03	ì	`	<	`	`	<		`	0.05	`	`	<	Ì	4	~	*	*		*	0.05
Dimethirimol	μg/l	0.01	<	<	~	<	<			<	<	<	<	<	<	13	~	<	<		<	<
Dodemorf	μg/l	0.02	<	<	<	<	<	-		2	<	<	<	<	<	13	<	<	<	<	<	<
Ethirimol	μg/l	0.01	<	<	<	<	<	<		2	<	<	<	<	<	13	<	<	<	<	<	<
Ethofumesat	μg/l	0.02	<	<	<	<	<	<		2	<	<	<	<	<	13	<	<	<	<	<	<
Phenarimol	μg/l	0.05	<	<	<	<	<	<		2	<	<	<	<	<	13	<	<	<	<	<	<
Phenpropiomorph	μg/l	0.05	<	<	2	2	<	<		2	2	<	<	<	<	13	2	<	<	<	<	<
Pholpet	μg/l	0.06	<	<	<	<	<	<		2		<	<	<	<	13		<	<	<	<	<
Phorate	μg/l	0.02	<	<	<	<	<	<		<		<	<	<	<	13	<	<	<	<	<	<
Furalaxyl	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Imazalil	μg/l	0.01	<	<	~		<			2		<	~	<	<	13	~	<	~	~	<	<
Iprodione	μg/l	0.2	<	<	<	<	<	<			<	<	<	<	<	13	2	<	<	<	<	< □
Nitrothal-Isopropyl	μg/l	0.05	<	<	<	<	<	-		2	-	<	<	<	<	13	2	<	<	<	<	<
Piperonylbutoxid	μg/l	0.01		`	`	`	`	-		2	<	<	<	<	<	7	2	*	*	<	*	<
Propyzamid	μg/l	0.02	<	<	<	<	<	-		2	<	<	<	<	<	13	<	<	<	<	<	<
Pyriphenox	μg/l	0.1	<	<	2	<	<	~		2	2	<	<	<	<	13	2	<	2	2	<	<
Rotenon	μg/l	0.01	<	<	<	<	<	<		2		<	<	<	<	13		<	~	<	<	<
Sethoxydim	μg/l	0.01	<	<	<	<	<	<		2	-	<	<	<	<	13	2	<	<	<	<	<
Tetramethrin	μg/l	0.1		`	`	`	`	<		2	<	<	<	<	<	7	2	*	*	<	*	<
Thiabendazol	μg/l	0.01	<	<	<	<	<	~		2	2	<	<	<	<	13	2	<	<	<	<	<
Thiocyclam hydrogenoxalate	μg/l	0.02	<	<	2	<	<	<		2	2	<	<	<	<	12	2	<	<	<	<	<
Thiophanat-methyl	μg/l	0.02	<	<	<	<	<	<		2	<	<	<	<	<	13	<	<	<	<	<	<
Triforine	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethomorf	μg/l	0.05	<	<	<	<	<	<		<	-	<	<	<	<	13	2	<	<	<	<	<
N,N-Dimethyl-N'-(4-Methylphenyl)	μ9/1	0.00		`	`	`	`	`		`		`	`			.0		`		`	`	` _
Sulfamid (DMST)	μg/l	0.05	<	<	<	<	<	_		<	<	<	<	<	<	13	<	<	<	<	<	<
Pyrimethanil	μg/l	0.01	<	<	<	<	<	<		2	<	0.02	<	<	<	13	<	<	<		0.014	0.02
Kresoxim-Methyl	μg/l	0.02	<	<	<	<	<	<		<	<	< .02	<	<	<	13	<	<	<	<	< 0.014	<
Pyridaben	μg/l	0.02	<	<	`	<	`	<		<	`	<	`	<	`	7	~	*	*	<	*	\ \ \
Pyriproxyphen	μg/l	0.01	<	<		<		<		<		<		<		7	-	*	*	<	*	\ \ \
Abamectin	μg/l	0.01	<	ì		`				`		ì		`		1	*	*	*	*	*	*
Cyprodinil	μg/l	0.05	<	<	<	<	<	-		<	<	<	<	<	<	13	<	<	<	<	<	<
Imidacloprid	μg/l	0.03	`	`	<	Ì	`	<		,	<	Ì	`	<	ì	4	<	*	*	<	*	<
Clomazone	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
	F 3/ .						,	,			-		-									

Die Descriationileit des Amsterdam-Kij	IIIIZGIIGGGG	Massels r	Jei Mieu	WCI Stuis	, iiii jaiii	C 2010	(MONGES IIII)	tetwerte und	Keinizanten													
Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.		Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Sonstige Pestizide und Metabolite (Forts	etzung)					· ·						· ·										
Dimethenamid-p	μg/l	0.01	<	<		<		<		<		<		<		7	<	*	*	<	*	<
Florasulam	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< -
Mefenpyr Diethyl	μg/l	0.03			<			<			<			<		4	<	*	*	<	*	<
Famoxadone	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fenhexamid	μg/l		0.01	<	<	<	<	<		<	<	<	<	<	<	13	<		<	<	<	0.01
Isoxaflutole	μg/l	0.01	<	<	<	<				<	<	<	<		<	13	<	2	<		,	< =
Methoxyfenozide	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	2	<	<	-	0.01
Phorate-sulfone	μg/l	0.01	<		<	<	<	<		<	<	<	<	<	<	13	<		<	<		
Phorate-sulfoxide	μg/l	0.01	<		~	<	<			<	<		~	<	<	13	<		~	<		
Pyridafol (CHPP)		0.01	<			<	<			<	<		~	<	<	13	<			<		
Spinosad	μg/l	0.01	-	,	`	-		`		-	-	`	7	-		13	-		,			
•	μg/l		<	<	<	<	<	<		<	<	<	<	<	<		<	<	<	<	<	< <u>-</u>
Tebufenozide	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Thiametoxam	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triazoxid	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Biozide		0.0004														40						
Tributylzinn	μg/l		<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	0.03
Carbendazim	μg/l		<	<	0.02	0.02	0.01	0.02		0.02	0.02	<	0.03	0.03	0.02	13	<	<	0.02	0.0173	0.03	
Cyromazine	μg/l				<			<			<			<		4	<	*	*	<	*	<
N,N-Diethyl-3-Methylbenzamid (DEET)	μg/l		<	<	<	<	<	<		0.03	<	0.02	<	<	<	13	<	<	<	<	0.026	0.03
Dichlofluanid	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlorvos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Propiconazol	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	0.03
Propoxur	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Flammschutzmittel																						
2,2',4,4'-Tetrabromdiphenylether	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,5'-Tetrabromdiphenylether	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4'-Pentabromdiphenylether	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5-Pentabromdiphenylether	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',6-Pentabromdiphenylether		0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,5'-Hexabromdiphenylether		0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,6'-Hexabromdiphenylether		0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2,4'-Tribromdiphenylether (Bde-028)		0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<		<	<	<	< =
2,2',3,4,4',5'-Hexabromdiphenylether		0.0005	<	<	~	<				<	<	<	<	<	<	13	<	2	<		~	
(per)Fluorierte Stoffe	P3/ ·	0.0000		`	,	`	`	`		,	,	,	,	`	,		,	`	,	,	,	,
Perfluoroctanoat (PFOA)	μg/l	0.005			0.0052			<			<		(.0089		4	<	*	*	<	*	0.0089
Perfluoroctansulfonat (PFOS)	μg/l				0.0094			0.0088			0.011			0.008		4	0.008	*	*	0.0093	*	
Ether	ру/1				0.0034			0.0000			0.011			0.000			0.000			0.0030		0.011
di-Isopropylether (DIPE)	ua/l	0.02	<	<		<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Methyl-Tertiär-Butylether (MTBE)	μg/l μg/l		<	0.05	0.1	<	0.08	0.265		0.1	0.13	<	0.6	<	0.08	13	<		0.08	0.136	0.54	0.6
																						0.0
Diglym	μg/l	0.25	<	< 0.00	<	<	<	< 0.00		<	<	<	<	<	<	13	<	<	<	<	< 0.00	0.02
Ethyl-Tertiär-Butylether (ETBE)	μg/l		<	0.02	<	<	<	0.02		<	<	<	<	<	<	13	<	<	<	<	0.02	0.02
Triglym	μg/l	0.25	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tetraglym	μg/l	0.3	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tertiair-Amyl-Methylether (TAME)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Sonstige organische Stoffe																						
Cyclohexan	μg/l		<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tributylphosphat (TBP)	μg/l	0.1	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triethylphosphat	μg/l	0.05			<			0.07			0.06			0.08		4	<	*	*	0.0587	*	0.08
Triphenylphosphat (TPP)	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<

Parameter	Einheit	u.b.q.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Termentally (Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Sonstige organische Stoffe (Fortsetzung)		<u> </u>									J	· ·										
Triphenylphosphinoxid (TPPO)	μg/l	0.1	<	<	<	<										4	<	*	*	<	*	<
Tri-Isobutylphosphat	μg/l				0.07			0.1			0.08			0.06		4	0.06	*	*	0.0775	*	0.1
Hexa(Methoxymethyl) Melamine (HMMM)	μg/l		0.44	0.42	0.5	0.43										4	0.42	*	*	0.448	*	0.5
Röntgenkontrastmittel																						
Amidotrizoesäure	μg/l		0.16	0.17	0.15	0.12	0.14	0.13		0.05	0.13	0.08	0.11	0.15	0.16	13	0.05	0.062	0.14	0.129	0.166	0.17
lohexol	μg/l		0.067	0.07	0.082	0.11	0.05	0.085		0.05	0.04	0.03	0.06	0.04	0.08	13	0.03	0.034	0.067	0.0653	0.106	0.11
lomeprol	μg/l		0.36	0.33	0.37	0.42	0.32	0.36		0.25	0.23	0.13	0.23	0.11	0.3	13	0.11	0.118	0.32	0.29	0.404	0.42
lopamidol	μg/l		0.034	0.05	0.042	0.037	0.02	0.075		0.09	0.13	0.04	0.08	0.1	0.18	13	0.02	0.024	0.05	0.0733	0.16	0.18
lopansäure	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
lopromid	μg/l		0.38	0.34	0.21	0.21	0.3	0.17		0.11	0.16	0.14	0.15	0.25	0.32	13	0.11	0.122	0.21	0.224	0.364	0.38
lotalaminsäure	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
loxaglinsäure	μg/l	0.1	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
loxitalaminsäure	μg/l		0.12	0.12	0.062	0.092	0.08	0.055		0.03	0.04	0.04	0.06	0.08	0.07	13	0.03	0.034	0.07	0.0695	0.12	0.12
Antibiotika																						
Chloramphenicol	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Clarithromycin	μg/l	0.05	<	<	<	<	<	<								7	<	*	*	<	*	<
Cloxacillin	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
Dapson	μg/l	0.05	<	<	<	<	<	<								7	<	*	*	<	*	<
Dicloxacillin	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
Erythromycin	μg/l	0.02	<	<	<	<	<	<								7	<	*	*	<	*	<
Furazolidin	μg/l	0.1	<	<	<	<	<	<								7	<	*	*	<	*	<
Nafcillin	μg/l	0.03	<	<	<	<	<	<								7	<	*	*	<	*	<
Oleandomycin	μg/l	0.02	<	<	<	<	<	<								7	<	*	*	<	*	<
Oxacillin	μg/l	0.011	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Roxithromycin	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
Spiramycin	μg/l	0.05	<	<	<	<	<	<								7	<	*	*	<	*	<
Sulfadimidin	μg/l	0.05	<	<	<	<	<	<								7	<	*	*	<	*	<
Sulfamethoxazol	μg/l		0.02	0.02	0.03	0.03	0.04	0.04		0.042	0.026	0.031	0.041	0.03	0.02	13	0.02	0.02	0.03	0.0315	0.0468	0.05
Trimethoprim	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Indometacin	μg/l	0.02	<	<	<	<	<	<								7	<	*	*	<	*	<
Azithromycin	μg/l	0.05	<	<	<	<	<	<								7	<	*	*	<	*	<
Lincomycin	μg/l	0.01	<	0.02	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	0.014	0.02
Monensin	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
Tiamulin	μg/l	0.01	<	<	<	<	<	<		0.014	<	<	<	<	<	13	<	<	<	<	0.0104	0.014
Sulfaquinoxalin	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Sulfachlorpyridazin	μg/l	0.1	<	<	<	<	<	<								7	<	*	*	<	*	<
Sulfadimethoxin	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
Clothianidin	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
hydrochlorthiazide	μg/l									0.024	0.02	0.067	0.059	0.073	0.12	6	0.02	*	*	0.0605	*	0.12
theophylline	μg/l	0.015								0.031	<	<	0.03	0.04	0.031	6	<	*	*	0.0245	*	0.04
Betablocker																						
Atenolol	μg/l									0.02	0.013	0.025	0.016	0.026	0.017	6	0.013	*	*	0.0195	*	0.026
Bisoprolol	μg/l	0.0002								<	<		0.005	0.007	0.01	5	<	*	* (0.00444	*	0.01
Metoprolol	μg/l		0.14	0.17	0.15	0.19	0.18	0.13		0.023	0.031	0.03	0.014	0.015	0.019	13	0.014	0.0144	0.11	0.094	0.186	0.19
Propranolol	μg/l	0.01	<	<	<	<	<	<		0.043	<	0.08	<	<	<	13	<	<	<	<	0.0652	0.08
Sotalol	μg/l	0.05	0.09	0.12	0.06	0.11	0.13	<		<	<	0.056	0.056	0.06	<	13	<	<	0.056	0.066	0.126	0.13
Schmerzbehandlungsmittel																						
Lidocaïn	μg/l	0.01	0.01	0.02	<	0.02		0.0125		0.015	0.013	0.014	0.015	0.015	0.014	13	<	<		0.0143	0.02	0.02
Diclofenac	μg/l	0.02	0.04	0.05	0.09	0.16	0.02	<		<	<	0.02	0.02	0.03	0.07	13	<	<	0.02	0.0415	0.132	0.16

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Ji	lul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Schmerzbehandlungsmittel (Fortsetzung)												0.0	<u> </u>									
4-Dimethylaminoantipyrin	μg/l	0.05	<	<	<	<	<	<								7	<	×	*	<	*	<
Fenoprophen	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
Ibuprophen	μg/l	0.02	0.03	0.04	0.05	0.08	0.02	<		<	<	<	<	<	0.03	13	<	<	<	0.0246	0.068	0.08
Ketoprophen	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<		<	<	<
Naproxen	μg/l	0.02	0.02	0.04	0.04	0.04	0.04	<		~	<	<	<	<	<	13	<	<	,		0.04	0.04
Phenazon	μg/l	0.01	0.03	0.01	<	0.01	0.01	0.015	0.0	- 1	0.01	0.025	0.026	0.014	0.01	13	<	<	0.01		0.0284	0.03
Tolfenaminsaüre	μg/l	0.01	<	<	<	<	<	<	0.0	,,,,	0.01	0.020	0.020	0.011	0.01	7	<	*	*	<	*	<
Primidon	μg/I	0.02	<	2	<	<	<	<		<	<		<	<	<	13	<	<		<	<	<
Clofentezin	μg/I	0.02	<			~	<	<		<	<	<	<	<	<	13	<	<		<	<	<
paracetamol	μg/l	0.001				`		`		<	<	<	<	<	<	6	<	*	*	<	*	\ \ \
Salicylcsäure	μg/I	0.001									0.016	`	<	<	<	5	<	*	*	<	*	0.016
Antidepressiva und Drogen	μy/i	0.011								_	0.010					J						0.010
Diazapam	μg/l	0.0002								<		0.001		0.0007	<	6	<	*	* (0.00035	*	0.001
fluoxetine		0.0002								.18		0.001	<	0.0007	0.004	3	*	*	*	*	*	*
	μg/l	0.003							0.0		0.025	0.036	0.038	0.035	0.004	6	0.025	*	*	0.032	*	0.038
oxazepam	μg/l	0.000							0.0.		0.023	0.030		0.033		3	0.023	*	*	0.03Z *	*	0.036
paroxetine	μg/l	0.003							0.0	<	0.012	0.024	< 0.010	0.00	< 0.012	6	0.012	*	*		*	0.024
temazepam Chalactarina ankanda Mittal	μg/l								0.0)1/	0.012	0.024	0.019	0.02	0.012	0	0.012			0.0173		0.024
Cholesterinsenkende Mittel	/1	0.01					0.00									7		*	¥		*	0.00
Pentoxifyllin	μg/l	0.01	< 0.00	< 0.00	< 0.00	< 0.00	0.02	<							0.010	7	<		0.01	< 0.0100		0.02
Bezafibrat	μg/l	0.01	0.02	0.03	0.03	0.02	0.02	<		<	<	<	<	<	0.019	13	<	<	0.01	0.0138	0.03	0.03
Clofibrinsäure	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fenofibrat	μg/l	0.01	<	<	<	<	<	<	0.		<	<	<	<	<	13	<	<	<	<	<	0.01
Fenofibrinsäure	μg/l	0.004								<	<	<	<	<	<	6	<	*	*	<	~	<
Gemfibrozil	μg/l	0.03	<	<	<	0.03	<	<		<	<	<	<	<	<	13	<	<	<	<	<	0.03
Clofibrat	μg/l	0.085	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
atorvastatine	μg/l	0.003								<	<	0.023	0.007	0.029	<	6	<	*	*	0.0106	*	0.029
pravastatine	μg/l	0.05								<	<	<	<	<	<	6	<	*	*	<	*	< 📙
Sonstige pharmazeutische Wirkstoffe																						
Coffein	μg/l		0.2	0.23	0.18	0.35	0.13	0.12		.09		0.062	0.29	0.034	<	13	<	<	0.13	-7690	0.326	0.35
Carbamazepin	μg/l	0.05	0.09	0.07	0.09	0.1	0.11	0.09	0.1	.06	0.08	0.05	<	<	0.1	13	<	<	0.08	0.0754	0.106	0.11
Cyclofosfamid	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Ifosfamid	μg/l	0.0002								<	<	<	<	0.0002	<	6	<	*	*	<	*	0.0002
Fenoterol	μg/l	0.03	<	<	<	<	<	<								7	<	*	*	<	*	<
enalapril	μg/l	0.0002								<	<	<	<	<	0.0003	6	<	*	*	<	*	0.0003
furosemide	μg/l	0.003								<	<	0.018	0.017	0.04	0.027	6	<	*	*	0.0175	*	0.04
losartan	μg/l								0.0)13	0.005	0.018	0.021	0.028	0.026	6	0.005	*	*	0.0185	*	0.028
metformin	μg/l								0.:	.34	0.54	0.31	0.24	0.33	0.32	6	0.24	*	*	0.347	*	0.54
Endokrin wirksame Stoffe (EDC's)																						
Di(2-Ethylhexyl)Phtalat (DEHP)	μg/l	1	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Estron	μg/l	0.05	<	<	<	<	<	<								7	<	*	*	<	*	<
17-Alpha-Ethinylestradiol	μg/l	0.5	<	<	<	<	<	<								7	<	*	*	<	*	<
Progesteron	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
4-TertOctylphenol	μg/l	0.005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrabutylzinn	μg/l	0.0018	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triphenylzinn	μg/l	0.0017	<	<	<	0.0031	<	<		<	<	<	<	<	<	13	<	<	<	<	0.0022	
Dibutylzinn	μg/l	0.0051	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Diphenylzinn	μg/l	0.0044	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Summe 4-Nonylphenol Isomeren	μg/l	0.1	<	0.14	0.13	<	<	0.105		<	0.91	<	0.72	<	<	13	<	<	<	0.189	0.834	0.91
Akitivität gegenüber 17-Beta-Estradiol (EEQ)		0.00002 0							0.0003		.000137			.000306 0		13	<0.0					000392
	r.5/ .								0.0000	٥.						-	. 5.0					

