

Jahresbericht 2018 Der Rhein

Inhaltsverzeichnis

		Seite
	Einleitung	3
Ka	pitel	
1	Die Qualität des Rheinwassers im Jahr 2018	7
2	Einfluss der Trockenheit	67
3	Die Aufbereitungsaufgabe bezüglich des Rheins im Verhältnis zu WRRL-Artikel 7.3	89
	Ausblick des Aufbereitungsaufgabe-Indexes	110
4	Empfehlungen und Vorausschau	113
5	Laufende Forschungsprojekte	125
An	lage	
1	Wasserqualitätsdaten 2018	129
	Erklärung der Tabelle	130
	RIWA-Piktogramme	131
2	Meldungen von Verunreinigungen	297
3	Entnahmestopps und begrenzte Entnahme	298
4	Mitgliedsunternehmen RIWA-Rhein	301
5	RIWA-Rhein	302
6	RIWA-Dachorganisation	304
7	IAWR	305
lm	nressum	206

Einleitung

Am 6. August 2018 flog die internationale Raumstation ISS über die Niederlande. An Bord befand sich der deutsche Astronaut Alexander Gerst, und während einer Umkreisung machte er ein Foto (siehe Abbildung 1) des niederländischen Rheindeltas. Die untergehende Sonne färbt das Wasser golden und zeigt so ein sehr detailliertes Bild des niederländischen Wassersystems. Man kann

Dr. G.J. Stroomberg

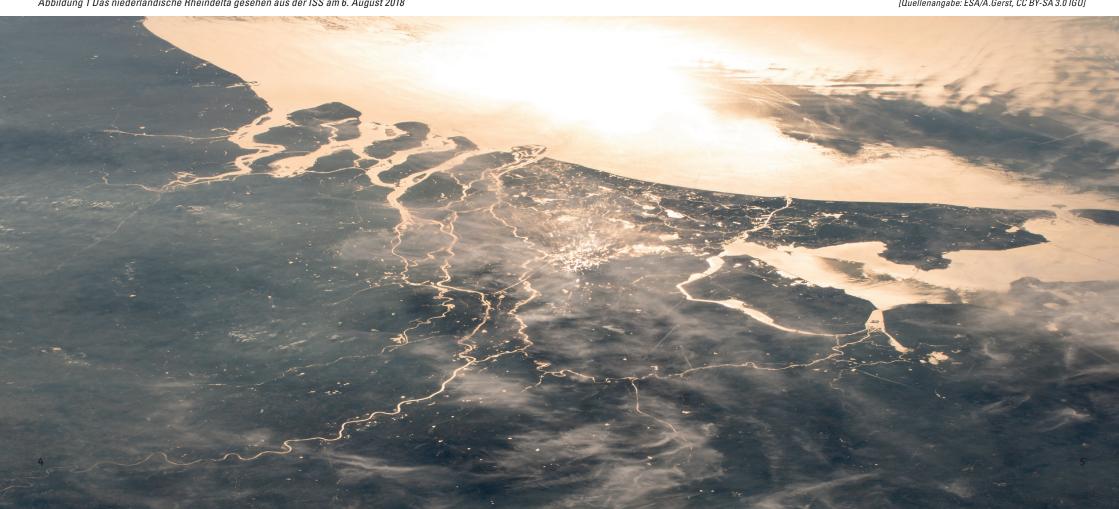
sogar die Infiltrationsgebiete in den Dünen sehen, in denen Flusswasser zur Trinkwassergewinnung verwendet wird. Ein wasserreiches Foto, das in einem der trockensten Sommer der letzten Jahre gemacht wurde. Zwei Tage später, am 8. August, erreichte der Niederschlagsmangel in den Niederlanden seinen Höhepunkt.

Das Foto verdeutlicht auch, wie wichtig der Rhein für unser Wassersystem ist. Es scheint, als ob das ganze Netzwerk an einem Faden hängt. Auch die Nähe der Nordsee ist gut erkennbar. Beide Elemente übten in dem trockenen Sommer großen Einfluss auf die Wasserqualität in den Niederlanden aus.

Wie Sie es von uns erwarten können, beschreiben wir auch in diesem Jahr die Wasserqualität des Rheins detailliert in Kapitel 1. Um den Umfang der gedruckten Fassung des Jahresberichts zu begrenzen, werden in den Tabellen nur die Stoffe aufgeführt, die auch wirklich ermittelt wurden. Für den kompletten Datensatz mit allen Messergebnissen verweisen wir auf die digitale Fassung, die Sie von unserer Website herunterladen können.