Anlage 4

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	J	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Allgemeine Kenngrössen																						
Wassertemperatur	°C		1.27	1.1	5.4	10.7	13.1	19.1	23	2.4	19.1	15.8	12.6	6.64	1.4	51	0.5	1.14	11.1	10.9	21.1	23.7
Sauerstoff	mg/l		11.5	12	12	10.1	8.5	9.4		7.2	6.2	7.6	8.8	9.2	11.2	13	6.2	6.6	9.2	9.4	12	12 💻
Sauerstoffsättigung	%		81.8	84.7	87.5	85.4	76.7	84.1	6	6.3	57.4	70	78.7	76.1	80.6	13	57.4	61	80.6	77.4	86.7	87.5
Trübungsgrad	FTE		6.7	4.9	18	8.6	23	12		11	52	22	26	18	13	14	4.9	5.8	15.5	20.7	52	70 🖃
Schwebstoffgehalt	mg/l		16.7	7.9	23.1	14	40.3	29.2	2	21.4	59.8	31.4	66.3	27.7	21.4	14	7.9	11	23.9	32.8	84.7	103 🖃
pH-Wert	На		8.25	8.21	8.49	8.5	8.31	8.3	8.	3.42	8.32	8.29	8.4	8.33	8.2	52	8.13	8.18	8.3	8.34	8.57	8.68
Sättigungsindex	SI		0.387	0.403	0.82	0.808	0.658	0.63		603		0.405	0.708	0.586	0.488	51	0.24	0.35	0.59	0.604	0.922	1 🖃
Elektrische Leitfähigkeit	mS/m		68.1	70.5	67.4	64.5	68.7	66.8		52.7	60.1	59.4	61	64.9	65.1	52	54.9	57.3	64.2	65	72	75.5
Gesamthärte	mmol/I		2.28	2.31	2.47	2.23	2.26	2.1		1.74	2.15	1.74	2.15	2.21	2.45	52	1.68	1.72	2.2	2.18	2.54	3.53
Gesamthärte (Mg/L CaCO3)	mg/l		229	231	247	223	226	210		175	215	175	215	221	245	52	168	173	220	218	254	354
Radioaktivität	ilig/i		223	201	241	223	220	210	· · · · · · · · · · · · · · · · · · ·	173	213	173	213	221	243	JZ	100	173	220	210	234	334
Aktivität, Beta Gesamt	Da/I	0.5	,		,						,			,		13	,				<	< ፟፟፟፟
•	Bq/I	0.05	<	<	<	<	<	<		<	<	<	< O OF	<	<		<	<	<	<		0.05
Aktivität, Alpha	Bq/I		<	<	<	<	<	<		<	<	<	0.05	<	<	13	<	<	<	<	<	
Aktivität, Beta (Gesamt -K40)	Bq/I	0.5	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Aktivität, Tritium	Bq/I	5	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Anorganische Parameter																						
Kohlendioxyd	mg/l		2.2		1.38	0.925	1.42	1.15).75	1.06	1.05	1.13	1.68	2.88	51	0.3	0.7	1.3	1.48	2.58	3.6
Hydrogencarbonat	mg/l		166	169	176	150	156	136		109	139	111	150	164	191	52	89	104	158	152	188	239 🖃
Carbonat	mg/l		0	0	3.8	3.25	0.4	1.75		1.75	0	1	2.25	0.4	0	52	0	0	0	1.21	4	8 🖃
Chlorid	mg/l		109	118	96	95	108	116	1	125	102	123	90	98	98	13	90	92	102	107	124	125 💻
Sulfat	mg/l		69.6	77	67.6	64.4	68	68.1	68	8.8	61.5	65.4	64.5	68.2	73	13	61.5	62.7	68.1	68	75.4	77 🖃
Silikat	mg/l		2.52	2.34	3.32	0.421	0.561	0.28		1.5	1.78	1.4	2.57	2.2	2.94	13	0.28	0.337	1.78	1.72	3.17	3.32
Bromid	μg/l				130		230				200			170		4	130	*	*	183	*	230
Fluorid	mg/l		0.12	0.11	0.12	0.12	0.12	0.12	0	0.12	0.12	0.12	0.12	0.12	0.13	13	0.11	0.114	0.12	0.12	0.126	0.13
Cyanid-CN, Gesamt	μg/l	2			<		<				<			<		4	<	*	*	<	*	<
Bromat	μg/l	0.5			<		<				<			<		4	<	*	*	<	*	<
Chlorat	μg/l	5			<		5.2							<		4		*	*	<	*	5.2
Nährstoffe	P9/:				,		0.2				,			`			`			`		0.2
Stickstoff, Ammonium-NH4	mg/l		0.18	0.21	0.07	0.08	0.065	0.04	0	0.09	0.13	0.06	0.09	0.1	0.15	13	0.03	0.034	0.09	0.102	0.198	0.21
Stickstoff nach Kjeldahl	mg/l		0.75	1.05	1.65	1	1.03	1	0.	1	1.25	1.9	1.15	1.13	0.9	26	0.6	0.7	1.1	1.15	1.62	2.3
N org. gebunden	mg/l		0.75	0.8	1.3	1	1.2	1.3		1.1	1.3	1.5	1.2	1.10	1	13	0.6	0.68	1.1	1.12	1.42	1.5
Stickstoff, Nitrit-NO2	mg/l	0.007	0.046	0.044	0.042	0.631	0.0655	0.04		065	0.011	<	0.048	0.044	0.035	13	< 0.0	0.00		0.0877	0.41	0.631
Stickstoff, Nitrat-NO3	0.	0.007	9.4	10.8	14.6	13.4	11.1	5.01		1.66	1.28	1.31	6.18	5.56	8.64	27	1.28	1.59	9.08	8.95	14.3	14.6
Phosphor, Ortho-Phosphat-P04	mg/l	0.00		0.08					1.						0.09	13					0.086	0.09
· · · · · · · · · · · · · · · · · · ·	mg/l	0.06	0.07	0.08	0.2	0.08	0.15	< 0.1		0.1	0.08	0.1	0.3	< 0.1	0.09	13	0.08	0.08	0.1	0.151	0.086	
Phosphor, Gesamt Phosphat-P04	mg/l		0.2	0.2	0.2	0.08	0.15	0.1		0.1	0.08	0.1	0.3	0.1	0.2	13	0.08	0.08	0.1	0.151	0.20	0.3
Gruppenparameter					7.00		0.00				F 04			0.05			F 04	×	*	0.70	*	7.00
Anionen	meq/l				7.23		6.93				5.91			6.85		4	5.91	Ŷ	Ŷ	6.73	~	7.23
Kationen	meq/l				7.18		7.12		_		6.24			6.89		4	6.24	*	~	6.86		7.18
Kohlenstoff, gesamter org. gebundener	mg/l		6.87	6.9	7.82	7.83	7.33	6.57		7.32	7.92	7.63	7.19	6.91	8.17	14	5.91	6.24	7.26	7.41	8.84	8.93
DOC (organisch gebundener Kohlenstoff)	mg/l		5.79	5.81	6.41	6.38	5.91	5.71		5.8	5.93	5.74	6.39	6.34	6.63	52	4.81	5.45	6.01	6.07	6.74	7.38
Chemischer Sauerstoffbedarf	mg/l		18.5	18.5	45	24.5	26	23		21.5	36.3	40.5	28.5	28	25	27	15	16.8	26	28.2	46	64 🖃
Biochemischer Sauerstoffbedarf (BOD)	mg/l	1			1.7		<			1.3	2.15			2.4		6	<	*	*	1.7	*	2.4
Spektraler Absorptionskoeffizient bei 254 nm	1/m		14.6	14.4	15.9	16.2	14.6	11.4	1	11.4	10.1	11.4	15	15.3	17.7	14	9.7	10.1	14.5	13.8	17	17.7
Färbung, Pt/Co Skala	mg/l		15	17	17	19	16.5	10		10	10	11	15	13	19	13	10	10	15	14.5	19	19 🖃
Mineralöl (GC-Methode)	μg/l	10			<		<				50			<		4	<	*	*	16.2	*	50
Adsorbierbare organisch gebundene Halogene (CI)			13	15	14	32	20	15		24	12	12	18	19	15	13	12	12	15	17.6	30	32
3 3 3 4 4 4 4 5 5 5 6 7 7	, 3.																					

Parameter	Einheit					Apr.	te und Kenr Mai	Jun.	Jul	. А	ug. Se	p. Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Gruppenparameter (Fortsetzung)	2	u.s.g.	- Cum			71,011		- Cum	Çü.		ag. o	p. 0		502.							THE STATE OF THE S
AOBr	μg/l		25	22	14	18	16	17	18	3	27	32 33	37	31	13	14	14	22	23.5	35.4	37 🖃
AOJ	μg/l		5.5	5.7	6.2	5.2	7.8	9.9	8.9	9		.6 9.5	10	9	13	5.2	5.32	8.4	7.88	9.96	37 📃 10 🗎
Adsorbierbare Organische Schwefelverbindungen	μg/l		94	88	77	100	53	40	47		65	11 95	110	120	13	40	40.4	77	75.6	116	120 🖃
Summenparameter																					
Summe Trihalogenmethane	μg/l	0.05	<	<	<	0.06	<	<	0.00	6 0	0.06	< <	<	<	13	<	<	<	<	0.06	0.06
C10-C13-Chloralkane (Summe)	μg/l	0.1	<	<	<	<	<	<		<	<	< <	<	<	13	<	<	<	<	<	<
Biologische Parameter																					
Hygienisch verdächtige Bakterien																					
(37 °C, nicht best.)	n/100 ml		6	30	1	2	26	19		7 1	160	10 5	7	200	13	1	1.4	7	38.4	184	200 🖃
Bakterien Coligruppe	n/100 ml		5	24	0	2	21.5	19		7 1	160	10 1	7	200	13	0	0.4	7	36.8	184	200 🖃
Fäkalcoliforme Bakterien	n/100 ml		5	6	0	0	0.5	19		7 1	160	4 1	7	39	13	0	0	5	19.2	112	200 = 200 = 160 = 1
Enterokokken	n/100 ml		0	12			1	6		1	32	1 2		22	10	0	0	2	7.8	31	32
Enterokokken (nicht best.)	n/100 ml		1	15	0	0	1.5	6		1	75	1 2	0	22	13	0	0	1	9.69	53.8	75 970 🖃
Clostridia, Sporen SO3-Reduz.	n/100 ml		150	110	200	240	400	190	170) 1	180 4	970	190	380	13	110	126	200	309	782	970 🖃
Clostr. Perfringens (mit Sporen)	n/100 ml		3	15	9	10	26	0		3	0	3 13	10	16	13	0	0	10	10.3	31.6	42 🖃
Campylobacter	n/l	10	40	25	10	<	<	<	37!	5 1	17.2	< 22.5	147	118	25	<	<	10	68.2	278	750 🖃
Hydrobiologische Parameter																					
Chlorophyll A	μg/l		9	16	48	34	46	35	68	3		36 25	43	36	13	9	11.8	38	44.5	88.6	99 🖃 130 🖃
Summe Chlorophyl-A und Phaeopigmente	μg/l		13	23	68	57	78.5	53	90)	1	06 39	62	53	13	13	17	62	63.6	114	130 🖃
Phaeophytin	μg/l		4	8	19	23	32.5	17	22	2		20 14	19	17	13	4	5.6	19	19.1	34.6	37 🖃
Phytoplankton, Gesamt	n/ml		10000	11000	34000	14000	18500	25000	38000	200	000 360	25000	21000	20000	13	10000	10400	21000	22400	37200	38000 🖃
Cyanophyceae	n/ml		1100	340	2500	480	2400	5100	18000	84	400 160	7000	6300	4000	13	340	396	4000	5690	17200	18000
Cryptophyceae	n/ml		220	2800	13000	1100	635	90	1300) 1	160 1	1800	220	470	13	90	118	520	1740	8920	13000 🖃
Chrysophyceae	n/ml		150	160	210	0	340	0	260)	0 1	30 0	0	0	13	0	0	150	126	348	380 🖃
Chlorophyceae	n/ml		4400	5100	12000	3600	8950	14000	11000	100	000 110	00 8400	8200	7100	13	3600	3920	8900	8670	13200	14000 🖃
Bacillariophyceae	n/ml		980	1200	4000	7000	3800	5000	3900	14	400 38	2900	2800	2600	13	980	1030	2900	3320	6800	7000 🖃
Euglenophyceae	n/ml		0	100	0	0	0	0)	0	0 0	0	0	13	0	0	0	7.69	60	100 🖃
Dinophyceae	n/ml		0	0	0	0	0	0)	0	0 0	0	0	13	0	0	0	0	0	0 🖃
Tierische Organismen, gesamt	n/l		380	520	1000	4200	1270	3500	2500	18	800 25	00 480	300	830	13	300	332	1000	1580	3920	100
Rhizopoda	n/l		0	0	0	0	0	0	1:	2	50	0 0	0	4	13	0	0	0	5.08	34.8	50 🗀
Testacea	n/l		6	8	0	0	15	37	24	4	0	30 21	19	15	13	0	0	15	14.6	34.2	37 🖃
Tardigrada	n/l		0	0	0	0	0	0)	0	0 0	0	0	13	0	0	0	0	0	0 🖃
Rotatoria	n/l		38	31	120	820	103	130	1000) 9	980 15	00 43	22	44	13	22	25.6	120	379	1300	1500 🖃
Ciliata	n/l		290	470	870	3300	1090	3100	1400) 6	650 7	30 410	240	690	13	240	260	690	1100	3220	3300 🖃
Heliozoa	n/l		0	0	0	0	0	0)	0	0 0	0	0	13	0	0	0	0	0	3300 🖃
Ostracoda	n/l		0	0	0	0	0	0)	0	0 0	0	0	13	0	0	0	0	0	0 🖃
Cladocera	n/l		46	0	0	3	0	2	33	2	75 2	00 6	8	60	13	0	0	6	33.2	150	200 - 15 -
Naupilus-Larve	n/l		8	6	0	3	0	0	14	4	0	0 0	0	15	13	0	0	0	3.54	14.6	15
Cyclopoidea	n/l		0	0	0	26	0	0	9	9	0	0 0	4	2	13	0	0	0	3.15	19.2	26
Calanoidea	n/l		0	0	0	0	0	0)	0	0 0	0	0	13	0	0	0	0	0	0 🖃
Harpacticoidea	n/l		0	0	0	0	0	0)	0	0 0	0	0	13	0	0	0	0	0	0 🖃
Gastrotricha	n/l		0	2	0	0	4	0)	0	0 0	0	0	13	0	0	0	0.769	5.6	8 🖃
Oligochaeta	n/l		0	0	0	0	0	0)	0	0 0	0	0	13	0	0	0	0	0	0 🖃
Nematoda	n/l		0	2	0	0	0	0	()	0	0 0	0	0	13	0	0	0	0.154	1.2	0
Turbellaria	n/l		0	0	0	0	0	0	()	0	0 0	0	0	13	0	0	0	0	0	0 🖃
Chironomidae	n/l		0	0	0	0	0	0)	0	0 0	0	0	13	0	0	0	0	0	0 🖃
Hydrachnellae	n/l		0	0	0	0	1	0)	0	0 0	0	0	13	0	0	0	0.154	1.2	2 🖃
Larve von Hydrachnellae	n/l		0	0	0	0	0	0)	0	0 0	0	0	13	0	0	0	0	0	0 🖃
Bivalvia	n/l		0	0	0	0	55	190	24	4	0	0 0	0	0	13	0	0	0	24.9	158	190 🖃

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Hydrobiologische Parameter (Fortsetzun	g)																				
Diverse	n/l		0	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0 🖃
Metalle																					
Natrium	mg/l		55.2	63.6	50.1	47.8	57.7	66.4	67.3	61	70	49.8	55.8	56.2	13	47.8	48.6	56.2	58.3	68.9	70 🖃
Kalium	mg/l		6.27	6.52	6.21	5.88	6.25	6.41	6.28	5.88	6.72	6.62	6.82	7.16	13	5.88	5.88	6.41	6.41	7.02	7.16
Calcium	mg/l		71.2	71.7	79.7	70	69.7	62.5	48.9	64.4	49.4	66.7	68.5	78.3	52	44	48	67.9	67	81.7	120 🖃
Magnesium	mg/l		12.4	12.6	11.7	11.7	12.7	13.1	12.8	13.2	12.4	11.8	12.1	12	52	10.5	11.1	12.3	12.4	13.6	14.4
Eisen, Gesamt	mg/l		0.3	0.18	0.42	0.14	0.665	0.36	0.21	0.34	0.38	1.5	0.38	0.72	13	0.14	0.156	0.38	0.482	1.19	1.5
Mangan, Gesamt	mg/l		0.02	0.02	0.05	0.03	0.095	0.07	0.08	0.1	0.05	0.16	0.03	0.05	13	0.02	0.02	0.05	0.0654	0.136	0.16
Mangan	μg/l		20	20	50	30	95	70	80	100	50	160	30	50	13	20	20	50	65.4	136	160 🖃
Antimon	μg/l	0.5	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Arsen	μg/l	0.5	1.2	1.5	1.2	<	1.35	1.3	1.6	1.7	1.7	2.2	1	1.4	13	<	0.55	1.4	1.37	2	2.2
Barium	μg/l		70	70	71	64	76	62	64	63	62	75	69	68	13	62	62	69	68.5	76.2	77 🖃
Beryllium	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Bor	mg/l		0.06	0.07	0.05	0.05	0.055	0.06	0.06	0.06	0.06	0.05	0.05	0.06	13	0.05	0.05	0.06	0.0569	0.066	0.07
Cadmium	μg/l	0.02	<	<	0.02	<	0.04	<	<	<	<	0.07	<	<	13	<	<	<	<	0.058	0.07
Chrom, Gesamt	μg/l	0.5	<	<	0.712	0.512	0.786	<	<	<	0.573	0.803	0.69	0.564	13	<	<	0.564	0.514	0.872	0.918
Cobalt	μg/l		0.19	0.18	0.29	0.28	0.38	0.3	0.26	0.31	0.3	0.33	0.3	0.27	13	0.18	0.184	0.3	0.29	0.396	0.44
Kupfer	μg/l		2.05	2.52	2.23	2.34	2.32	1.99	1.27	1.83	1.75	2.19	2.03	2.17	13	1.27	1.46	2.17	2.08	2.45	2.52
Quecksilber	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< 🗵
Blei	μg/l	1	<	<	<	<	1.25	<	<	<	<	3	<	<	13	<	<	<	<	2.32	3 🖃
Lithium	μg/l		11	14	13	11	12	13	13	15	13	12	13	13	13	11	11	13	12.7	14.6	15 📃
Molybden	μg/l		1.5	1.2	1.1	1.1	1.2	1.4	1.4	1.5	1.5	1.4	1.4	1.5	13	1.1	1.1	1.4	1.34	1.5	1.5
Nickel	μg/l	2	2.3	2.5	2.5	2.2	2.5	2	<	<	2.1	<	<	2.4	13	<	<	2.1	<	2.74	2.9
Selen	μg/l		0.29			0.19	0.19		0.14		0.17		0.18		6	0.14	*	*	0.193	*	0.29
Strontium	μg/l		470	560	460	430	475	430	440	460	450	450	430	490	13	430	430	460	463	532	560 🖃
Thallium	μg/l	0.01	0.01	<	0.01	0.01	0.015	0.01	<	<	0.01	0.01	0.01	0.01	13	<	<	0.01	<	0.016	0.02
Tellurium	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Zinn	μg/l	0.05	<	<	<	<	<	<	<	<	<	0.1	<	<	13	<	<	<	<	0.084	0.1
Vanadium	μg/l		1.1	0.86	1.4	1	1.6	0.97	1.4	1.7	1.7	1.8	1.6	1.4	13	0.86	0.904	1.4	1.39	1.8	1.8
Silber	μg/l	0.1			<		<			<			<		4	<	*	*	<	*	<
Zink	μg/l	5	11.3	<	<	<	9.85	7.6	5.4	<	6.9	21.2	6.1	5.2	13	<	<	6.1	7.18	17.6	21.2
Kupfer	mg/l	0.003			<		<			<			<		4	<	*	*	<	*	< 📙
Zink	mg/l	0.005	0.0113	<	<		0.00985		0.0054				0.0061	0.0052	13	<		0.0061			0.0212
Rubidium	μg/l		4.92	4.98	4.69	4.37	4.96	4.47	4.7	4.78	4.98	5.02	4.66	4.97	13	4.37	4.41	4.84	4.8	5.05	5.07
Uranium	μg/l		0.64	0.73	0.63	0.57	0.67	0.66	0.6	0.65	0.65	0.66	0.6	0.7	13	0.57	0.582	0.65	0.648	0.718	0.73
Cesium	μg/l		0.068	0.055	0.12	0.082	0.138	0.069	0.074	0.097	0.111	0.148	0.117	0.1	13	0.055	0.0602	0.1	0.101	0.156	0.162
Metalle nach Filtration		0.01	0.00	0.01							0.01	0.00		0.04	10					0.00	0.00
Eisen (nach Filtr. 0.45 μM)	mg/l	0.01	0.02	0.01	<	<	<	<	<	<	0.01	0.02	<	0.01	13	<	< *	< *	<	0.02	0.02
Eisen (gelöst)	μg/l		0.1	00	230	0.4	360	0.0	00	210	70	0.0	270	0.1	4	210			268		360
Bor (nach Filtr. 0.45 μM)	μg/l		61	82	68	64	64	66	69	69	73	66	70	81	13	61	61.4	68	69	81.6	82
Aluminium (nach Filtr. 0.45 µM)	μg/l	0.5	5.5	1.8	7.6	14	4.1	6.2	5.9	3	2.2	1.7	3.1	3.5	13	1.2	1.4	3.5	4.82	11.4	14 🖃
Antimon (nach Filtr. 0.45 µM)	μg/l	0.5	> 0.04	<	< 0.45	< 0.00	<	< .	< .	< 70	0.559	<	< .	< 0.00	13	< 0.00	< 0.000	< .	< 0.540	< 707	0.559
Arsen (nach Filtr. 0.45 µM)	μg/l		0.64	00	0.45	0.28	0.4	0.42	0.57	0.79	0.59	0.78	0.56	0.62	12	0.28	0.283	0.565	0.542	0.787	0.79
Barium (nach Filtr. 0,45 µM)	μg/l	0.05	67	69	65	60	67.5	59	59	58	60	55	65	66	13	55	56.2	65	62.9	69.6	70 🖃
Beryllium (nach Filtr. 0,45 μM)	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cadmium (nach Filtr. 0.45 µM)	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chrom (nach Filtr. 0.45 µM)	μg/l	0.5	< 0.10	< 0.10	< 0.14	< 0.17	< 0.175	< 0.17	< 0.15	< 0.10	< 0.15	< 0.15	< 0.10	< 0.15	13	< 0.10	< 0.104	< 0.15	< 0.154	< 0.100	<
Kobalt (nach Filtr. 0.45 µM)	μg/l		0.12	0.13	0.14	0.17	0.175	0.17	0.15	0.19	0.15	0.15	0.13	0.15	13	0.12	0.124	0.15	0.154	0.186	0.19
Kupfer (nach Filtr. 0.45 μM)	μg/l		1.76	3.86	1.65	1.86	1.44	1.63		1.35	1.5	1.49	1.41	1.52	13	- 1	1.1	1.52	1.69	3.06	3.86

	doocio i		ıjıx 11111 je		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.omitteether	to dilla recilii	20111011)													
Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul	. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Metalle nach Filtration (Fortsetzung)																					
Quecksilber (nach Filtr. 0.45 µM)	μg/l	0.001	<		<	<	<	<	<	< <	<	<	<	<	12	<	<	<	<	<	0.11
Blei (nach Filtr. 0.45 μM)	μg/l	0.1	<	<	<	0.11	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	0.11
Lithium (nach Filtr. 0.45 µM)	μg/l		10.8	12.5	12	10.4	11	12.3	12	2 14	12.9	10.9	11.6	12.6	13	10.4	10.4	12	11.8	13.6	14 🖃
Molybden (nach Filtr. 0.45 µM)	μg/l		1.4	1.2	1	1.1	1.2	1.3	1.3	3 1.4		1.1	1.4	1.5	13	1	1.04	1.3	1.28	1.5	1.5
Nickel (nach Filtr. 0.45 µM)	μg/l		1.51	1.59	1.48	1.56	1.51	1.24	1.23	3 1.19	1.28	1.49	1.45	1.74	13	1.19	1.21	1.49	1.44	1.68	1.74
Zinn (nach Filtr. 0.45 µM)	μg/l	0.05	<	<	<	<	<	<				<	<	<	13	<	<	<	<	<	<
Titan (nach Filtr. 0.45 µM)	μg/l	1	<	<	<	<	<	<				2.3	<	<	13	<	<	<	<	1.58	2.3
Vanadium (nach Filtr. 0.45 µM)	μg/l		0.64	0.6	0.61	0.48	0.555	0.59	0.89			1	0.81	0.78	13		0.426	0.72	0.711	1	1 🗏
Silber (nach Filtr. 0.45 µM)	μg/l	0.1	<	<	<	<	<	<				<	<	<	13	<	<	<	<	<	<
Zink (nach Filtr. 0.45 µM)	μg/l		2.7	3.8	2.2	1.6	1.8	1.5	1.4		3.4	2.1	1.8	2.2	13	1.4	1.44	1.9	2.15	3.64	3.8
Rubidium (nach Filtr. 0.45 μM)	μg/l		4.5	4.82	4.07	4.03	4.24	4.4	4.3!			4.37	4.15	4.59	13	4.03	4.05	4.37	4.35	4.73	4.82
Uranium (nach Filtr. 0.45 µM)	μg/l		0.63	0.67	0.62	0.59	0.645	0.64	0.58			0.66	0.62	0.71	13		0.584	0.63		0.694	0.71
Selenium (nach Filtr. 0.45 µM)	μg/l		0.17	0.07	0.02	0.18	0.18	0.01	0.12		0.13	0.00	0.16	0.71	6	0.12	*	*	0.157	*	0.18
Strontium (nach Filtr. 0.45 µM)	μg/l		460	550	450	430	450	420	410			440	420	480	13	410	414	440	448	522	
Thallium (nach Filtr. 0.45 µM)	μg/l	0.01	0.01	<	<	0.01	<	0.01		< <		<	420 <	<	13	<	717	<	<	0.01	550 = 0.01 =
Tellurium (nach Filtr. 0.45 μM)	μg/l	0.01	< 0.01	<	<	0.01	<	< 0.01				<	<	<	13	<	<	<	<	< .01	<
Cesium (nach Filtr. 0.45 µM)	μg/l	0.05	<	~	~	<	<	<				<	<	~	13	<		<	<	<	< □
Komplexbildner	μg/i	0.03													10						
Anionaktive Detergentien	mg/l	0.01			0.02		0.01			0.02			<		4	<	*	*	0.0137	*	0.02
Nichtionische & kationische Detergentien	mg/l	0.01			0.02		0.01			0.02			0.04		3	*	*	*	0.0137 *	*	*
Nitrilotriacetat	-	3		<				3							13						3
Ethylendinitrilotetraacetat (EDTA)	μg/l	3	7.8	5.8	5.9	4.3	5.3	5 5	3.6			< 4.5	3.7	< 7	13	3.5	3.54	< 1 0	5.03	7.36	70
Diethylentriaminpentaacetat (DTPA)	μg/l	3	4.2	3.6	3.5	3.2	3.3 <	: <				4.5		6.7	13		3.34	4.8		3.8	7.8 = 4.2 =
	μg/l	ა	4.2	<	<	3.2	<	<	•	< <	<	<	<	<	10	<	<	<	<	3.0	4.2
																					No.
Flüchtige halogenierte Kohlenwasserstoff		0.02								, ,					12						
Bromchlormethan	μg/l	0.02	<	<	<	<	<	<		< <		<	<	<	13	<	<	<	<	<	<
Bromchlormethan Bromdichlormethan	μg/l μg/l	0.02	<	<	<	<	<	<	•	< <	<	<	<	<	13	<	< <	<	<	<	<
Bromchlormethan Bromdichlormethan Dibromchlormethan	µg/l µg/l µg/l	0.02 0.02	<	< <	< <	< 0.02	< <	<	•	< <	< <	< <	< <	< <	13 13	< <	< < <	< <	< <		0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan	μg/l μg/l μg/l μg/l	0.02 0.02 0.02	< < <	< < <	<	< 0.02 <	< < <	< < <	•	< <	< < <	< < <	< < <	< < <	13 13 13	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < <	<	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan	µg/I µg/I µg/I µg/I µg/I	0.02 0.02 0.02 0.02	< < <	< <	< < <	< 0.02 < <	< < <	< < <	•	<	< < < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <	13 13 13 13	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < <	<	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien	µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.02 0.01	< < <	< < <	< <	0.02<<	< < < <	< < < <		<	< < < <	< < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < <	13 13 13 13 13	< < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan	µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.02 0.01 0.01	< < < <	< < < < < < < <	< < < < < < <	0.02<<	< < < <	< < < < < < <		<	< < < < <	< < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	13 13 13 13 13 12	< < < < < < < < < < < < < < < < < < <	<	< < < < < < <	< < < < < < < < < < < < < < < < < < <	<	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.02 0.01 0.01	< < < <	< < <	< < < < < < < < < < < < < < < < < < <	0.02<!--</td--><td>< < <</td><td>< < <</td><td></td><td></td><td>< < < < <</td><td>< < <</td><td>< < <</td><td>< < <</td><td>13 13 13 13 13 12 13</td><td>< < <</td><td><</td><td>< < <</td><td>< < <</td><td><</td><td>0.02</td>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <			< < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	13 13 13 13 13 12 13	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.02<<<	<	< < < < < < < < < < < < < < < < < < <			< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	13 13 13 13 13 12 13 13	< < <	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff Tribrommethan	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	< < < < < < < < < < < < < < < < < < <	< < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.02<!--</td--><td>< < <</td><td>< < <</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>< < <</td><td><pre></pre></td><td>< < <</td><td><</td><td>< < <</td><td>13 13 13 13 13 12 13 13 13</td><td><td>< < <</td><td>< <!--</td--><td>< < <</td><td><</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	· · · · · · · · · · · · · · · · · · ·	< < < < < < < < < < < < < < < < < < <	<pre></pre>	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	13 13 13 13 13 12 13 13 13	<td>< < <</td> <td>< <!--</td--><td>< < <</td><td><</td><td>0.02</td></td>	< < < < < < < < < < < < < < < < < < <	< </td <td>< < <</td> <td><</td> <td>0.02</td>	< < <	<	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan	Ha\l Ha\l Ha\l Ha\l Ha\l Ha\l Ha\l Ha\l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< 0.02< < < < < < < < 	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.00	< < < < < < < < < < < < < < < < < < <	<pre></pre>	<td>< < <</td> <td>< < <</td> <td>13 13 13 13 13 12 13 13 13 13 13</td> <td><td>< < <</td><td><td></td><td>< < <</td><td>0.02</td></td></td>	< < <	< < < < < < < < < < < < < < < < < < <	13 13 13 13 13 12 13 13 13 13 13	<td>< < <</td> <td><td></td><td>< < <</td><td>0.02</td></td>	< < < < < < < < < < < < < < < < < < <	<td></td> <td>< < <</td> <td>0.02</td>		< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan	+g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< 0.02< << << << << 	< < <	<td>· · · · · · · · · · · · · · · · · · ·</td> <td>< < < <</td> <td><pre></pre></td> <td>< < <</td> <td><td><</td><td>13 13 13 13 13 12 13 13 13 13 13 13</td><td><td>< < <</td><td>< <!--</td--><td><td>< < <</td><td>0.02</td></td></td></td></td>	· · · · · · · · · · · · · · · · · · ·	< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	<pre></pre>	< < < < < < < < < < < < < < < < < < <	<td><</td> <td>13 13 13 13 13 12 13 13 13 13 13 13</td> <td><td>< < <</td><td>< <!--</td--><td><td>< < <</td><td>0.02</td></td></td></td>	<	13 13 13 13 13 12 13 13 13 13 13 13	<td>< < <</td> <td>< <!--</td--><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	< </td <td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	<td>< < <</td> <td>< < <</td> <td>< 0.02< < < < < < < < < </td> <td>< < <</td> <td><td>0.00</td><td>< < <</td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13</td><td><td><</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< 0.02< < < < < < < < < 	< < < < < < < < < < < < < < < < < < <	<td>0.00</td> <td>< < <</td> <td><pre></pre></td> <td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13</td><td><td><</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	0.00	< < <	<pre></pre>	<td>< < <</td> <td><td>13 13 13 13 13 12 13 13 13 13 13 13</td><td><td><</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 12 13 13 13 13 13 13</td> <td><td><</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 12 13 13 13 13 13 13	<td><</td> <td><td><td>< < <</td><td>0.02</td></td></td>	<	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorkhen Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen Chloroform	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	<td>< < <</td> <td><td><pre></pre></td><td><td><td>0.00</td><td>< < <</td><td><pre> <</pre></td><td>< < <</td><td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><pre></pre></td> <td><td><td>0.00</td><td>< < <</td><td><pre> <</pre></td><td>< < <</td><td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td>	<pre></pre>	<td><td>0.00</td><td>< < <</td><td><pre> <</pre></td><td>< < <</td><td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	<td>0.00</td> <td>< < <</td> <td><pre> <</pre></td> <td>< < <</td> <td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	0.00	< < <	<pre> <</pre>	< < < < < < < < < < < < < < < < < < <	<td><td>13 13 13 13 13 12 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	<td>13 13 13 13 13 12 13 13 13 13 13 13 13</td> <td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 12 13 13 13 13 13 13 13	<td>< < <</td> <td><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen Chloroform 1,2,3-Trichlorpropan	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	<td>< < <</td> <td>< < <</td> <td>< 0.02< < </td> <td>< < <</td> <td><td>0.00</td><td>< < <</td><td><pre> <</pre></td><td><td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< 0.02< < 	< < < < < < < < < < < < < < < < < < <	<td>0.00</td> <td>< < <</td> <td><pre> <</pre></td> <td><td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	0.00	< < <	<pre> <</pre>	<td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	<td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	<td>13 13 13 13 13 12 13 13 13 13 13 13 13 13</td> <td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 12 13 13 13 13 13 13 13 13	<td>< < <</td> <td><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichloroffrm 1,2,3-Trichlorpropan cis-1,3-Dichlorpropen	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	<td>< < <</td> <td><td><pre></pre></td><td><td><td>0.00</td><td><td><pre> <</pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><pre></pre></td> <td><td><td>0.00</td><td><td><pre> <</pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td>	<pre></pre>	<td><td>0.00</td><td><td><pre> <</pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td>	<td>0.00</td> <td><td><pre> <</pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	0.00	<td><pre> <</pre></td> <td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	<pre> <</pre>	<td>< < <</td> <td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13</td> <td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 12 13 13 13 13 13 13 13 13 13	<td>< < <</td> <td><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorethen Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen Chloroform 1,2,3-Trichlorpropan cis-1,3-Dichlorpropen trans-1,3-Dichlorpropen	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	<td>< < <</td> <td><td>< 0.02< < </td><td><td><td>0.07</td><td><td><pre></pre></td><td><td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>< 0.02< < </td> <td><td><td>0.07</td><td><td><pre></pre></td><td><td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td>	< 0.02< < 	<td><td>0.07</td><td><td><pre></pre></td><td><td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td>	<td>0.07</td> <td><td><pre></pre></td><td><td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td>	0.07	<td><pre></pre></td> <td><td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	<pre></pre>	<td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	<td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	<td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13</td> <td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13	<td>< < <</td> <td><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen Chloroform 1,2,3-Trichlorpropan cis-1,3-Dichlorpropen trans-1,3-Dichlorpropen cis-1,2-Dichlorethen	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	<td><td><td>< 0.02< < < < < < < < < <</td><td><td><td>0.07</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td></td>	<td><td>< 0.02< < < < < < < < < <</td><td><td><td>0.07</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td>	<td>< 0.02< < < < < < < < < <</td> <td><td><td>0.07</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td>	< 0.02< < < < < < < < < <	<td><td>0.07</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td>	<td>0.07</td> <td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	0.07	<td><pre></pre></td> <td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	<pre></pre>	<td>< < <</td> <td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td> <td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	<td>< < <</td> <td><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen Chloroform 1,2,3-Trichlorpropan cis-1,3-Dichlorpropen trans-1,3-Dichlorpropen cis-1,2-Dichlorethen trans-1,2-Dichlorethen	+g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02	<td><td><td>< 0.02< < < < < < < < < <</td><td><td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td></td>	<td><td>< 0.02< < < < < < < < < <</td><td><td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td>	<td>< 0.02< < < < < < < < < <</td> <td><td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td>	< 0.02< < < < < < < < < <	<td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td>	<td>0.00</td> <td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	0.00	<td><pre></pre></td> <td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	<pre></pre>	<td>< < <</td> <td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td> <td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	<td>< < <</td> <td><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethan Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen Chloroform 1,2,3-Trichlorpropan cis-1,3-Dichlorpropen trans-1,3-Dichlorpropen cis-1,2-Dichlorethen trans-1,2-Dichlorethen 1,1,2,2-Tetrachlorethan	+g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.03	<td><td><td>< 0.02< < < < < < < < < < <</td><td><td><td>0.02</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td></td>	<td><td>< 0.02< < < < < < < < < < <</td><td><td><td>0.02</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td>	<td>< 0.02< < < < < < < < < < <</td> <td><td><td>0.02</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td>	< 0.02< < < < < < < < < < <	<td><td>0.02</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td>	<td>0.02</td> <td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	0.02	<td><pre></pre></td> <td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	<pre></pre>	<td>< < <</td> <td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td> <td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	<td>< < <</td> <td><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen Chloroform 1,2,3-Trichlorpropan cis-1,3-Dichlorpropen trans-1,2-Dichlorethen trans-1,2-Dichlorethen 1,1,2,2-Tetrachlorethan 1,1,2,2-Tetrachlorethan 1,2-Dibrom-3-Chlorpropan	+g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.03	<td><td><td>< 0.02< < < < < < < < < < < <</td><td><td><td>0.02</td><td>< < <</td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td>	<td><td>< 0.02< < < < < < < < < < < <</td><td><td><td>0.02</td><td>< < <</td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td>	<td>< 0.02< < < < < < < < < < < <</td> <td><td><td>0.02</td><td>< < <</td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td>	< 0.02< < < < < < < < < < < <	<td><td>0.02</td><td>< < <</td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	<td>0.02</td> <td>< < <</td> <td><pre></pre></td> <td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	0.02	< < <	<pre></pre>	<td>< < <</td> <td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td>< < <</td> <td><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen Chloroform 1,2,3-Trichlorpropan cis-1,3-Dichlorpropen trans-1,2-Dichlorethen trans-1,2-Dichlorethen 1,1,2,2-Tetrachlorethan 1,1,2,2-Tetrachlorethan 1,2-Dibrom-3-Chlorpropan 1,2-Dichlorpropan	+g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.03	<td><td><td>0.02 <</td><td><td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td></td>	<td><td>0.02 <</td><td><td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td>	<td>0.02 <</td> <td><td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td>	0.02 <	<td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td>	<td>0.00</td> <td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	0.00	<td><pre></pre></td> <td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	<pre></pre>	<td>< < <</td> <td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td> <td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	<td>< < <</td> <td><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethan Tetrachlorethen Tetrachlorethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen Chloroform 1,2,3-Trichlorpropan cis-1,3-Dichlorpropen trans-1,3-Dichlorpropen trans-1,2-Dichlorethen 1,1,2,2-Tetrachlorethan 1,2,2-Dichlorethan 1,2,2-Dichlorethen 1,1,2,2-Tetrachlorethan 1,2-Dibrom-3-Chlorpropan 1,2-Dichlorpropan 1,2-Dichlorpropan 1,2-Dichlorpropan	+g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.03	<td><td><td>0.02 <</td><td><td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td></td>	<td><td>0.02 <</td><td><td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td></td>	<td>0.02 <</td> <td><td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td></td>	0.02 <	<td><td>0.00</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td></td>	<td>0.00</td> <td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td></td>	0.00	<td><pre></pre></td> <td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td></td>	<pre></pre>	<td>< < <</td> <td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td>< < <</td><td><td><td>< < <</td><td>0.02</td></td></td></td>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td>< < <</td> <td><td><td>< < <</td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td>0.02</td></td>	<td>< < <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	0.02
Bromchlormethan Bromdichlormethan Dibromchlormethan 1,2-Dichlorethan Dichlormethan Hexachlorbutadien Hexachlorethan Tetrachlorethen Tetrachlorkohlenstoff Tribrommethan 1,1,1-Trichlorethan 1,1,2-Trichlorethan Trichlorethen Chloroform 1,2,3-Trichlorpropan cis-1,3-Dichlorpropen trans-1,2-Dichlorethen trans-1,2-Dichlorethen 1,1,2,2-Tetrachlorethan 1,1,2,2-Tetrachlorethan 1,2-Dibrom-3-Chlorpropan 1,2-Dichlorpropan	+g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l	0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.03	<td><td><td>0.02 <</td><td><td><td>0.07</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td><pre></pre></td><td>0.02</td></td></td></td></td></td></td></td></td></td></td>	<td><td>0.02 <</td><td><td><td>0.07</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td><pre></pre></td><td>0.02</td></td></td></td></td></td></td></td></td></td>	<td>0.02 <</td> <td><td><td>0.07</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td><pre></pre></td><td>0.02</td></td></td></td></td></td></td></td></td>	0.02 <	<td><td>0.07</td><td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td><pre></pre></td><td>0.02</td></td></td></td></td></td></td></td>	<td>0.07</td> <td><td><pre></pre></td><td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td><pre></pre></td><td>0.02</td></td></td></td></td></td></td>	0.07	<td><pre></pre></td> <td><td>< < <</td><td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td><pre></pre></td><td>0.02</td></td></td></td></td></td>	<pre></pre>	<td>< < <</td> <td><td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td><pre></pre></td><td>0.02</td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13</td> <td><td>< < <</td><td><td><td><pre></pre></td><td>0.02</td></td></td></td>	13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	<td>< < <</td> <td><td><td><pre></pre></td><td>0.02</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td><pre></pre></td><td>0.02</td></td>	<td><pre></pre></td> <td>0.02</td>	<pre></pre>	0.02