In diesem Jahresbericht gehen wir in Kapitel 2 auf den Einfluss der Trockenheit und die Art ein, auf die die Wasserversorgungsunternehmen, die ganz oder teilweise vom Rhein abhängig sind, damit umgegangen sind. Es werden die Probleme behandelt, mit denen sie konfrontiert wurden, sowie die Lösungen, die sie fanden. Das Salzwasser aus der Nordsee spielte dabei für eine große Anzahl Unternehmen eine wichtige Rolle.

Dieses Jahr führt die Europäische Kommission ein Fitness-Check bezüglich der Wasserrahmenrichtlinie aus, und dies wirft die Frage auf, in welchem Maße sich die Wasserqualität seit Einführung der WRRL verbessert hat. In Bezug auf die Trinkwassergewinnung wird die Aufmerksamkeit insbesondere auf Artikel 7.3 gerichtet: "Die Mitgliedstaaten sorgen für den erforderlichen Schutz der ermittelten Wasserkörper, um eine Verschlechterung ihrer Qualität zu verhindern und so den für die Gewinnung von Trinkwasser erforderlichen Umfang der Aufbereitung zu verringern." In Kapitel 3 wird ein Index präsentiert, der die Entwicklung der Wasserqualität des Rheins in diesem Punkt beschreibt. Wurde die Wasserqualität des Rheins seit Einführung der WRRL so verbessert, dass das erforderliche Aufbereitungsniveau auch wirklich geringer geworden ist?


In Kapitel 4 werden verschiedene Dossiers beschrieben, mit denen sich RIWA derzeit beschäftigt sowie die Fortschritte, die diesbezüglich gemacht wurden. In diesem Kapitel erteilen wir Empfehlungen für eine zukünftige Politik und wenden uns kurz zukünftigen Entwicklungen zu.

Vor dem Raumflug im letzten Sommer wurde Alexander Gerst nach seinen Eindrücken bei seinem ersten Besuch der ISS gefragt. Er beschrieb, wie er die Erde als ein blaues Raumschiff aus 400 Kilometern Höhe wahrnahm: "Man sieht, wie verletzlich und isoliert die Erde ist.1" Verletzlich und isoliert sind Worte, die gut zu dem Wassersystem passen, von dem wir so abhängig sind. Daher verdient es unsere ständige Aufmerksamkeit und unseren Schutz.

1. Interview Frankfurter Allgemeine vom 17. April 2018

Abbildung 1 Das niederländische Rheindelta gesehen aus der ISS am 6. August 2018

[Quellenangabe: ESA/A.Gerst, CC BY-SA 3.0 IGO]

Die Qualität des Rheinwassers im Jahr 2018

1. Einleitung

Im vorliegenden Kapitel steht die Qualität des Oberflächenwassers im Rheineinzugsgebiet im Jahr 2018 im Mittelpunkt. Der Gesichtswinkel, unter dem das Oberflächenwasser beurteilt wird, ist dessen Eignung als Quelle zur Trinkwassergewinnung. Zu diesem Zweck werden die Wasserqualitätsdaten von fünf Standorten betrachtet. Hierzu gehören: der Rhein bei Lobith, der Lekkanal bei Nieuwegein, der Amsterdam-Rheinkanal bei Nieuwersluis, das IJsselmeer bei Andijk und das Haringvliet bei Middelharnis. Die Lage dieser Standorte können Sie der Karte links entnehmen.

An diesen Standorten, mit Ausnahme von Lobith, entnehmen Waternet, PWN und Evides Rheinwasser zur Trinkwassergewinnung. Neben diesen Wasserversorgungsunternehmen verwenden auch die Wasserversorgungsunternehmen Vitens und Oasen die Wasserqualitätsdaten zur Überwachung ihrer (Ufer-)Grundwassergewinnungsstellen entlang IJssel und Lek. Vitens entzieht Ufergrundwasser entlang der IJssel bei Zwolle. Oasen verwendet entlang der Rheinarme Merwede, Noord und Lek auch Uferfiltrat zur Trinkwassergewinnung. Diese Unternehmen verfügen nicht über zusätzliche, direkt am Rhein gelegene Monitoring-Standorte. Das entnommene Ufergrundwasser, bei dem es sich teilweise um Rheinwasser handelt, wird ebenfalls ausführlich analysiert. Im vorliegenden Bericht werden allerdings nur direkte Analysen des Rheinwassers aufgeführt. Die Messstelle im Haringvliet wurde im Iuni 2017 zwölf Kilometer stromaufwärts von Stellendam nach Middelharnis verlegt. Grund hierfür war die Versalzung des Wassers durch Öffnung der Haringvliet-Schleusen, um die Fischmigration im Rhein zu ermöglichen. Damals wurde der Beschluss gefasst, den neuen Standort als Teil des Rheineinzugsgebiets zu betrachten und ihn daher auch im Jahresbericht der RIWA-Rhein zu behandeln. Schließlich besteht das Wasser des Haringvliet größtenteils aus Rheinwasser. Weitere Informationen über die Verlegung der Messstelle finden sich im Jahresbericht 2017 Der Rhein (2018).