Parameter	Einheit	u.b.g.	Jan.		Mrz.	Apr.	Mai	Jun.	Ju	ıl. A	Aug.	Sep. Ok	t. Nov	. Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Monozyklische arom. Kohlenwasser	stoffe (MAK's) (Fortsetzu	ng)																		
Butylbenzol	μg/l	0.02	<	<	<	<	<	0.02		<	<	<	<	< <	13	<	<	<	<	<	
1,2-Dimethylbenzol (o-Xylol)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	< <	13	<	<	<	<	<	<
Ethenylbenzol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	< 0.02	13	<	<	<	<	<	0.02
Ethylbenzol	μg/l	0.02	<	<	<	<	<	<		<	<	<	< 0.0	2 <	13	<	<	<	<	<	0.02
Toluol	μg/l	0.02		0.04	0.03	<	0.025	0.04	0.0	12 (0.02	0.02	<	< <	12	<	<	0.02	0.0217	0.04	0.04
Propylbenzol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	< <	13	<	<	<	<	<	< 🗾
Chlorbenzol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	< <	13	<	<	<	<	<	<
2-Chlormethylbenzol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	< <	13	<	<	<	<	<	<
1,2-Dichlorbenzol	μg/l	0.05		<	<	<	<	<		<	<	<	<	< <	12	<	<	<	<	<	<
1,3-Dichlorbenzol	μg/l	0.05		<	<	<	<	<		<	<	<	<	< <	12	<	<	<	<	<	<
1,4-Dichlorbenzol	μg/l			<	<	<	<	<		<	<	<	<	< <	12	<	<	<	<	<	<
Pentachlorbenzol	μg/l		<	<	<	<	<	<		<	<	<	<	< <	13	<	<	<	<	<	<
1,2,3,4-Tetrachlorbenzol	μg/l			<	<	<	<	<		<	<	<	<	< <	12	<	<	<	<	<	<
1,2,4,5-Tetrachlorbenzol	μg/l			<	<	<	<	<		<	<	<	<	< <	12	<	<	<	<	<	<
1,2,3-Trichlorbenzol	μg/l			<	<	<		<		<	<	<		< <	12	<	<	<	<	<	<
1,2,4-Trichlorbenzol	μg/l	0.01			<					2	<	0.01	< 0.0		12	<	~	<	<	0.01	0.01
1,3,5-Trichlorbenzol	μg/l	0.01			~					<	<	<			12	<	,		<	<	<
Iso-Propylbenzol	μg/l	0.02	<	<	<	<		<		<	<	<		< <	13	<		<	<	<	< ▶
1,3,5-Trimethylbenzol	μg/l	0.02	<		<	<		0.02	0.0		<	<	< 0.0		13	<		<	<	0.026	0.03
1,2,4-Trimethylbenzol	μg/l	0.02	<	<	<	<		0.02		<	<	<	< 0.0		13	<		<	<	0.02	0.02
Isobutylbenzol	μg/I	0.02	<		<	<		0.02		<	<	<		< <	13	<		<	<	0.02	<
1,3- und 1,4-Dimethylbenzol	μg/I	0.02	<		<	<				<	<	<		< <	13	<		<	<	<	< ▶
P-Isopropylmethylbenzol	μg/I	0.04	<		<	<			0.0			0.02	< 0.0		13	<	<	<	<	0.026	0.03
, .,	μ9/1	0.02					_	0.02	0.0												
Polyzyklische arom Kohlenwasserst	toffe (PAK's)									_		-						`			
Polyzyklische arom. Kohlenwasserst		0.05		-			-									-	*	*		*	
Acenaphthen	μg/l			<		<				<		<		<	6	<	*	*	<	*	<
Acenaphthen Acenaphthylen	μg/l μg/l	0.05		<		<	<			< <		< <		< .	6	<	*	*	< <	*	< <
Acenaphthen Acenaphthylen Anthracen	μg/l μg/l μg/l	0.05 0.01	<	< <	<	<	< <			< < <	<	< < <	<	< < <	6 6 13	< <	* * < *	* * < *	< < <	* * *	<
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen	μg/l μg/l μg/l μg/l	0.05 0.01 0.01		< < <		< <	< < <	<		< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	<	< < <	6 6 13 6	< < <	* * < *	* * < *	< < <	* * *	<
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen	µg/l µg/l µg/l µg/l	0.05 0.01 0.01 0.005	<	< < <	< <	< < <	< < <	< <		< < < < < < < < < < < < < < < < < < <	< <	< < < < < < < < < < < < < < < < < < <	< <	< < <	6 6 13 6 13	< < <	* * * <	* * * <	< < < <	*	<
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen	µg/l µg/l µg/l µg/l µg/l	0.05 0.01 0.01 0.005 0.005	<	< < < <	< < <	< < <	< < < <	< <		< < < < < < < < < < < < < < < < < < <	< < <	<	< < <	< < < < < <	6 6 13 6 13	< < < <	* < * <	* * * < * < < < < < < < < < < < < < < <	< < < <	*	<
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benzo[ghi]Perylen	րց/I - ըց/I - ը - ը - ը - ը - ը - ը - ը - ը - ը - ը	0.05 0.01 0.01 0.005 0.005	< <	<	< <	< < < <	< < < < < < < 0.000575	< < <		< < < < < < < < < < < < < < < < < < <	< < < 0007	< c	<	< < < < < < < < < < < < < < < < < < <	6 6 13 6 13 13	< < < < < < < < < < < < < < < < < < <	* * * * * * * * * * * * * * * * * * * *	*	< < < < < < <	*	<
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benzo[ghi]Perylen Benz[a]Pyren	րց/I - ըց/I - ը - ը - ը - ը - ը - ը - ը - ը - ը - ը	0.05 0.01 0.01 0.005 0.005 0.0005 0.01	<	<	< < <	< < < <	<	< <		< < < < < < < < < < < < < < < < < < <	< < <	<pre></pre>	<	<	6 6 13 6 13 13 13	< < < < < < < < < < < < < < < < < < <	*	* * * < * < < < < < < < < < < < < < < <	<	*	<
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benz[ghi]Perylen Benz[a]Pyren Chrysen	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.05 0.01 0.01 0.005 0.005 0.0005 0.01 0.01	< <	<	< < <	< < < < < < < < < < < < < < < < < < <	<	< < <		<	< < < 0007	< c	<	<td>6 6 13 6 13 13 13 13</td> <td>< < <</td> <td>* * * < < < * * * * * * * * *</td> <td>*</td> <td><</td> <td>*</td> <td><</td>	6 6 13 6 13 13 13 13	< < < < < < < < < < < < < < < < < < <	* * * < < < * * * * * * * * *	*	<	*	<
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benz[ghi]Perylen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.05 0.01 0.01 0.005 0.005 0.005 0.001 0.01	< <	<	< < <	< < < < < < < < < < < < < < < < < < <	<	< < <		<	< < < 0007	<pre></pre>	< < < < < 8 0.000 < <		6 6 13 6 13 13 13 6 6	< < < < < < < < < < < < < < < < < < <	*	*	< < < < < < < < < < < < < < < < < < <	*	<
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benzc[ghi]Perylen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.05 0.01 0.01 0.005 0.005 0.005 0.001 0.01 0.	< < <	< c c c c c c c c c c c c c c c c c c c	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<	< < < <		<	< < < 0007 <	<pre></pre>	<		6 6 13 6 13 13 13 6 6 6 6	<td>*</td> <td>*</td> <td>< < <</td> <td>*</td> <td><</td>	*	*	< < < < < < < < < < < < < < < < < < <	*	<
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benzo[ghi]Perylen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.05 0.01 0.01 0.005 0.005 0.005 0.001 0.01 0.	< <	< c < 0.001 < c < 0.02 < c	< < <	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <		<	< < < 0007	<pre></pre>	<	<	6 6 13 6 13 13 13 6 6 6 6		*	*	< < < < < < < < < < < < < < < < < < <	*	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benzo[ghi]Perylen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoren	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.05 0.01 0.01 0.005 0.005 0.0005 0.01 0.01	< < <	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<<<0.000575<<<<<	< < < < < < < < < < < < < < < < < < <		<	<	<pre></pre>	<	<	6 6 13 6 13 13 13 6 6 6	<td>*</td> <td>*</td> <td><td>* * * * * * * * * * * * * * * * * * *</td><td>0.001</td></td>	*	*	<td>* * * * * * * * * * * * * * * * * * *</td> <td>0.001</td>	* * * * * * * * * * * * * * * * * * *	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benzo[ghi]Perylen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoren Indeno[1,2,3-cd]Pyren	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.05 0.01 0.01 0.005 0.005 0.005 0.01 0.01	< < <	<pre></pre>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<pre></pre>	< < < < < < < < < < < < < < < < < < <		<	<	<pre></pre>	<	<td>6 6 13 6 13 13 13 6 6 6 13</td> <td>< < <</td> <td>* * < * < < * * * * * * * * * * * * * *</td> <td>*</td> <td>< < <</td> <td>*</td> <td>0.001</td>	6 6 13 6 13 13 13 6 6 6 13	< < < < < < < < < < < < < < < < < < <	* * < * < < * * * * * * * * * * * * * *	*	< < < < < < < < < < < < < < < < < < <	*	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benzo[ghi]Perylen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoren Indeno[1,2,3-cd]Pyren Pyren	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.05 0.01 0.01 0.005 0.005 0.005 0.01 0.01	< < < <	<pre></pre>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<pre></pre>	< < <		<	<	<pre></pre>	<	<	6 6 13 6 13 13 13 6 6 6 13 6	< < < < < < < < < < < < < < < < < < <	*	*	< < < < < < < < < < < < < < < < < < <	* * * < 0.001 * * * * 0.00092 *	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoren Indeno[1,2,3-cd]Pyren Pyren Naphthalin	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.05 0.01 0.01 0.005 0.005 0.005 0.01 0.01	< < <	<pre></pre>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<pre></pre>	< < <		<	<	<pre></pre>	<	<	6 6 13 6 13 13 13 6 6 6 13	< < < < < < < < < < < < < < < < < < <	*	*	< < < < < < < < < < < < < < < < < < <	* * * * * * * * * * * * * * * * * * *	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoren Indeno[1,2,3-cd]Pyren Pyren Naphthalin Polychlor Biphenyle (PCB's)	4g/l 4g/l 4g/l 4g/l 4g/l 4g/l 4g/l 4g/l	0.05 0.01 0.01 0.005 0.005 0.005 0.01 0.01 0.01 0.01 0.05 0.005 0.005 0.001	< < < < <	<	< < < < < < <	< < < < < < < < < < < < < < < < < < <	0.000575 < < < < < < < < < < < < < < < < < <	< < <		<	<	<pre></pre>	<	<	6 6 13 6 13 13 13 6 6 6 13 6 13 6	< < < < < < < < < < < < < < < < < < <		*	<td>0.001 < * * * * * * * 0.00092 * 0.0034</td> <td>0.001</td>	0.001 < * * * * * * * 0.00092 * 0.0034	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoren Indeno[1,2,3-cd]Pyren Pyren Naphthalin Polychlor Biphenyle (PCB's) PCB 28	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.05 0.01 0.01 0.005 0.005 0.005 0.01 0.01	< < < < < < < < < < < < < < < < < < <	0.001	<td></td> <td>0.000575 < < <</td> <td>< < <</td> <td></td> <td><</td> <td><</td> <td><pre></pre></td> <td><</td> <td><</td> <td>6 6 6 13 6 13 13 13 6 6 6 6 13 6 13 6 1</td> <td>< < <</td> <td><</td> <td>*</td> <td><td>0.001 < * * * * * * * 0.00092 * 0.0034</td><td>0.001</td></td>		0.000575 < < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		<	<	<pre></pre>	<	<	6 6 6 13 6 13 13 13 6 6 6 6 13 6 13 6 1	< < <	<	*	<td>0.001 < * * * * * * * 0.00092 * 0.0034</td> <td>0.001</td>	0.001 < * * * * * * * 0.00092 * 0.0034	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoren Indeno[1,2,3-cd]Pyren Pyren Naphthalin Polyshlor Biphenyle (PCB's) PCB 28 PCB 52	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.05 0.01 0.01 0.005 0.005 0.005 0.01 0.01	< < < < < < < < < < < < < < < < < < <	0.001 < 0.0001 < 0.0001 < 0.00001	< < < < < < < < < < < < < < < < < < <	<td><pre></pre></td> <td>< < <</td> <td></td> <td><</td> <td><</td> <td><pre></pre></td> <td><</td> <td>< < < <</td> <td>6 6 6 13 6 13 13 13 6 6 6 6 13 6 13 6 1</td> <td>< < <</td> <td>< <</td> <td>*</td> <td><td>0.001 < * * * * * * 0.00092 * 0.034</td><td>0.001</td></td>	<pre></pre>	< < < < < < < < < < < < < < < < < < <		<	<	<pre></pre>	<	< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	6 6 6 13 6 13 13 13 6 6 6 6 13 6 13 6 1	< < <	< <	*	<td>0.001 < * * * * * * 0.00092 * 0.034</td> <td>0.001</td>	0.001 < * * * * * * 0.00092 * 0.034	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benzc[ghi]Perylen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoren Indeno[1,2,3-cd]Pyren Pyren Naphthalin Polychlor Biphenyle (PCB's) PCB 28 PCB 52 PCB 101	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.05 0.01 0.01 0.005 0.005 0.005 0.01 0.01 0.01 0.01 0.01 0.05 0.005 0.0001 0.0001 0.0001	< < < < < < < < < < < < < < < < < < <	0.001 < 0.0001 < 0.0001 < < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		0.000575 < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		<	<	<pre></pre>	<	< < < < < < < < < < < < < < < < < < <	6 6 6 13 6 13 13 13 6 6 6 13 6 13 6 13	< < <	<	*	<td>0.001 < * * * * * * * * * * * * * *</td> <td>0.001</td>	0.001 < * * * * * * * * * * * * * *	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoranthen Fluoren Indeno[1,2,3-cd]Pyren Pyren Naphthalin Polychlor Biphenyle (PCB's) PCB 28 PCB 52 PCB 101 PCB 118	нд/I нд/I	0.05 0.01 0.01 0.005 0.005 0.005 0.01 0.01 0.01 0.01 0.05 0.0005 0.0005 0.0005 0.0001 0.0001	<td>0.001 0.0001 0.0001 0.0001 0.0001</td> <td>< < <</td> <td><td>0.000575 < <</td><td>< < <</td><td></td><td><</td><td><</td><td><pre></pre></td><td><</td><td><pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <td>6 6 6 13 6 13 13 13 6 6 6 13 6 13 6 13</td><td><td>< <</td><td>*</td><td><td>0.001 < * * * 2 0.001 < * * * * * * * * * * * * * *</td><td>0.001</td></td></td></pre></pre></pre></pre></pre></pre></pre></td></td>	0.001 0.0001 0.0001 0.0001 0.0001	< < < < < < < < < < < < < < < < < < <	<td>0.000575 < <</td> <td>< < <</td> <td></td> <td><</td> <td><</td> <td><pre></pre></td> <td><</td> <td><pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <td>6 6 6 13 6 13 13 13 6 6 6 13 6 13 6 13</td><td><td>< <</td><td>*</td><td><td>0.001 < * * * 2 0.001 < * * * * * * * * * * * * * *</td><td>0.001</td></td></td></pre></pre></pre></pre></pre></pre></pre></td>	0.000575 < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		<	<	<pre></pre>	<	<pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <td>6 6 6 13 6 13 13 13 6 6 6 13 6 13 6 13</td><td><td>< <</td><td>*</td><td><td>0.001 < * * * 2 0.001 < * * * * * * * * * * * * * *</td><td>0.001</td></td></td></pre></pre></pre></pre></pre></pre></pre>	6 6 6 13 6 13 13 13 6 6 6 13 6 13 6 13	<td>< <</td> <td>*</td> <td><td>0.001 < * * * 2 0.001 < * * * * * * * * * * * * * *</td><td>0.001</td></td>	< <	*	<td>0.001 < * * * 2 0.001 < * * * * * * * * * * * * * *</td> <td>0.001</td>	0.001 < * * * 2 0.001 < * * * * * * * * * * * * * *	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benzc[ghi]Perylen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoren Indeno[1,2,3-cd]Pyren Pyren Naphthalin Polychlor Biphenyle (PCB's) PCB 28 PCB 52 PCB 101 PCB 118 PCB 138	нд/I нд/I	0.05 0.01 0.01 0.005 0.005 0.005 0.01 0.01 0.01 0.01 0.05 0.005 0.0005 0.01 0.02	<td>0.001 < 0.002 < 0.0001 < < <</td> <td>< < <</td> <td></td> <td>0.000575 < 0.000575 < 0.000525 < 0.000525 < 0.000525</td> <td>< < <</td> <td></td> <td><</td> <td><</td> <td><pre></pre></td> <td><</td> <td><td>6 6 6 13 6 13 13 13 6 6 6 13 6 13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < < <</td><td>*</td><td><td>* * * * * * * * * * * * * * * * * * *</td><td>0.001</td></td></td></td>	0.001 < 0.002 < 0.0001 < < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		0.000575 < 0.000575 < 0.000525 < 0.000525 < 0.000525	< < < < < < < < < < < < < < < < < < <		<	<	<pre></pre>	<	<td>6 6 6 13 6 13 13 13 6 6 6 13 6 13 13 13 13 13 13 13 13 13 13 13 13 13</td> <td><td>< < < <</td><td>*</td><td><td>* * * * * * * * * * * * * * * * * * *</td><td>0.001</td></td></td>	6 6 6 13 6 13 13 13 6 6 6 13 6 13 13 13 13 13 13 13 13 13 13 13 13 13	<td>< < < <</td> <td>*</td> <td><td>* * * * * * * * * * * * * * * * * * *</td><td>0.001</td></td>	< < < <	*	<td>* * * * * * * * * * * * * * * * * * *</td> <td>0.001</td>	* * * * * * * * * * * * * * * * * * *	0.001
Acenaphthen Acenaphthylen Anthracen Benz[a]Anthracen Benz[b]Fluoranthen Benz[k]Fluoranthen Benz[a]Pyren Chrysen Dibenz[a,h]Anthracen Phenanthren Fluoranthen Fluoranthen Fluoren Indeno[1,2,3-cd]Pyren Pyren Naphthalin Polychlor Biphenyle (PCB's) PCB 28 PCB 52 PCB 101 PCB 118	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.05 0.01 0.01 0.005 0.005 0.005 0.01 0.01 0.01 0.01 0.05 0.0005 0.0005 0.0005 0.0001 0.0001	<td>0.001 0.0001 0.0001 0.0001 0.0001</td> <td>< < <</td> <td><td>0.000575 < 0.000575 < 0.000525 < 0.000525 < 0.000525</td><td>< < <</td><td></td><td><</td><td><</td><td><pre></pre></td><td><</td><td><pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <td>6 6 6 13 6 13 13 13 6 6 6 13 6 13 6 13</td><td><td>< <</td><td>*</td><td><td>0.001 < * * * 0.00092 0.0034</td><td>0.001</td></td></td></pre></pre></pre></pre></pre></pre></td></td>	0.001 0.0001 0.0001 0.0001 0.0001	< < < < < < < < < < < < < < < < < < <	<td>0.000575 < 0.000575 < 0.000525 < 0.000525 < 0.000525</td> <td>< < <</td> <td></td> <td><</td> <td><</td> <td><pre></pre></td> <td><</td> <td><pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <td>6 6 6 13 6 13 13 13 6 6 6 13 6 13 6 13</td><td><td>< <</td><td>*</td><td><td>0.001 < * * * 0.00092 0.0034</td><td>0.001</td></td></td></pre></pre></pre></pre></pre></pre></td>	0.000575 < 0.000575 < 0.000525 < 0.000525 < 0.000525	< < < < < < < < < < < < < < < < < < <		<	<	<pre></pre>	<	<pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <td>6 6 6 13 6 13 13 13 6 6 6 13 6 13 6 13</td><td><td>< <</td><td>*</td><td><td>0.001 < * * * 0.00092 0.0034</td><td>0.001</td></td></td></pre></pre></pre></pre></pre></pre>	6 6 6 13 6 13 13 13 6 6 6 13 6 13 6 13	<td>< <</td> <td>*</td> <td><td>0.001 < * * * 0.00092 0.0034</td><td>0.001</td></td>	< <	*	<td>0.001 < * * * 0.00092 0.0034</td> <td>0.001</td>	0.001 < * * * 0.00092 0.0034	0.001

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Ju	ul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Halogenierte Säure								9 3					<u> </u>									
Tetrachlorortho-Phtalsaure	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Monochloressigsäure	μg/l	0.5	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dichloressigsäure	μg/l	0.1	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Monobromessigsäure	μg/l	0.5	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dibromessigsäure	μg/l	0.1	<	<	<	<	<	<		<	<	<	0.42	<	<	13	<	<	<	<	0.272	0.42
Bromchloressigsäure	μg/l	0.1	<	<	<			<		<	<	<	<	<	<	10	<	<	<	<	<	<
2,2-Dichlorpropionsäure	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<	<
Trichloressigsäure	μg/l	0.1	0.19	<	0.14	<	<	0.13		<	0.29	<	0.12	<	0.12	13	<	<	<	0.103	0.25	0.29
Teflubenzuron	μg/l	0.05	<	<												2	*	*	*	*	*	*
2,6-Dichlorbenzoësäure	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenole																						
3-Chlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
4-Chlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,3-Dichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,6-Dichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
3,4-Dichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
3,5-Dichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,3,4,5-Tetrachlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,3,4,6-Tetrachlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,3,5,6-Tetrachlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,3,4-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,3,5-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,3,6-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
3,4,5-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2-Chlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2-Phenylphenol	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Pentachlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,5-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,6-Trichlorphenol	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Aromatische Stickstoffverbindungen																						
Anilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
N-Methylanilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
3-Chloranilin	μg/l	0.03	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
2,3,4-Trichloranilin	μg/l	0.03	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
2,4,5-Trichloranilin	μg/l	0.03	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
2,4,6-Trichloranilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
3,4,5-Trichloranilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
3-Methylanilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
N,N-Diethylanilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
N-Ethylanilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
2,4,6-Trimethylanilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
4-Isopropylanilin	μg/l	0.03	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
3,4-Dimethylanilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
2,3-Dimethylanilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
3-Chlor-4-Methylanilin	μg/l	0.03	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
4-Methoxy-2-Nitroanilin	μg/l	0.1	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
2-Nitroanilin	μg/l	0.03	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
3-Nitroanilin	μg/l	0.1	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<
2-(Phenylsulphon)Anilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<

Parameter	Einheit			Feb.		Apr.	Mai	Jun.		Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	
Aromatische Stickstoffverbindunger			Juii.	7 00.			.viul	Juii.		Jul.	, .ug.	υ эρ.	JAL.		232.				. 00		. 00	
I- und 5-Chlor-2-Methylanilin	μg/l		<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	
N,N-Dimethylanilin	μg/I		<			<	<	<			<	<		<	<	13	<	<	<	<	<	
2,4- und 2,5-Dichloranilin	μg/l	0.1	<			<	<	<			<	<		<	<	13	<	<	<	<	<	
2-Methoxyanilin	μg/l	0.05	<			<	<	<			<	<		<	<	13	<	<	<	<	<	
2- und 4-Methylanilin	μg/l	0.1	<			<	<				<	<		<	<	13	<	2	<	<		
?-(Trifluormethyl)Anilin	μg/l	0.1	<		<	<	<	<			2			<	<	13	<	2	<	<	-	
2,5- und 3,5-Dimethylanilin	μg/l		<			<	<	<			<	<		<	<	13	<	2	<	<	<	
2,4- und 2,6-Dimethylanilin	μg/l		<			<	<	<			<	<		<	<	13	<		<	<		
I-Bromoanilin	μg/l		<			<	<	<			<	<		<	<	13	<		<	<		
-Chloranilin	μg/I	0.03	<		<	<	<	<			<	<		<	<	13	<		<	<		
-Chloranilin			<		<	<		<			<	<		<	<	13	<		<	<		
,6-Dichloranilin	μg/l		<				<	-								13						
•	μg/l					<	<	<			<	<		<	<		<	<	<	<		
,4-Dichloranilin	μg/l	0.05	<			<	<	<			<	<		<	<	13	<	<	<	<	<	
,5-Dichloraniline	μg/l	0.03	<			<	<	<			<	<		<	<	13	<	<	<	<	<	
,6-Diethylanilin	μg/l	0.05	<	<	<	<	<	<			<	<		<	<	13	<	<	< *	<	<	
Pendimethalin	μg/l	0.05						<		<	<	<	<	<	<	7	<	×	*	<	*	
luizalofop-ethyl	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	~	
rifluralin	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
onicamid	μg/l	0.01						0.02		<	<	<	<	<	<	7	<	*	*	<	*	L
rganochlorpestizide																						
lldrin	μg/l		<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
hlorbufam	μg/l							<		<	<	<	<	<	<	7	<	*	*	<	*	
hlorthal	μg/l		<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
,p'-DDD	μg/l		<			<	<			<		<		<		6	<	*	*	<	*	
p'-DDD	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
p'-DDE	μg/l	0.001	<			<	<			<		<		<		6	<	*	*	<	*	
,p'-DDE	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
,p'-DDT	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
,p'-DDT	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
ichlobenil	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
ichlorbenzamid	μg/l	0.01			<		0.02				<			<		4	<	*	*	<	*	
ichloran	μg/l		<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
licophol	μg/l		<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
lieldrin	μg/l		<		<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Ipha-Endosulphan	μg/l		<		<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
eta-Endosulphan	μg/l		<			<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
ndrin	μg/l		<			<	<	<		<	<	<		0.0007		11	<	<		0.000541 0		
enpiclonil	μg/l		<		<	<	<	<		<	<	<	<	<	<	13	<		<	<	/	
leptachlor	μg/l		<			<	<	`		<	`	<	`	<	`	6	<	*	*	<	*	
exachlorbenzol (HCB)	μg/I		<		<	<	<	<		<	<	<	<	<	<	13	<	_	<	<	,	
Ipha-HCH	μg/I			0.0002		0.0002	0.0001	<		<	<	<		0.0001	`	11	<		0.0001 0		0.0002	(
eta-HCH	μg/I		0.0002				0.0001		0.0		0.0003			0.0001	<	13		.00011	0.0001 0			
eta-non sodrin			0.0003					0.0002	0.0	0002			J.0004 <		<	13		00011	0.0002 0	.000233 0	.00000	(
amma-HCH	μg/l				<	<	<				<	<		<			<	<	<			
	μg/l		<	<	<	<	<	<		<	<	<	<	<	<	13	<	< *	< *	<	< *	
etradifon	μg/l		0.0001					<		<	<	<	<	<	<	7	<			<	^	
elta-HCH	μg/l			<	<	<	<	<		<	<	<		<		11	<	<	<	<	<	(
is-Heptachlorepoxid	μg/l		<			<	<			<		<		<		6	<	×	*	<	*	
rans-Heptachlorepoxid	μg/l		<			<	<			<		<		<		6	<	*	*	<	*	
Chlorthal-dimethyl	μg/l	0.04	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	

Parameter	Einheit	u.b.g.	Jan.		Mrz.	Apr.	Mai	Jun.	Jι	ıl	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Organochlorpestizide (Fortsetzung)	Limiore	u.b.g.	oun.	100.	1411 2.	7 tp1.	IVIUI	oun.		<i>a</i> 1.	rtug.	оор.	OKt.	1404.	D 0 2 .		141111	1 10	1 00	111.00.	. 00	WIGHT. TIKE
zoxamide	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Organophosphor und -Schwefelpestizide	P 97 ·	0.00						,			,	,	,		,		,			`		
Azinphos-Ethyl	μg/l	0.04	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Azinphos-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Bentazon	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Bromophos-methyl	μg/l	0.02						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Chlorfenvinphos	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Chlorpyriphos-Methyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Coumaphos	μg/l	0.005	<	<	<	<	<	<		<	<	<	<			11	<	<	<	<	<	<
Demeton-S-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Demeton-S-methylsulfon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Diazinon	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Dicamba	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dicrotophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethoat	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< =
Disulphoton	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dithianon	μg/l	0.1	<			<	<			<		<		<		7	<	*	*	<	*	<
S-Ethyl-N,N-Dipropylthiocarbamaat (EPTC)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Etroprophos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Etrimfos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fenchlorphos (ronnel)	μg/l	0.01						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Phenitrothion	μg/l	0.005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenthion	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phonofos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fosalone	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phosphamidon	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Glyphosat	μg/l	0.05	0.06	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Heptenophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Malathion	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Methamidophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Methidathion	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Mevinphos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Monocrotophos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Omethoat	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Oxydemeton-Methyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Paraoxon-Ethyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Parathion-Ethyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Parathion-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Pirimiphos-Methyl	μg/l	0.001	<	<	<	<	<	<		<	<	<	<	<	0.001	13	<	<	<	<	<	0.001
Pyrazophos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Sulphotep	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Terbufos	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
Tetrachlorvinphos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Thiometon	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tolclophos-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triazophos	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Trichorfon	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
AMPA	μg/l	0.1	0.3	0.2	0.22	<	<	<		<	<	<	0.21	0.29	0.25	13	<	<	0.14	0.147	0.296	

Die Beschaffenheit des IJsselmeerwassers bei Andijk im Jahre 2010 (Monatsmittelwerte und Kennzahlen)
Parameter Einheit u.b.g. Jan. Feb. Mrz. Apr. Mai Jun

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul	ıl.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Organophosphor und -Schwefelpestizide	(Fortsetzu	ıng)																				
cis-Chlorphenvinphos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	
trans-Chlorphenvinphos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Phosphamidon	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Phosphamidon	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorpyriphos-Ethyl	μg/l	0.01	<	<	<	<	<	<		<	<	<	<			11	<	<	<	<	<	<
Ediphenphos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	_	<	<	<	<
Nicosulfuron	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	_	<	<	<	<
Sulcotrion	μg/l	0.02	<		<	<	<			2	<	2	<	<	<	13	<	2	<		-	
Fosthiazat	μg/l	0.01	<	<	<	<	<	<		2	<	<	<	<	<	13	<		<	<		
Thiacloprid	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<		<	<		
Buprofezin		0.01	<	<		<	<	<			<			<	<	13	<					
Acetamiprid	μg/l	0.00		-	<			-		< <	<	< <	<	<	<	13	<		<	< <		
Disulfoton-sulfone	μg/l		<	<	<	<	<	<					<		-	13			<		<	
	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<		<	<	<	<	<	
Disulfoton-sulfoxide	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,3-bis-Sulfanylbutanedioic acid (Succimer, DMSA)	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos-sulfon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos-sulfoxid	μg/l	0.01	<	<	<	<	<	<	•	<	<	<	<	<	<	13	<	<	<	<	<	<
Fensulfothion	μg/l	0.01	<	<	<	<	<	<	•	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-sulfoxid	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Terbufos-sulfone	μg/l	0.01	<	<	<	<	<	<	•	<	<	<	<	<	<	13	<	<	<	<	<	<
Terbufos-sulfoxide	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Demeton	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-sulfon	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Organostickstoffpestizide																						
Bromacil	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Chloridazon	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dodine	μg/l	0.02	<													1	*	*	*	*	*	*
Fuberidiazol	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Lenacil	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tebuphenpyrad	μg/l	0.05						<		<	<	<	<	<	<	7	<	*	*	<	*	<
Azoxystrobin	μg/l	0.25	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Imazamethabenz-Methyl	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
boscalid	μg/l	0.01						<		<	<	<	0.01	<	<	7	<	*	*	<	*	0.01
fenamidone	μg/l	0.01						<		<	<	<	<	<	<	7	<	*	*	<	*	<
fipronil	μg/l	0.01								<	<	<	<	<	<	7	<	*	*	<	*	<
picoxystrobin	μg/l	0.01								2	<		<	<	<	7	<	*	*	<	*	<
trifloxystrobin	μg/l	0.05						<		2	<	<	<	<	<	7	<	*	*	<	*	< □
Chlorphenoxyherbizide	μg/1	0.03														,						` _
2,4-Dichlorphenoxyessigsäure (2,4-D)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,4-Diction phenoxyessigs aut e (2,4-D)	μg/I	0.02	<	<						`						2	*	*	*	*	*	*
Dichlorprop		0.03														13						<
MCPA	μg/l		<	<	<	<	<	<		<	<	<	<	<	<		<	<	<	<	<	
	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
MCPB (MARR)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Mecoprop (MCPP)	μg/l	0.02	<	<	<	0.04	<	<		<	<	<	<	<	0.03	13	<	<	<	<	0.036	0.04
2,4,5-T	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Phenoprop (2,4,5-TP)	μg/l	0.05	<	<												2	*	*	*	*	*	*
Phenylharnstoffpestizide																						
Chlorbromuron	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Chlortoluron	μg/l	0.01	<	<	0.02	0.01	<	<		<	<	<	<	<	<	13	<	<	<	<	0.016	0.02

Parameter	Einheit	u.b.g.	Jan.		Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Phenylharnstoffpestizide (Fortsetzung)											•										
Chloroxuron	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Difenoxuron	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Diflubenzuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Diuron	μg/l	0.01	<	<	<	<	<	0.01	<	<	<	0.01	<	<	13	<	<	<	<	0.01	0.01
Isoproturon	μg/l	0.01	0.02	0.01	0.01	<	<	<	<	<	<	<	<	0.02	13	<	<	<	<	0.02	0.02
Linuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metabenzthiazuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metobromuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metoxuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metsulphuron-Methyl	μg/l	0.02	<	<	0.03	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.022	0.03
Monolinuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Monuron	μg/l	0.1			<		<							<	3	*	*	*	*	*	*
Pencycuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
3-(3,4-Dichlorphenyl)-1-Methyl-Harnstoff	μg/l	0.03			<		<							<	3	*	*	*	*	*	*
1-(3,4-dichloorfenyl)harnstoff	μg/l	0.03			<										1	*	*	*	*	*	*
Triflumuron	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
3,4-Dichlorphenylharnstoff	μg/l	0.01	·		•		<	•		•	·			<	2	*	*	*	*	*	*
Dinitrophenolherbizide	PS/·	0.01					•							,	_						
2,4-Dinitrophenol	μg/l	0.03			<		<			<			<		4	<	*	*	<	*	<
Dinoseb	μg/l	0.03			<		<			~					4	2	*	*	<	*	ζ Π
Dinoterb	μg/l	0.03			<		<			-			<		4	2	*	*	<	*	<
2-Methyl-4,6-Dinitrophenol (DNOC)	μg/l	0.03			<		<			-			<		4	<	*	*	<	*	<
Vamidothion	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Carbamatpestizide	P9/1	0.01	`				`								10		`				
Aldicarb	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Aldicarb-Sulphon	μg/l	0.01	<	<	<	<	<			<	<	<		<	13	<	<	<	<	<	<
Aldicarb-Sulphoxide	μg/l	0.01	<	<	<	<	<	<		~	<	<		<	13	<	<	<	<	<	<
Bendiocarb	μg/l	0.01	<	<		<	<		2	~	<	2		<	13	2	<	2	<	<	<
Butocarboxim	μg/l	0.1	<	<		<	<		2	~	<	<		<	13	2	<	<	<	<	<
Butoxycarboxim	μg/l	0.01	<	<	<	<	<		2	<	<	<	<	<	13	<	<	<	<	<	<
Carbaryl	μg/l	0.05	<	<	<	<	<		2	<	<	<	<	<	13	<	<	<	<	<	<
Carbetamid	μg/l	0.01	<	<	0.02	<	<		2	<	<	<	<	<	13	<	<	<		0.014	0.02
Carbophuran	μg/l	0.01	<	<	< .02	<	<	<	<	<	<	<	<	<	13	<	<	<	<	< 0.014	<
Carboxin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Desmedipham	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	13		<	<	<	<	<
Diethofencarb	μg/l	0.04	<	<	<	<	<	<	<		<	<	<	<	13	2	<	<	<	<	<
Ethiophencarb	μg/l	0.04	<	<		<	<	<	~	<	<	~	<	<	13	~	<	<	<	<	<
Phenmedipham	μg/l	0.01	<	<		<	<	<			<	<	<	<	13	~	<	<	<	<	<
Phenoxycarb		0.05	<	<	<	<	<	<		<	<	<	<	<	13		<		<	<	<
Methiocarb	μg/l	0.03	<	<	<	<	<	<			<	<	<	<	13	<	<		<	<	
Methodarb	μg/l	0.01	<	<	<	<	<			<		<	<	<	12	<	<	<	<	<	<
Oxadixyl	μg/l	0.05								-			<	<	7	<	*	*	<	*	
Oxamyl	μg/l	0.05	<	<	<	<	<	<	< <	<	< <	<	<	< <	13	<	<	<	<	<	<
· ·	μg/l							-		<											
Oxycarboxin Pirimicarb	μg/l	0.01	<	<	<	<	<	<	<	<	0.08	<	<	<	13 11	<	<	<	0.0123	220.0	0.08
	μg/l	0.01	<	<	<	<	<	<	<	<		<				<	<			0.066	
Propham	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = <
Propamocarb Thiodiagrap	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	12	<	<	<	<	<	<
Thiodicarb Thiofoney	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Thiofanox	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Carbamatpestizide (Fortsetzung)	Lillion	u.b.g.	oun.	100.	IVII Z.	7 tp1.	IVIGI	oun.	oui.	rtug.	оор.	OKC.	1404.	D 0 2.			1 10	1 00	111.00.	. 00	Wax. Tike
Triallat	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chloorpropham	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Butocarboximsulphoxide	μg/l	0.1			<										1	*	*	*	*	*	*
Ethiophencarbsulphoxide	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methiocarbsulphon	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Thiofanosulphoxid	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	*
Thiofanoxsulphon	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
3-Hydroxycarbofuran	μg/l	0.1			<										1	*	*	*	*	*	*
Prosulphocarb	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyraclostrobin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ethiofencarb sulfon	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Iprovalicarb	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methiocarb Sulfoxide	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Desmethyl-pirimicarb	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methyl-N-(3-hydroxyphenyl) carbamat (MHPC)	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triazine / Triazinone / Anilide	F-57 ·				-					-											
Alachlor	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ametryn	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< -
Atrazin	μg/l	0.01	<	<	<	<	0.0125	<	<	<	<	<	<	<	13	<	<	<	<	0.014	0.02
Cyanazin	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
, Deltamethrin	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Desethylatrazin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Desisopropylatrazin (Desethylsimazin)	μg/l	0.05	<	<	<	0.05	<	<	<	<	<	<	<	<	13	<	<	<	<	<	0.05
Desmetryn	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexazinon	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metalaxyl	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metamitron	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metazachlor	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metolachlor	μg/l	0.01	<	<	<	<	<	0.01	0.01	<	<	<	<	<	13	<	<	<	<	0.01	0.01
Metribuzin	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Myclobutanil	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Procymidon	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Prometryn	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Propachlor	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Propazin	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Simazin	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Terbutryn	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Terbutylazin	μg/l	0.01	<	<	<	<	<	<	<	<	0.01	<	<	<	13	<	<	<	<	<	0.01
Triadimefon	μg/l	0.05	<	<	2		<	<	<	<	<	<	<	<	13	<	<	~	<	<	<
Vinclozolin	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phlutolanil	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Diflufenican	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Desethylterbutylazin	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pymetrozin	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Conazole	ישי	0.01			,						,	,		,		,	,		,		
Cyproconazol	μg/l	0.05	<	<	<	<	<	<	 <	<	<	<	<	<	13	<	<	<	<	<	<
Diniconazol	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Etridiazol	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Paclobutrazol	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	F. 37 .			,	`	1		,	1	,											