2. Das RIWA-Wasserqualitätsmessnetz und die RIWA-base

Das RIWA-Wasserqualitätsmessnetz besteht aus verschiedenen Programmen. Deren Ergebnisse werden in einer Datenbank gespeichert: der RIWA-base.

2.1 Das RIWA-Wasserqualitätsmessnetz

Im Rheineinzugsgebiet wird an den fünf oben genannten Messstellen neben den herkömmlichen Parametern auch ein umfangreiches Paket organischer Mikroverunreinigungen untersucht, das z. B. Arzneimittel und hormonell wirksame Stoffe umfasst. Auch dieses Jahr wurde das Messnetz mittels einer Screening-Untersuchung oder über (inter-)nationale Kontakte mit neuen im Oberflächenwasser vorkommenden problematischen Stoffen, den sogenannten "contaminants of emerging concern" (CECs), ergänzt. Gemäß langfristiger Vereinbarungen im Rahmen der Internationalen Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet (IAWR), des Dachverbands der Wasserversorgungsunternehmen im gesamten Rheineinzugsgebiet, werden die auszuführenden Messungen in zwei Programme eingeteilt. Dazu gehört zum Ersten ein Basisprogramm mit bestimmten Messfrequenzen und fest beschriebenen Parametern für alle Probenahmestellen und zum Zweiten ein Ergänzungsprogramm, das regelmäßig änderbare Parameter nur für die wichtigsten Probenahmestellen umfasst. Lobith ist eine dieser wichtigen Probenahmestellen. Hier wird die Oualität des Rheinwassers von Riikswaterstaat, der obersten niederländischen Straßen- und Wasserbaubehörde, überwacht, um die Qualität des Wassers an der Stelle zu bestimmen, an der es in die Niederlande strömt. An jeder einzelnen der vier Entnahmestellen wird das Oberflächenwasser von dem betreffenden Wasserversorgungsunternehmen und von Riikswaterstaat analvsiert. Die Analysen von Rijkwaterstaat werden hauptsächlich in ihrem Labor in Lelystad ausgeführt. An den Entnahmestellen werden die Analysen von dem in Haarlem ansässigen Het Waterlaboratorium (HWL) und von Aqualab Zuid aus Werkendam durchgeführt.

Das Technologie Zentrum Wasser (TWZ) aus Karlsruhe führte wie schon in den Vorjahren auch im Jahr 2018 im Auftrag der RIWA-Rhein ergänzende Analysen von Arzneimitteln, Komplexbildnern, künstlichen Süßstoffen, Perfluorverbindungen, Pestiziden und Bioziden, Benzotriazolen und einer Anzahl Metabolite bei Lobith aus. Daneben wurden bei Lobith, ebenfalls im Auftrag von RIWA-Rhein, eine Anzahl bakteriologischer Parameter, HMMM und 1,4-Dioxan, von RheinEnergie mit Sitz in Köln gemessen.

Mit Rijkswaterstaat hatte RIWA-Rhein eine Vereinbarung getroffen, um Daten der verschiedenen Messstationen auszutauschen und so doppelte Messungen möglichst zu vermeiden. Diese Absichtserklärung wurde im Jahr 2016 erneuert, und auch RIWA-Maas schloss sich damals dieser Absichtserklärung an.