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90
Conazole (Fortsetzung)	FIIIIGIL	u.b.y.	oan.	160.	IVII Z.	Apı.	iviai	oun.	Jui.	Aug.	ocp.	OKL.	140 V.	DUZ.	- 11	141111	. 10	1 30	111.VV.	1 3
Penconazol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
Prochloraz	μg/l	0.01	<	<	<	<	<	<	2	<	<	<		<	13	<	<	<	<	
Terbuconazol	μg/l	0.01	<	<	<	<	<	<	<	<		<	<	<	13	<	<	<	<	
Triadimenol	μg/l	0.05	<	-	<	<	<	<	<	2	<	<	<	<	13	<	<	-	<	
Expoxiconazol	μg/l	0.05	<		<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
Diphenoconazol	μg/I	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
Azaconazol		0.25	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
Tricyclazole	μg/l	0.03													13			<		
nsektizide	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
	/1	0.02													7		*	*		
ımbda-Cyhalothrin	μg/l	0.02	<	<		<	<		<		<		<		7	<			<	
sfenvalerat	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
onstige Pestizide und Metabolite		0.04													4.0					
cephat	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
cloniphen	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
sulam	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	•
itertanol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	•
rompropylaat	μg/l	0.02						<	<	<	<	<	<	<	7	<	*	*	<	
upirimaat	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	•
aptan	μg/l	0.05	<	<		<	<		<		<		<		7	<	*	*	<	+
ymoxanil	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<
imethirimol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	•
odemorf	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<
hirimol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
hofumesat	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
nenarimol	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
nenpropiomorph	μg/l	0.05	<	<	<	<	<	<	<		<	<	<	<	13	<	<		<	
nolpet	μg/l	0.06	<	~	<		<	<		2	<	<	<	<	13	<	<	~	<	
norate	μg/l	0.02	<	~	<		<	<	,	2	<	<	<	<	13	<		-	<	
ıralaxyl	μg/l	0.02	<		<	<	<	<	2			<		<	13	<	<		<	
nazalil		0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<		<	`
rodione	μg/l	0.01										-			13					
	μg/l		<	<	<	<	<	<		<	<	<	<	<		<	<	<	<	<
itrothal-Isopropyl	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13 7	<	< *	< *	<	<
peronylbutoxid	μg/l	0.01						<	<	<	<	<	<	<	-	<			<	,
opyzamid	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<
yriphenox	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<
otenon	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<
ethoxydim	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<
etramethrin	μg/l	0.1						<	<	<	<	<	<	<	7	<	*	*	<	÷
niabendazol	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<
niocyclam hydrogenoxalate	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	12	<	<	<	<	•
iophanat-methyl	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
forine	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
methomorf	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<
,N-Dimethyl-N'-(4-Methylphenyl)																				
ulfamid (DMST)	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<
yrimethanil	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
resoxim-Methyl	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	
yridaben	μg/l	0.01	<	<		<	<	·	<		<		<		7	<	*	*	<	
			,	,		,	<		<		<		<		7	<	v		<	

Die Deschanennen des 1,55enneen	Massels	DCI Allui	J1× 11111 J6	anne 20	TO (MOUNT	tsiiiittetwei	ite unu kem	izaiiteii)														
Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	,	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Sonstige Pestizide und Metabolite (Forts	etzung)					· ·																
Abamectin	μg/l	0.01	<													1	*	*	*	*	*	*
Cyprodinil	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	* -
Imidacloprid	μg/l	0.05	<					<		<	<	<	<	<		7	<	*	*	<	*	<
Clomazone	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethenamid-p	μg/l	0.01	<	<		<	<			<		<		<		7	<	*	*	<	*	<
Florasulam	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Famoxadone	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Fenhexamid	μg/l	0.01	0.01	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	0.01
Isoxaflutole	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Methoxyfenozide	μg/l	0.02	<	~	<	<		`		2	<	2	2	<	<	13	<	2	~	<		\ \[\begin{align*}
Phorate-sulfone	μg/l	0.01	<	,	~	<	<				<	,	<	<	<	13	<	,	<	<	,	
Phorate-sulfoxide	μg/l	0.01	<	<		<	<			2	<		<	<	<	13	<		<	<		
Pyridafol (CHPP)	μg/l	0.01	<	<	<	<	<	<			<	<	<	<	<	13	<		<	<		
Spinosad	μg/I	0.01	<	<	<	<	<	<		<	<	~	<	<	<	13	<		<	<		
Tebufenozide	μg/I μg/I	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<		<	<		
Thiametoxam		0.01	-			<	<	<			<		-		<	13	<				<	
Triazoxid	μg/l		<	<	<					<		<	<	<		13		<u> </u>	<	<		0.01< < < < < < < < <
Biozide	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
	/1	0.0001														10						
Tributylzinn	μg/l	0.0021	< 0.00	< 0.01	< 0.01	< 0.01	< 0.015	< 0.00		< 0.00	< 0.01	< 0.01	< 0.01	< 0.00	< 0.05	13	< 0.01	< 0.01	< 0.01	< 0.0100	< 0.000	< 0.05
Carbendazim	μg/l	0.00	0.02	0.01	0.01	0.01	0.015	0.02	U	0.02	0.01	0.01	0.01	0.02	0.05	13	0.01	0.01			0.038	0.05
N,N-Diethyl-3-Methylbenzamid (DEET)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlofluanid	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlorvos	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Propiconazol	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Propoxur	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Flammschutzmittel																						
2,2',4,4'-Tetrabromdiphenylether		0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,5'-Tetrabromdiphenylether		0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4'-Pentabromdiphenylether		0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5-Pentabromdiphenylether		0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',6-Pentabromdiphenylether		0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,5'-Hexabromdiphenylether		0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,6'-Hexabromdiphenylether	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
2,2,4'-Tribromdiphenylether (Bde-028)	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< = <
2,2',3,4,4',5'-Hexabromdiphenylether	μg/l	0.0005	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Ether																						
di-Isopropylether (DIPE)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	0.022	0.03
Methyl-Tertiär-Butylether (MTBE)	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Diglym	μg/l	0.25	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Ethyl-Tertiär-Butylether (ETBE)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triglym	μg/l	0.25	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tetraglym	μg/l	0.3	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tertiair-Amyl-Methylether (TAME)	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Sonstige organische Stoffe	ייפיז			,	,			•		ì	,		,		,					,	ì	
Cyclohexan	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tributylphosphat (TBP)	μg/I	0.02	<	<	<	<	<	<		<	<	<	<	0.1	<	13	<		<	<	<	0.1
Triphenylphosphat (TPP)	μg/I	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<		<	<		0.1
Triphenylphosphinoxid (TPPO)		0.03								`	`				`	1	*	*	*	*	*	*
2-Aminoacetofenon	μg/l	0.1					,	,							<	13					,	<
Z-Ammoduetoremon	μg/l	0.1	<	<	<	<	<	<			<	<		<	<	13	<	<	<	<	<	<

-			, ,			atsiiiittetwe	ite ullu Kell	iizaiiteii)				_			_							
	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul	ul.	Aug.	Sep.	0kt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Sonstige organische Stoffe (Fortsetzung)	/1				0.40											- 1	¥	*	¥	*	¥	*
Hexa(Methoxymethyl) Melamine (HMMM)	μg/l				0.48						4000	4070				1			~		~	*
Biopolymere	μg/l		531		628		628	912			1390	1270		752	711	8	531		~	853	~	1390
Bausteine	μg/l		862		1020		1130	1050			958	919		979	1040	8	862	*	~	995	*	1130
Huminsubstanzen	μg/l		3330		3500		3480	3100			2670	2940		3310	3770	8	2670	*	*	3260	*	3770
neutrals	μg/l		645		729		764	623			658	882		733	779	8	623	*	*	727	*	882
acids	μg/l	200	<		<		<	<			<	<		<	<	8	<	*	*	<	*	<
CDOC	μg/l		5370		5880		6000	5680			5680	6010		5770	6300	8	5370	*	*	5840	*	6300
HOC	μg/l		43		296		79	42			42	395		231	330	8	42	*	*	182	*	395
POC	μg/l		280		402		458	299			358	85		236	18	8	18	*	*	267	*	458
Röntgenkontrastmittel																						
Amidotrizoesäure	μg/l		0.0703	0.0749	0.091	0.0336	0.0628	0.0605	0.0493	92 (0.0757	0.0728	0.0457	0.0779	0.109	12	0.0336	0.0372	0.0715	0.0686	0.104	0.109
lodipamid	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<	<
lohexol	μg/l		0.0554	0.0251	0.0602	0.0186	0.0414	0.0376	0.0384	84 (0.0283	0.0326	0.0197	0.0141	0.0347	12	0.0141	0.0154	0.0337	0.0338	0.0588	0.0602
lomeprol	μg/l	0.01	0.238	0.194	0.291	0.257	0.244	0.235	0.2	21	0.186	0.119	<	0.217	0.194	12	< 0	0.0393	0.214	0.199	0.281	0.291
lopamidol	μg/l	0.0426	0.0954	0.0731	0.066	0.0467	0.0468	0.137	0.093	92 (0.0996	0.0746	<	0.0911	0.0703	12	<	<	0.0739	0.0761	0.126	0.137
Iopansäure	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
lopromid	μg/l	0.0498	0.0605	0.0638	0.0655	0.0509	0.0565	0.0526	0.09	05 (0.0585	0.0543	< 1	0.0581	0.0755	12	<	<	0.0573	0.0559	0.0725	0.0755
lotalaminsäure	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<	<
loxaglinsäure	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<	<
loxitalaminsäure	μg/l		<		<	0.0189		0.0192		<	<	<	<	<	<	12	<	<	<	<	0.0191	0.0192
Antibiotika	P9/-	0.0.07	,	,	,	0.0.00	,	0.0.02			,	`	,	,	,		,	`	,	`	0.0.0.	616162
Chloramphenicol	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Clarithromycin	μg/l	0.05	<		<	<	<	<		`	ì	`	`	`		7	<	*	*	<	*	<
Cloxacillin	μg/l	0.01	<		<	<	<	<								7	<	*	*	<	*	<
Dapson	μg/l	0.05	<		<	<	<	<								7	<	*	*	<	*	<
Dicloxacillin		0.03	<		<	<	<	<								7	<	*	*	<	*	<
Erythromycin	μg/l	0.01	<		<	<	-	<								7	<	*	*	<	*	<
Furazolidin	μg/l	0.01				<	<	<								7	<	*	*	<	*	
Nafcillin	μg/l		<		<		-									7	-	*	*		*	
	μg/l	0.01	<		<	<	<	<								7	<	*	*	<	*	< □
Oleandomycin	μg/l	0.02	<		<	<	<	<									<			<		<
Oxacillin	μg/l	0.011	<		<	<	<	<	•	<	<	<	<	<	<	13	<	<	<	<	<	
Roxithromycin	μg/l	0.01	<		<	<	<	<								7	<			<		<
Spiramycin	μg/l	0.05	<		<	<	<	<								7	<	*	~	<	*	<
Sulfadimidin	μg/l	0.05	<	<	<	<	<	<								7	<	*	*	<	*	<
Sulfamethoxazol	μg/l		0.02		0.02	0.02	0.03	0.02	0.019		0.012	0.013	0.018	0.023	0.013	13	0.012	0.0124	0.02	0.0206	0.03	0.03
Trimethoprim	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Indometacin	μg/l	0.02	<	<	<	<	<	<								7	<	*	*	<	*	<
Azithromycin	μg/l	0.05	<	<	<	<	<	<								7	<	*	*	<	*	<
Lincomycin	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Monensin	μg/l	0.01	<	<	<	<	<	<								7	<	*	*	<	*	<
Tiamulin	μg/l	0.01	<	<	<	<	<	<	0.03	35	<	<	<	<	<	13	<	<	<	<	0.023	0.035
Sulfaquinoxalin	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Sulfachlorpyridazin	μg/l	0.1	<	<	<	<	<	<								7	<	*	*	<	*	<
Sulfadimethoxin	μg/l	0.01	<	<	<	<	<	<								7	<	×	*	<	*	<
Clothianidin	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
hydrochlorthiazide	μg/l	0.004								<	<	<	0.007	0.008	0.027	6	<	*	*	0.008	*	0.027
theophylline	μg/l	0.015								<	<	<		0.029	0.018	6	<	*	*	<	*	0.029
Betablocker	, 3, .								the state of the s													
Atenolol	μα/l	0.0001								<	0.001	<	<	0.024	0.004	6	<	×	* 0	.00486	*	0.024
=:=:	L9/1											,	•			ŭ	,					

Parameter	Einheit			Feb.		Apr.	Mai	Jun.	Ju	ul. A	ug. Sep	. Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Betablocker (Fortsetzung)																					
Bisoprolol	μg/l	0.0002								< 0.	011	0.001	<	0.003	5	<	*	* 0.0	00304	*	0.011
Metoprolol	μg/l	0.03	0.06	0.06	0.09	<	0.03	<		<	<	<	<	<	13	<	<	<	<	0.078	0.09
Propranolol	μg/l	0.01	<	<	<	<	<	<	0.03	38	<	<	0.39	<	13	<	<	<	<	0.249	0.39
Sotalol	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	<
Schmerzbehandlungsmittel																					
Lidocaïn	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	<
Diclofenac	μg/l	0.02	0.02	<	0.03	0.02	<	<		<	<	<	<	<	13	<	<	<	<	0.026	0.03
4-Dimethylaminoantipyrin	μg/l	0.05	<	<	<	<	<	<							7	<	*	*	<	*	<
Fenoprophen	μg/l	0.01	<	<	<	<	<	<							7	<	*	*	<	*	<
Ibuprophen	μg/l	0.02	<	<	0.02	0.05	<	<		<	<	<	<	<	13	<	<	<	<	0.038	0.05
Ketoprophen	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	<
Naproxen	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	<
Phenazon	μg/l	0.01	<	<	0.01	0.01	<	<		<	<	0.02	0.027	<	13	<	<	<	<	0.0242	0.027
Tolfenaminsaüre	μg/l	0.01	<	<	<	<	<	<							7	<	*	*	<	*	<
Primidon	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	<
Clofentezin	μg/l	0.02	<	<	<	<	<	<		<		<	<	<	13	<	<	<	<	<	<
paracetamol	μg/l	0.001	·			·	·			<	<		<	<	6	<	*	*	<	*	<
Salicylcsäure	μg/l	0.011								<	<	<	<	<	5	<	*	*	<	*	<
Antidepressiva und Drogen	P 97 ·	0.011									,	,	`	,		,			,		
Diazapam	μg/l	0.0002								<	<	<	0.0002	<	6	<	*	*	<	*	0.0002
fluoxetine	μg/l	0.0002							0.7		ì	0.029	0.0002	0.004	3	*	*	*	*	*	*
oxazepam	μg/l								0.00		005 0.00		0.007	0.013	6	0.004	*	* 0	.00733	*	0.013
paroxetine	μg/l	0.003							0.07		0.00	< 0.000	0.007	<	3	*	*	*	*	*	*
temazepam	μg/l	0.000							0.00		0.00		0.004	0.005	6	0.002	*	* 0	00367	*	0.005
																		()			
Cholesterinsenkende Mittel	13,								0.00	02 0.0	0.00	0.004	0.004	0.003	U	0.002		U.	00307		0.000
Cholesterinsenkende Mittel Pentoxifyllin		0.01	<	<	<	<	<	<	0.00	02 0.0	0.00	0.004	0.004	0.003			*	* 0.		*	
Pentoxifyllin	μg/l	0.01	< <	< <	< 0.02	< 0.01	< <	< <							7	<		*	<		<
Pentoxifyllin Bezafibrat	μg/l μg/l	0.01	<	<	0.02	0.01	<	<		<	<	< <	<	<	7 13	< <	<	* <	< <	0.016	< D 0.02
Pentoxifyllin Bezafibrat Clofibrinsäure	μg/l μg/l μg/l	0.01 0.02	< <	< <	0.02	0.01	< <	< <		< <	< -	< <	< <	< <	7 13 13	< < <	< <	* < <	< < <	0.016	< 0.02 = < Z
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat	µg/I µg/I µg/I	0.01 0.02 0.01	<	<	0.02	0.01	<	<	0.01	< < 14	< < <	< < <	< < <	< < <	7 13 13 13	< <	<	* <	< < <	0.016	0.02 = 0.014 Z
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure	µg/l µg/l µg/l µg/l	0.01 0.02 0.01 0.004	< <	< < <	0.02	0.01 < <	< < <	< < <	0.01	< < < 14 < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < <	< < < <	< < <	7 13 13 13 6	< < < <	< < < *	* < < < < *	< < < <	0.016 < 0.0108 *	0.02 = 0.014
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil	µg/l µg/l µg/l µg/l µg/l	0.01 0.02 0.01 0.004 0.01	< < <	< < <	0.02 < <	0.01 < <	< < <	< < <	0.01	< < < 14 < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<	< < < <	< < < <	7 13 13 13 13 6	< < < < < < < < < < < < < < < < < < <	< < < *	* < < < * <	< < < < < < < <	0.016 < 0.0108 *	0.02 = 0.014
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat	µg/I µg/I µg/I µg/I µg/I µg/I	0.01 0.02 0.01 0.004 0.01 0.085	< <	< < <	0.02	0.01 < <	< < <	< < <	0.01	< < < 114 < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		< < < <	< < < < < < <	7 13 13 13 6 13	<	< < < *	* < < < < *	< < < < < < < < < < < < < < < < < < <	0.016 < 0.0108 *	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine	µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003	< < <	< < <	0.02 < <	0.01 < <	< < <	< < <	0.01	< < < 114 < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	7 13 13 13 6 13 13 6	< < < < < < < < < < < < < < < < < < <	< < < < < * < < < * < < < < < < < < < <	* < < < * <	< < < < < < < < < < < < < < < < < < <	0.016 < 0.0108 *	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine	µg/I µg/I µg/I µg/I µg/I µg/I	0.01 0.02 0.01 0.004 0.01 0.085	< < <	< < <	0.02 < <	0.01 < <	< < <	< < <	0.01	< < < 114 < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		< < < <	< < < < < < <	7 13 13 13 6 13	<	< < < < < * < < < * < < < < < < < < < <	* < < < * <	< < < < < < < < < < < < < < < < < < <	0.016 < 0.0108 *	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05	< < < <	< < < <	0.02	0.01 < < <	< < < <	< < < <	0.01	<	< < < < < < < < < < < < < < < < < < <		< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	7 13 13 13 6 13 13 6 6	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	* < < < * < < * *	< < < < < < < < < < < < < < < < < < <	0.016 < 0.0108 * < < < * *	< 0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.02	0.01	< < < < < < < < < < < < < < < < < < <	< < < <	0.01	<	<		<pre></pre>	< < < < < < < < < < < < < < < < < < <	7 13 13 13 6 13 13 6 6	<td>< < <</td> <td>* < < < * < * * * * * * * * * *</td> <td>< < <</td> <td>0.016 < 0.0108 * < < * * 0.148</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	* < < < * < * * * * * * * * * *	< < < < < < < < < < < < < < < < < < <	0.016 < 0.0108 * < < * * 0.148	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05	< < < < < < < < < < < < < < < < < < <	<pre></pre>	0.02 < < < < < 0.12 0.08	0.01 < < < < < < < < 0.16 0.11	0.11	< < < < < < < < < < < < < < < < < < <	0.01	<	<	C C <	<	< < < < < < < < < < < < < < < < < < <	7 13 13 13 6 13 13 6 6	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	* < < < < * < < * < * * * * * * *	< < < < < < < < < < < < < < < < < < <	0.016 < 0.0108 * < < * * 0.148 0.128	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.05	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.02	0.01	< < < < < < < < < < < < < < < < < < <	< < < <	0.01	<	<	3 4 5 6 6 7 8 9 10 </td <td><</td> <td><td>7 13 13 13 6 13 13 6 6</td><td><td>< < <</td><td>* < < < * < * * * * * * * * * *</td><td><pre></pre></td><td>0.016 < 0.0108 * < < * * * 0.148 0.128 <</td><td>0.02</td></td></td>	<	<td>7 13 13 13 6 13 13 6 6</td> <td><td>< < <</td><td>* < < < * < * * * * * * * * * *</td><td><pre></pre></td><td>0.016 < 0.0108 * < < * * * 0.148 0.128 <</td><td>0.02</td></td>	7 13 13 13 6 13 13 6 6	<td>< < <</td> <td>* < < < * < * * * * * * * * * *</td> <td><pre></pre></td> <td>0.016 < 0.0108 * < < * * * 0.148 0.128 <</td> <td>0.02</td>	< < < < < < < < < < < < < < < < < < <	* < < < * < * * * * * * * * * *	<pre></pre>	0.016 < 0.0108 * < < * * * 0.148 0.128 <	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid Ifosfamid	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.05 0.015	0.12	<pre></pre>	0.02 < < < < < < < 0.12 0.08	0.01 < < < < < < < < 0.16 0.11	0.11	0.1 0.07	0.01	<	<	C C <	<	< < < < < < < < < < < < < < < < < < <	7 13 13 13 6 13 13 6 6	<td>< < <</td> <td>* < < < < * < < * < * * * * * * *</td> <td><pre></pre></td> <td>0.016 < 0.0108 * < < * * * 0.148 0.128 <</td> <td>0.014</td>	< < < < < < < < < < < < < < < < < < <	* < < < < * < < * < * * * * * * *	<pre></pre>	0.016 < 0.0108 * < < * * * 0.148 0.128 <	0.014
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid Ifosfamid Fenoterol	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.015 0.001 0.0002	< < < < < < < < < < < < < < < < < < <	<pre></pre>	0.02 < < < < < 0.12 0.08	0.01 < < < < < < < < 0.16 0.11	0.11	< < < < < < < < < < < < < < < < < < <	0.01	<	<	0.13	0.072 < 0.0003	<td>7 13 13 13 6 13 13 6 6</td> <td><td>< < <</td><td>* < < < < * < < * * <!-- </ * * * 0.12 < * * * * * * * * * * * * * * * * * *</td--><td><pre></pre></td><td>0.016 < 0.0108 * < < * * * 0.148 0.128 <</td><td>0.02</td></td></td>	7 13 13 13 6 13 13 6 6	<td>< < <</td> <td>* < < < < * < < * * <!-- </ * * * 0.12 < * * * * * * * * * * * * * * * * * *</td--><td><pre></pre></td><td>0.016 < 0.0108 * < < * * * 0.148 0.128 <</td><td>0.02</td></td>	< < < < < < < < < < < < < < < < < < <	* < < < < * < < * * </ * * * 0.12 < * * * * * * * * * * * * * * * * * *</td <td><pre></pre></td> <td>0.016 < 0.0108 * < < * * * 0.148 0.128 <</td> <td>0.02</td>	<pre></pre>	0.016 < 0.0108 * < < * * * 0.148 0.128 <	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid Ifosfamid Fenoterol enalapril	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.015 0.001 0.0002 0.03	0.12	<pre></pre>	0.02 < < < < < < < 0.12 0.08	0.01 < < < < < < < < 0.16 0.11	0.11	0.1 0.07	0.01	<	<	0.13	0.072 < 0.0003	<td>7 13 13 13 6 13 13 6 6 6</td> <td><td>< < <</td><td>* < < < < * < < * * <!-- </ * * * 0.12 < * * * * * * * * * * * * * * * * * *</td--><td><</td><td>0.016 < 0.0108 * < < * * * 0.148 0.128 <</td><td>0.02</td></td></td>	7 13 13 13 6 13 13 6 6 6	<td>< < <</td> <td>* < < < < * < < * * <!-- </ * * * 0.12 < * * * * * * * * * * * * * * * * * *</td--><td><</td><td>0.016 < 0.0108 * < < * * * 0.148 0.128 <</td><td>0.02</td></td>	< < < < < < < < < < < < < < < < < < <	* < < < < * < < * * </ * * * 0.12 < * * * * * * * * * * * * * * * * * *</td <td><</td> <td>0.016 < 0.0108 * < < * * * 0.148 0.128 <</td> <td>0.02</td>	<	0.016 < 0.0108 * < < * * * 0.148 0.128 <	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid Ifosfamid Fenoterol enalapril furosemide	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.015 0.001 0.0002	0.12	<pre></pre>	0.02 < < < < < < < 0.12 0.08	0.01 < < < < < < < < 0.16 0.11	0.11	0.1 0.07	0.01	<	<	0.133	0.072 < 0.0003 0.004 0.006	<td>7 13 13 13 6 13 13 6 6 13 13 6 6 7 6</td> <td><td>< <!--</td--><td>*</td><td><pre></pre></td><td>0.016 < 0.0108 * < < * * * 0.148 0.128 < * * *</td><td>0.02</td></td></td>	7 13 13 13 6 13 13 6 6 13 13 6 6 7 6	<td>< <!--</td--><td>*</td><td><pre></pre></td><td>0.016 < 0.0108 * < < * * * 0.148 0.128 < * * *</td><td>0.02</td></td>	< </td <td>*</td> <td><pre></pre></td> <td>0.016 < 0.0108 * < < * * * 0.148 0.128 < * * *</td> <td>0.02</td>	*	<pre></pre>	0.016 < 0.0108 * < < * * * 0.148 0.128 < * * *	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid Ifosfamid Fenoterol enalapril furosemide losartan	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.015 0.001 0.0002 0.03	0.12	<pre></pre>	0.02 < < < < < < < 0.12 0.08	0.01 < < < < < < < < 0.16 0.11	0.11	0.1 0.07	0.01	<	<pre></pre>	0.13	0.072 < 0.0003 0.004 0.006 0.003	<pre></pre>	7 13 13 13 6 13 13 6 6 6	<pre></pre>	< < < * * < < * * * * * * * * * * * * *	*	<	0.016 < 0.0108 * < < * * * 0.148 0.128 < * * * *	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid Ifosfamid Fenoterol enalapril furosemide losartan metformin	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.015 0.001 0.0002 0.03	0.12	<pre></pre>	0.02 < < < < < < < 0.12 0.08	0.01 < < < < < < < < 0.16 0.11	0.11	0.1 0.07	0.01	<	<	0.13	0.072 < 0.0003 0.004 0.006	<td>7 13 13 13 6 13 13 6 6 13 13 6 6 7 6</td> <td><td>< < < * * < < * * * * * * * * * * * * *</td><td>*</td><td><pre></pre></td><td>0.016 < 0.0108 * < < * * * 0.148 0.128 < * *</td><td>0.02</td></td>	7 13 13 13 6 13 13 6 6 13 13 6 6 7 6	<td>< < < * * < < * * * * * * * * * * * * *</td> <td>*</td> <td><pre></pre></td> <td>0.016 < 0.0108 * < < * * * 0.148 0.128 < * *</td> <td>0.02</td>	< < < * * < < * * * * * * * * * * * * *	*	<pre></pre>	0.016 < 0.0108 * < < * * * 0.148 0.128 < * *	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrat Fenofibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid Ifosfamid Fenoterol enalapril furosemide losartan metformin Endokrin wirksame Stoffe (EDC's)	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.015 0.001 0.0002 0.03	0.12	<pre></pre>	0.02 < < < < < 0.12 0.08 < < <	0.01 < < < 0.16 0.11 <	0.11	0.1 0.07 <	0.01 0.1 0.00 0.4	<	<pre></pre>	C C C C C C C C C C C C C C C C C C C	0.072 0.0003 0.004 0.006 0.003 0.57	<pre></pre>	7 13 13 13 6 13 13 6 6 6	<pre></pre>	< < < * * < < * * * * * * * * * * * * *	* < < < * * * * * * * * * * * * * * * *	<	0.016 < 0.0108 * < < * * 0.148 0.128 < * *	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid Ifosfamid Fenoterol enalapril furosemide losartan metformin Endokrin wirksame Stoffe (EDC's) Butylbenzylphtalat	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.015 0.0002 0.03 0.0002	0.12	<pre></pre>	0.02 < < < < < 0.12 0.08 < < <	0.01 <	0.11 < < <	0.1 0.07 <	0.01	<	<pre></pre>	0.13	0.072 0.0003 0.004 0.006 0.003 0.57	<pre></pre>	7 13 13 13 6 13 13 6 6 6 7 6 6 6 6 6	<pre></pre>	<pre><</pre>	* < < < * * * * * * * * * * * * * * * *	<pre></pre>	0.016 < 0.0108 * < < * * 0.148 0.128 < * * * * * * * * * * * * * * * * * * *	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid Ifosfamid Fenoterol enalapril furosemide losartan metformin Endokrin wirksame Stoffe (EDC's) Butylbenzylphtalat Dibutylphtalat (DBPH)	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.001 0.0002 0.03 0.0002 0.003	0.12	<pre></pre>	0.02 <	0.01 <	0.11 < < < < <	0.1 0.07 <	0.01 0.1 0.00 0.4	<pre></pre>	<pre></pre>	0.13	0.072 < < < < < < < < < 0.0003 0.004 0.006 0.003 0.57	<pre></pre>	7 13 13 13 6 6 13 13 6 6 6 7 6 6 6 6	<pre></pre>	<pre><</pre>	* < < < * * * * * * * * * * * * * * * *	<	0.016 < 0.0108 * < < * * 0.148 0.128 < * * * * 0.046 4.91	0.02
Pentoxifyllin Bezafibrat Clofibrinsäure Fenofibrat Fenofibrat Fenofibrinsäure Gemfibrozil Clofibrat atorvastatine pravastatine Sonstige pharmazeutische Wirkstoffe Coffein Carbamazepin Cyclofosfamid Ifosfamid Fenoterol enalapril furosemide losartan metformin Endokrin wirksame Stoffe (EDC's) Butylbenzylphtalat	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.02 0.01 0.004 0.01 0.085 0.003 0.05 0.015 0.015 0.0002 0.03 0.0002	0.12	<pre></pre>	0.02 < < < < < 0.12 0.08 < < <	0.01 <	0.11 < < <	0.1 0.07 <	0.01 0.1 0.00 0.4	<pre></pre>	<pre></pre>	0.13	0.072 0.0003 0.004 0.006 0.003 0.57	<pre></pre>	7 13 13 13 6 13 13 6 6 6 7 6 6 6 6 6	<pre></pre>	<pre><</pre>	* < < < < * * * * * * * * * * * * * * *	<pre></pre>	0.016 < 0.0108 * < < * * 0.148 0.128 < * * * * * * * * * * * * * * * * * * *	0.02

Die Beschaffenheit des IJsselmeerwassers bei Andijk im Jahre 2010 (Monatsmittelwerte und Kennzahlen)

Parameter	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min	P10	P50	m.w.	P90	Max. Pikt
Endokrin wirksame Stoffe (EDC's) (Fortse	tzung)																				<u></u>
Dimethylphtalat	μg/l	0.03			<	<	<	<	<	<	<	<	<	<	11	<	<	<	<	<	<
Di(N-Octyl)Phalat (DOP)	μg/l	0.03			<	<	<	<	<	<	<	<	<	<	11	<	<	<	<	<	<
4-Octylphenol	μg/l	0.03			<	<	<	<	<	<	<	<	<	<	11	<	<	<	<	<	<
Estron	μg/l	0.09	<	<	<	<	<	<							7	<	*	*	<	*	<
17-Alpha-Ethinylestradiol	μg/l	0.5	<	<	<	<	<	<							7	<	*	*	<	*	<
Progesteron	μg/l	0.01	<	<	<	<	<	<							7	<	*	*	<	*	<
4-TertOctylphenol	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
4-Iso-Nonylphenol	μg/l	0.03			<	<	<	<	<	<	<	<	<	<	11	<	<	<	<	<	<
Di-(2-methyl-propyl)phtalat	μg/l	0.1			0.23	1.4	<	0.43	0.2	0.64	<	0.23	<	<	11	<	<	0.2	0.307	1.25	1.4
Tetrabutylzinn	μg/l	0.0018	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triphenylzinn	μg/l	0.0017	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dibutylzinn	μg/l	0.0051	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Diphenylzinn	μg/l	0.0044	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dipropylphthalat	μg/l	0.03			<	<	<	<	<	<	<	<	<	<	11	<	<	<	<	<	<
Summe 4-Nonylphenol Isomeren	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Akitivität gegenüber 17-Beta-Estradiol (EEQ)	μg/l	0.00002	0.000081	0.000038	0.000096	0.00014	0.0000885	0.000022	0.000031 0	.000087 0	.0002110 <mark>.</mark> 0	000067	<	<	13	<	< 0.	.0000670.	.0000746 <mark>0</mark> .	0001830	.000211
Diheptylphtalat	μg/l	0.03			<	<	<	<	<	<	<	<	<	0.12	11	<	<	<	<	0.099	0.12

Meldungen von Verunreinigungen die bei RIWA (Alarmierungsfax) Nieuwegein eintrafen im Jahr 2010

Nr	Datum	Ort	Str. KM	Art und Menge der Verunreinigung	Max. Konz.	Ursache / Herkunft
1	18. Jan.	Ludwigshafen	427	Styronal (1200 Kg)	200 μg/L	unbekannt
2	14. Mrz.	Bimmen/Lobith	862	Styrol	3,9 μg/L	unbekannt
3	25. Mrz.	Bad Honnef	640	Ausfall der Kläranlage durch Giftstoffe	pH = 10.5	Betriebsunfall
4	12. Apr.	Düsseldorf- Flehe	732	МТВЕ	14 μg/L	unbekannt
5	13. Apr.		536 - 554	Mineralöl (etwa 18 Km)	?	unbekannt
6	14. Apr.		Waal 884	Dieselöl (3000 a 4000 Liter)	?	unbekannt
7	11. Mai	Dormagen	725	Benzol	5.4 μg/L	unbekannt
8	1. Jun.	Bimmen/Lobith	865	Triacetonamin (TAA)	2.4 μg/L	unbekannt
9	8. Jun.	Düsseldorf- Flehe	732	МТВЕ	14 μg/L	unbekannt
10	10. Jul.	Ludwigshafen	433	Ethylenglycol (250 Kg)	?	Betriebsunfall
11	24. Jul.	Weil am Rhein	163	1-Piperidinecarboxaldehyd (etwa 900 Kg)	7.2 μg/L	unbekannt
12	5. Aug.	Worms	440	Octamethylcyclotetra- siloxan	20 μg/L	unbekannt
13	9. Aug.	Karlsruhe	359	DEHP	9 μg/L	unbekannt
14	26. Aug.	Bimmen/Lobith	865	Toluol	40 μg/L	Schiffsunfall
15	15. Sep.	Düsseldorf- Flehe	732	Cyclohexan	5 μg/L	unbekannt
16	26. Sep.	Orsoy	786	Bilge öl	grosse Flächen	Schiffsunfall
17	8. Okt.		518 - 528	Mineralöl (etwa 10 Km)	?	unbekannt
18	13. Okt.	Bad Honnef	640	Toluol, Benzol, MTBE, Xylol, trimethylbenzol	2.1 bez 0.1 bez 1.0 μg/L	unbekannt
19	20. Okt.	Bimmen/Lobith	863	Dichlorethan	142 μg/L	Einleitiung
20	24. Okt.	Bimmen/Lobith	863	Dichlorethan	16 μg/L	Einleitiung
21	2. Nov.	Düsseldorf- Flehe	732	Benzol	6 μg/L	Schiffsunfall
22	17. Nov.		640 - 750	Gelb/weis Schaum	?	unbekannt
23	19. Nov.	Bad Honnef	640	MTBE	4.3 μg/L	unbekannt
24	21. Nov.	Bimmen/Lobith	863	ETBE, MTBE	2.6 bez 11 μg/L	unbekannt
25	23. Nov.	Dormagen	710	Tertiair Butanol (etwa 2000 Kg)	30 mg/L	Betriebsunfall
26	28. Nov.	Bimmen/Lobith	863	Benzol	4.5 μg/L	Schiffsunfall

Meldungen von Verunreinigungen die bei RIWA (Alarmierungsfax) Nieuwegein eintrafen im Jahr 2010

Nr	Datum	Ort Str. Art und Menge der Verunreinigung		Max. Konz.	Ursache / Herkunft	
27	8. Dez.	Bimmen/Lobith	863	Toluol, ethylbenzol	3.7 μg/L	unbekannt
28	9. Dez.	Bingen	528	Nafta (500 Liter)	?	Schiffsunfall
29	21. Dez.	Weil am Rhein	163	N-ethyl-2-pyrrolidinon 1100 Kg)	1.5 μg/L	unbekannt
30	26. Dez.	Duisberg	777	Gasöl (etwa 30 Km)	?	unbekannt
31	30. Dez.	Karlsruhe	362	ETBE (bis 3. Jan 2011)	13 μg/L	unbekannt

Entnahmestopps und begrenzte Produktion WCB Nieuwegein 1969 – 2010

Jahr	Verunreinigungen	Anzahl von Tagen
1969	Endosulfan	14
1970 - 1979		Keine
1980	Styrol	6
1981		Keine
1982	Chlornitrobenzol	10
1983	Dichlorisobutylether Chlorid	7 35 Tage begrenzte Entnahme
1984	Phenetidin / o-Isoanisidin	5
1985	Chlorid	17 Tage 3. Quartal begrenzte Entnahme
1986	"Sandoz" Fettsäuren / Terpentin 2,4-D Herbizide Chlorid	9 3 5 1. Quartal begrenzte Entnahme
1987	Neopentylglycol	3
1988	Isophoron Dichlorpropen Mecoprop	5 12 4
1989	Nitrobenzol Chlorid	4 4. Quartal begrenzte Entnahme
1990	Metamitron	6
1991 - 1993		Keine
1994	Isoproturon	36
1995		Keine
1998	Isoproturon	7
1999	Isoproturon	7
2000		Keine
2001	Isoproturon/Chlortoluron	34
2002	Isoproturon/Chlortoluron	19
2003		Keine
2004	MTBE	5 Tage begrenzte Entnahme (max. 50000 m³/Tag)
2005		Keine
2006	Niedrigwasser / Niedriger Abfluss	In diesen Perioden wurde intensiv mit Rijks- waterstaat (Wasserbehörde) beraten über den Fortgang der <u>normalen</u> Produktion
2007	Xylol / Benzol	2 Tage begrenzte Entname durch Waternet, PWN-Wasserabnahme aus Nieuwegein eingestellt
2008	1,2 dichlorbenzol	2 Tage
2009		Keine
2010		Keine

Mitgliedsunternehmen RIWA-Rhein

Oasen

Postfach 122

NL - 2800 AC Gouda

Besucheradresse

Nieuwe Gouwe O.Z. 3

NL - 2801 SB Gouda

Telefon +31182593530

N.V. PWN Waterleidingbedrijf Noord-Holland

Postfach 2113

NL - 1990 AC Velserbroek

Besucheradresse

Rijksweg 501

NL - 1991 AS Velserbroek

Telefon +31235413333

Hauptgeschäftsstelle Vitens

Postfach 1090

NL - 8200 BB Lelystad

Besucheradresse

Reactorweg 47

3542 AD Utrecht

Telefon +31302487911

Vitens Watertechnologie

Postfach 400

NL - 8901 BE Leeuwarden

Besucheradresse

Snekertrekweg 61

NL - 8912 AA Leeuwarden

Telefon +31582945594

Waternet

Postfach 94370

NL - 1090 GJ Amsterdam

Besucheradresse

Korte Ouderkerkerdijk 7

1096 AC Amsterdam

Telefon +31889394000

Interne Arbeitsgruppen RIWA-Rhein

Stand: April 2011

Vorstand RIWA-Rhein

Vorsitzender Dipl.-Ing. M.G.M. den Blanken, PWN

Sekretär Dr. P.G.M. Stoks, RIWA-Rijn

Mitglieder Dipl.-Ing. R. A. Kloosterman, Vitens

Frau Drs. S. de Haas, Waternet

Dipl.-Ing. A.B.I.M. Vos de Wael, Oasen

Gast Dipl.-Ing. R.R. Kruize, Waternet

Beirat Rhein

Vorsitzender Dr. P.G.M. Stoks, RIWA-Rijn

Sekretär Ing. A.D. Bannink, RIWA-Koepel

Mitglieder Frau Drs. M. van der Aa, RIVM

J. Dekker, PWN

Drs. Ing. S.W. van Duijvenbode, Waternet

Ing. G. van de Haar, RIWA-Rijn

Dr. W. Hoogenboezem, Het Waterlaboratorium Frau Dr. C.J. Houtman, Het Waterlaboratorium

Drs. M. de Jonge, Vitens NV

Dr. M.C. Kotte, RWS Waterdienst

Drs. L.M. Puijker, KWR, Watercycle Research Institute

Dr. R.J.C.A. Steen, Het Waterlaboratorium

Drs. H. Timmer, Oasen

Drs. E.S.E. Yedema, Waternet

Externe Arbeitsgruppen RIWA-Rhein

RIWA-Rijkswaterstaat (oberste Straßen- und Wasserbehörde)

Vorsitzender ing. R. van der Plaat, RWS Directie Utrecht

Sekretär Dr. P.G.M. Stoks, RIWA-Rijn Mitglieder Ing. A.D. Bannink, RIWA-Rijn

Frau Drs. T. Burger, Rijkswaterstaat Directie IJsselmeergebied

mevr. S. Ciarelli, RWS Directie Zuid-Holland

J. Dekker, PWN

Frau Dr. A. Houben-Michalkova, RWS Waterdienst

Frau Dipl.-Ing. N.H. Meuter

Dr. R.J.C.A. Steen, Het Waterlaboratorium

Drs. H. Timmer, Oasen

Drs. E.S.E. Yedema, Waternet

Gast Drs. M. de Jonge, Vitens NV

dhr. M. Tijnagel, RWS Directie Oost-Nederland

Sekretariat RIWA-Dachorganisation

wechselt alle drei Jahre

RIWA-Rhein Sekretariat

Direktor Dr. P.G.M. Stoks
Mitarbeiter Frau C.C. Zwamborn

Ing. A.D. Bannink Ing. G. van de Haar

Adresse RIWA-Rijnwaterbedrijven

Waterwinstation ir. Cornelis Biemond

Groenendael 6

NL - 3439 LV NIEUWEGEIN

Telefon +31306009030
Fax: +31306009039
E-Mail riwa@riwa.org

RIWA-Dachorganisation (Stand: August 2011)

Mitgliederversammlung

Vorsitzender Frau H. Doedel, WML, Maastricht (Vorsitzender RIWA-Maas)

Vice-Vorsitzender Dipl.-Ing. M.G.M. den Blanken, PWN, Velserbroek, (Vorsitzender RIWA-Rijn)

Sekretär Dipl.-Ing. H.J.A. Römgens, RIWA-Maas

Mitglieder

Hernn. C. Cornelis, AWW, Antwerpen

Frau C. Franck, Vivaqua, Brussel

Hernn. E. Flies, AWW Antwerpen

Frau Drs. S. de Haas, Waternet, Amsterdam

Drs. P. Jonker, Dunea, Voorburg

Dipl.-Ing. L. Keustermans, VMW, Brussel (auch Vorsitzender RIWA-Schelde)

Dipl.-Ing. R. A. Kloosterman, Vitens, Leeuwarden

Dipl.-Ing. R.H.F. Kreutz, Evides, Rotterdam

L. Modderie, TMVW, Gent

Dr. P.G.M. Stoks, RIWA-Rijn, Nieuwegein

Dipl.-Ing. A.B.I.M. Vos de Wael, Oasen, Gouda

Dipl.-Ing. L. M. de Waal, Brabant Water, 's-Hertogenbosch

Beobachter

Namens belgischer und niederländischer Branchenverbände

Chr. Legros, BELGAQUA, Brüssel

Drs. T.J.J. Schmitz, VEWIN, Rijswijk

Externe Arbeitsgruppen RIWA-Maas und RIWA-Rhein

RIWA-Staatsbehördengremien

Vorsitzender Frau H. Doedel, WML
Vice-Vorsitzender Drs. P. Jonker, Dunea

Sekretär Dipl.-Ing. H.J.A. Römgens, RIWA-Maas

Mitglieder Ing. A.D. Bannink

Dipl.-Ing. M.G.M. den Blanken, PWN

Dipl.-Ing. R.H. Dekker, Ministerie van Infrastructuur en Milieu

Frau Drs. S. de Haas, Waternet

Dipl.-Ing. D. Jonkers, Ministerie van Infrastructuur en Milieu

Dipl.-Ing. R.H.F. Kreutz, Evides

Drs. C.M. Lommers, Ministerie van Infrastructuur en Milieu

Frau Dipl.-Ing. A. Nijhof MBA, DG Water, Ministerie van Infrastructuur en Milieu

Dr. P.G.M. Stoks, RIWA-Rijn

Frau Dipl.-Ing. J.F.M. Versteegh, RIVM Dipl.-Ing. A.B.I.M. Vos de Wael, Oasen

Beobachter

Namens niederländischer Branchenverbände

Drs. T.J.J. Schmitz, VEWIN

Gäste: Dipl.-Ing. R.R. Kruize, Waternet

Dipl.-Ing. P. Vermaat, Evides, Raad van Bestuur

Beratungsgremium RIWA - VEWIN

Der Vorsitz bzw. das Sekretariat wird turnusgemäß besetzt.

Vorsitzender Dipl.- Ing. H.J.A. Römgens, RIWA-Maas

Mitglieder Ing. A.D. Bannink, RIWA- Dachorganisation

Drs. A. Frentz, Vewin

Dr. P.G.M. Stoks, RIWA-Rijn

Frau Dipl.-Ing. N.T.C. Zantkuijl, Vewin

RIWA-Maas Sekretariat

Direktor Dipl.-Ing. H.J.A. Römgens, WML, Maastricht

Mitarbeiter Ing. A.D. Bannink

Frau L. van Houtem

Adresse RIWA-Maas

Postbus 1060

6201 BB MAASTRICHT

Besuchadresse Limburglaan 25

6229 GA MAASTRICHT

Telefon +31438808576

E-Mail riwamaas@riwa.org

IAWR Internationale Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet

Mitglieder der IAWR

ARW

Arbeitsgemeinschaft Rhein-Wasserwerke e.V.

GEW - RheinEnergie AG

Parkgürtel 24

D - 50823 Köln - Ehrenfeld

RIWA-Rijn

Vereniging van Rivierwaterbedrijven

Groenendael 6

NL - 3439 LV Nieuwegein

AWBR

Arbeitsgemeinschaft Wasserwerke Bodensee-Rhein

Badenova AG & Co. KG Wasserversorgung

Tullastrasse 61

D - 79108 Freiburg im Breisgau

IAWR-Präsidium

Präsident Dipl.-Ing. M.G.M. den Blanken, Vorsitzender RIWA-Rhein

1. Vizepräsident Wulf Abke, Vorsitzender ARW

2. Vizepräsident Dipl.-Ing. J.M Rogg, Vorsitzender AWBR

Geschäftsführer

IAWR & ARW Dr. Matthias Schmitt, RheinEnergie AG Köln

AWBR Dipl.-Ing. K. Rhode, Badenova AG Freiburg

RIWA-Rijn Dr. Peter G.M. Stoks

IAWR-Geschäftsstelle

c/o GEW-RheinEnergie AG

Parkgürtel 24

D - 50823 Köln

Telefon: +492211783401 Telefax: +492211782258

E-Mail: ma.mueller@rheinenergie.com

IAWR Internationale Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet

RIWA-Rhein-Vertreter in IAWR-Gremien

(Stand: April 2011)

IAWR-Arbeitsgruppen

Vorstand

Ausschuss PR

Ausschuss WK

Ausschuss Analytik

Ausschuss Biologie

Ausschuss WRRL

Vertreter

Ing. A.D. Bannink, RIWA-Rijn

Dipl.-Ing. M.G.M. den Blanken, PWN

M.P. Companjen, Waternet

G. Corbee, PWN

Dr. W. Hoogenboezem, Het Waterlaboratorium

Frau Drs. S. de Haas, Waternet

Frau Dr. C.J. Houtman, Het Waterlaboratorium

Dr. R. van der Oost, Waternet

Ing. E. Penders, Het Waterlaboratorium

Drs. L.M. Puijker, KWR, Watercycle Research Institute

Dr. Dipl.-Ing. M. Tielemans, Het Waterlaboratorium

Dr. P.G.M. Stoks, RIWA-Rijn

Dipl.-Ing. A.B.I.M. Vos de Wael, Oasen

Frau Dr. A.P. van Wezel, KWR, Watercycle Research Institute

Drs. E.S.E. Yedema, Waternet

RIWA-Rhein Adressen Arbeitsgruppenmitglieder (Stand: Mai 2011)

mevrouw drs. M. van der Aa

Rijksinstituut voor Volksgezondheid en Milieu t. +31302743144 Postbus 1 f. +31302742971

3720 BA BILTHOVEN e. monique.van.der.aa@rivm.nl

ing. A.D. Bannink

 RIWA-Rijn
 t. +31306009033

 Groenendael 6
 f. +31306009039

 3439 LV NIEUWEGEIN
 e. bannink@riwa.org

ir. M.G.M. den Blanken

PWN Waterleidingbedrijf Noord-Holland N.V. t. +31235413600 / 601 Postbus 2113 f. +31235256105

1990 AC VELSERBROEK e. Martien.d.blanken@pwn.nl

Mevrouw drs. T. Burger

Rijkswaterstaat Directie IJsselmeergebied t. +31651216138
Postbus 600 f. +31320249218

8200 AP LELYSTAD e. tineke.burger@rws.nl

Mevrouw S. Ciarelli

Rijkswaterstaat Directie Zuid-Holland t. +31104026200
Postbus 556 f. +31104047927

3000 AN ROTTERDAM e. silvana.ciarelli@rws.nl

M.P. Companjen

 Waternet
 t. +31206082511

 Postbus 94370
 f. +31206083900

1090 GJ AMSTERDAM e. mark.companjen@waternet.nl

G. Corbee

PWN Waterleidingbedrijf Noord-Holland N.V. t. +31235418176 Postbus 2113 f. +31235256105

1990 AC VELSERBROEK e. gerbrant.corbee@pwn.nl

ir. R.H. Dekker

Ministerie van Infrastructuur en Milieu t. +31703519041 Postbus 20906 f. +31703519048

2500 EX DEN HAAG e. bob.dekker@minvenw.nl

J. Dekker

PWN Waterleidingbedrijf Noord-Holland N.V. t. +31235414712

Postbus 2113 f. +31235256105

1990 AC VELSERBROEK e. jos.dekker@pwn.nl

mevrouw H. Doedel

Waterleiding Maatschappij Limburg (WML) N.V. t. +31438808643

Postbus 1060 f. +31438808002

6201 BB MAASTRICHT e. r.doedel@wml.nl

drs. ing. S.W. van Duijvenbode

Waternet t. +31206087563 Vogelenzangseweg 21 f. +31235281460

2114 BA VOGELENZANG e. steven.van.duijvenbode@waternet.nl

drs. A. Frentz

 VEWI
 t. +31704144750

 Postbus 1019
 f. +31704144720

 2280 CA RIJSWIJK
 e. frentz@vewin.nl

I. Geilenkotten

Antwerpse Waterwerken (AWW) t. +3232440601 Mechelsesteenweg 64 f. +3232380749

BE - 2018 ANTWERPEN e. igeilenkotten@aww.be

ing. R.J. Goossens

VIVAQUA t. +3226294922 Waterloosesteenweg 764 f. +3226294915

BE - 1180 BRUSSEL e. roger.goossens@vivaqua.be

ing. G. van de Haar

 RIWA-Rijn
 t. +31306009032

 Groenendael 6
 f. +31306009039

 3439 LV NIEUWEGEIN
 e. vandehaar@riwa.org

Mevrouw drs. S. de Haas

Waternet t. +31206086200 Postbus 94370 f. +31206083900

1090 GJ AMSTERDAM e. saskia.de.haas@waternet.nl

dr. W. Hoogenboezem

Het Waterlaboratorium t. +31235175961
Postbus 734 f. +31235175999

2003 RS HAARLEM e. wim.hoogenboezem@hetwaterlaboratorium.nl

mevrouw dr. A. Houben-Michalkova

Rijkswaterstaat Waterdienst t. +313202988626 Postbus 17 f. +31320249218

8200 RS LELYSTAD e. andrea.houben@rws.nl

mevrouw dr. C.J. Houtman

Het Waterlaboratorium t. +31235175969 Postbus 734 f. +31235175999

2003 RS HAARLEM e. corine.houtman@hetwaterlaboratorium.nl

drs. M. de Jonge

Vitens N.V. t. +31582945594
Postbus 1090 f. +31582945300

8912 AA LELYSTAD e. martin.dejonge@vitens.nl

drs. P. Jonker

 Dunea
 t. +31703577608

 Postbus 34
 f. +31703577609

 2270 AA VOORBURG
 e. p.jonker@dunea.nl

ir. D. Jonkers

Ministerie van Infrastructuur en Milieu t. +31703516171 Postbus 20904 f. +31703519078

2500 EX DEN HAAG e. douwe.jonkers@minvenw.nl

ir. L. Keustermans

Vlaamse Maatschappij voor Watervoorziening t. +3222389411 De Belliardstraat 73 f. +3222309798

BE - 1040 BRUSSEL e. luc.keustermans@vmw.be

ir. R.A. Kloosterman

Vitens N.V. t. +31582945333 Postbus 1090 f. +31582945300

8912 AA LELYSTAD e. rian.kloosterman@vitens.nl

drs. M.C. Kotte

Rijkswaterstaat Waterdienst t. +31320298621 Postbus 17 f. +31320249218

8200 AA LELYSTAD e. marcel.kotte@rws.nl

ir. R.H.F. Kreutz

EVIDES Waterbedrijf N.V. t. +31102935040

Postbus 4472 f. +31102935980

3006 AL ROTTERDAM e. r.kreutz@evides.nl

Chr. Legros

BELGAQUA Belgische Federatie voor de Watersector t. +3227064090

Generaal Wahislaan 21 f. +3227064099

BE - 1030 BRUSSEL e. clegros@belgaqua.be

drs. C. M. Lommers

 Ministerie van Infrastructuur & Milieu
 t. +31703394703

 Postbus 30945
 f. +31703391970

2500 GX DEN HAAG e. Gerard.Lommers@minvrom.nl

mevrouw ir. N.H. Meuter

Oasen t. +31182593274 Postbus 122 f. +31182593333

2800 AC GOUDA e. etta.meuter@oasen.nl

L. Modderie

TMVW t. +3292400211 Stropkaai 14 f. +3292229111

BE - 9000 GENT e. ludy.modderie@tmvw.be

ir. A. Nijhof MBA

Ministerie van Infrastructuur en Milieu t. +31703518543Postbus 20904 f. +31703519078

2500 EX DEN HAAG e. anneke.vanden.berg@minvenw.nl

dr. R. van der Oost

Waternet t. +31206083501 Postbus 94370 f. +31206083900

1090 GJ AMSTERDAM e. ron.van.der.oost@waternet.nl

ing. E. Penders

Het Waterlaboratorium t. +31235175980 Postbus 734 f. +31235175999

2003 RS HAARLEM e. eric.penders@hetwaterlaboratorium.nl

R. van der Plaat

Rijkswaterstaat Directie Utrecht t. +31887973273
Postbus 24094 f. +31887974001

3502 MB UTRECHT e. rob.vander.plaat@rws.nl

drs. L.M. Puijker

KWR Watercycle Research Institute t. +31306069633

Postbus 1072 f. +3306061165

3430 BB NIEUWEGEIN e. Leo.Puijker@kwrwater.nl

ir. H.J.A. Römgens

RIWA-Maas t. +31438808576

Postbus 1060

6201 BB MAASTRICHT e. riwamaas@riwa.org

drs. T.J.J. Schmitz

VEWIN t. +31704144755

Postbus 1019 f. +31704144720

2280 CA RIJSWIJK e. porsius@vewin.nl

dr. R.J.C.A. Steen

Het Waterlaboratorium t. +31235175971

Postbus 734 f. +31235175999

2003 RS HAARLEM e. ruud.steen@hetwaterlaboratorium.nl

dr. P.G. Stoks

RIWA-Rijn t. +31306009036

Groenendael 6 f. +31306009039

3439 LV NIEUWEGEIN e. stoks@riwa.org

ir. M.W.M. Tielemans

Het Waterlaboratorium t. +31235175903

Postbus 734 f. +31235175999

2003 RS HAARLEM e. marcel.tielemans@hetwaterlaboratorium.nl

M. Tijnagel

Rijkswaterstaat Directie Oost-Nederland t. +31263688911

Postbus 9070 f. +31263634897

6800 ED ARNHEM e. marco.tijnagel@rws.nl

drs. H. Timmer

Oasen t. +31182593549 Postbus 122 f. +31182593333

2800 AC GOUDA e. harrie.timmer@oasen.nl

ir. P. Vermaat

EVIDES Waterbedrijf N.V. t. +31102935097

Postbus 4472 f. +31102935980

3006 AL ROTTERDAM e. p.vermaat@evides.nl

mevrouw ir. J.F.M. Versteegh

Rijksinstituut voor Volksgezondheid en Milieu t. +31302742321 Postbus 1 f. +31302742971

3720 BA BILTHOVEN e. Ans.Versteegh@rivm.nl

ir. A.B.I.M. Vos de Wael

Oasen t. +31182593402 Postbus 122 f. +31182593333

2800 AC GOUDA e. alexander.vosdewael@oasen.nl

ir. L.M. de Waal

Brabant Water N.V. t. +31736837301 Postbus 1068 f. +31736838999

5200 BC DEN BOSCH e. leo.de.waal@brabantwater.nl

mevrouw dr. A.P. van Wezel

KWR Watercycle Research Institute t. +31306069519
Postbus 1072 f. +31306061165

3430 BB NIEUWEGEIN e. annemarie.van.wezel@kwrwater.nl

drs. E.S.E. Yedema

Waternet t. +31206087590 Vogelenzangseweg 21 f. +31235281460

2114 BA VOGELENZANG e. +eddy.yedema@waternet.nl

mevrouw ir. N.T.C. Zantkuijl

Vewin

Postbus 1019

2280 CA RIJSWIJK

- t. +31704144750
- f. +31704144720
- e. zantkuijl@vewin.nl

Impressum

Text und Redaktion RIWA-Sekretariat

Dr. P.G.M. Stoks Ing. G. van de Haar Ing. A. Bannink

Frau C.C. Zwamborn

Externe Beitrag A.H. Smits, EauQstat

A. VeeringJ. van Tuijn

Herausgeber RIWA-Rhein, Verband der Flusswasserwerke

Gestaltung Meyson Communicatie, Amsterdam

Druck KDR Marcom, Zaandam

Fotografie Henny Boogert, Amsterdam (falls nicht anders angegeben)

ISBN/EAN: 978-90-6683-145-2

Publikationsdatum 15. Juni 2011

RIWApikt

Visualisierung der Ergebnisse.

Die verwendeten Piktogramme bedürfen der Erläuterung. Diese Art der Wiedergabe hat einen
großen Vorteil: So können nämlich auf einen Blick mehrere Punkte unterschieden werden.
Die Farbe gibt an, wie sich der Gehalt im Hinblick auf das IAWR-Qualitätsziel verhält:

_		
o – 79 % der Zielwert ist blau		
80 – 99 % der Zielwert ist gelb		
100 und mehr ist rot		
Keine Farbe (aber ein Symbol) be	edeutet: kein IAWR-Qualitätsziel	
ol weist auf den Trend:		

Das Symb

Ein	Strich	deutet	an,	dass	kein	Trend	ermittelt	werden	konnte	bzw.
das	s kein	Trend v	vorli	egt						

Der Pfeil deutet die Richtung des (signifikanten) Trends an

(95% 2-seitig zuverlässig)

Die Farbfüllung gibt an, auf wie vielen Beobachtungen die Aussage basiert:

10 – 19 Beobachtungen, farbiges Symbol und weiße Fläche	
20 Beobachtungen oder mehr, weißes Symbol und farbige Fläche	

Eine leere Fläche zeigt an, dass keine (oder zu wenig) Messdaten vorliegen; deshalb erfolgt keine Aussage.

^{*} Donau-, Maas und Rhein Memorandum 2008

The Netherlands

RIWA-Rhein Groenendael 6 NL - 3439 LV Nieuwegein Niederlande T +31306009030 F +31306009039 E riwa@riwa.org W www.riwa.org