2.2 Die RIWA-base

Alle Messdaten werden in der RIWA-base gespeichert. Die RIWA-base umfasst derzeit rund 3,65 Millionen Messdaten (eine Angabe entspricht einem Parameter an einer Probenahmestelle an einem Tag) von 1875 bis heute. Die RIWA-base war bis jetzt eine Microsoft-Access-Datenbank. Da die Kapazität von Access für die ständig wachsende Datenmenge allerdings zu begrenzt war, wurde an einer Migration von Microsoft Access zu MySQL gearbeitet. In der neuen RIWA-base wird ein Front-End in Microsoft Access verwendet, sodass die Funktionalität der darin programmierten Prozesse teilweise erhalten wurde. Die Daten wurden in einer MySQL-Datenbank, die als Back-End dient, gespeichert. Bei der Migration wurden u. a. die Berechnungs- und Eingabemodule angepasst und verbessert. Die Datenmigration wurde erfolgreich durchgeführt, und im Jahr 2019 wird die neue RIWA-base in Gebrauch genommen. Hierdurch ist genug Platz für neue Daten verfügbar.

Die RIWA-base verfügt über verschiedene eingebaute Funktionen zur Datenanalyse. So werden alle Messreihen auf Überschreitungen der Zielwerte aus dem European River Memorandum (ERM, siehe Abschnitt 3.2 dieses Kapitels) und auf vorhandene Trends geprüft. Die Trends werden für einen Zeitraum von fünf Jahren berechnet. Die Überschreitungen und Trends werden im vorliegenden Jahresbericht aufgeführt, wobei die Trends mit einer Zuverlässigkeit von 95% berichtet werden. Weitere Informationen über die Funktionen, die in der RIWA-base implementiert wurden, finden sich in dem Bericht mit dem Titel 30 Jahre RIWA-base (Mai 2012), der auf unserer Website www.riwa-rijn.org verfügbar ist.

2.3 Die RIWA-base im Dienste Dritter

Nicht nur RIWA verarbeitet die Daten aus der RIWA-base, sondern auch andere Organisationen machen dankbar Gebrauch der umfangreichen und übersichtlichen Datenreihen. Jedes Jahr erhalten das Ctgb (College voor de toelating van gewasbeschermingsmiddelen en biociden), die Instanz für die Zulassung von Pflanzenschutzmitteln und Bioziden, und das CML (Centrum voor Milieuwetenschappen in Leiden) Datenlieferungen. Ferner lieferte RIWA im Jahr 2018 dem Forschungsinstitut Deltares, dem RIVM (Reichsinstitut für Volksgesundheit und Umwelthygiene),

dem Ingenieurbüro Arcadis Nederland B.V. und der IKSR (Internationalen Kommission zum Schutz des Rheins) Daten. Frühere Anfragen kamen von verschiedenen niederländischen Instanzen, wie z. B. KWR (Watercycle Research Institute), Rijkswaterstaat, Vewin (Verband der niederländischen Wasserwerke) und IenW (Ministerium für Infrastruktur und Wasserwirtschaft). Daneben gingen auch Anfragen von europäischen Instanzen, wie z. B. JRC Ispra (European Commision Joint Research Centre) und dem Norman Network (Netzwerk von Referenzlabors, Forschungszentren und verwandten Organisationen zur Überwachung von Schwellenumweltstoffen) ein. Auch verschiedene Universitäten und Forschungsbüros sowie Wasserbehörden haben sich inzwischen an die RIWA-Datenbank gewandt.

3. Beschreibung der Wasserqualität

Im nächsten Abschnitt dieses Kapitels wird die Wasserqualität des Rheins im Jahr 2018 beschrieben. Die verschiedenen Qualitätsparameter werden auf der Grundlage ihres Anwendungsbereichs in Gruppen eingeteilt. Hierdurch kann ein Parameter in mehreren Gruppen vorkommen. Metabolite werden in der Parametergruppe ihrer Muttersubstanz aufgeführt. Neu in diesem Jahr ist, dass die Calux-Effektmessungen in der neuen Parametergruppe "Effektmessungen" wiedergegeben werden.

Die Parameter werden in diesem Abschnitt pro Parametergruppe behandelt, wobei die Namen der Unterabschnitte den Namen der Parametergruppen, die in der RIWA-base und in Anhang 1 Wasserqualitätsdaten 2018 (siehe Seite 129) verwendet werden, größtenteils entsprechen. Anhang 1 umfasst die Messergebnisse der fünf Oberflächengewässerstandorte als Monatsmittelwerte und einige andere Kennzahlen bezüglich des Jahres 2018 sowie Fünf-Jahres-Trends (Zeitraum 2014 - 2018). Die unter der Wasserentnahmestelle Haringvliet aufgeführten Trends wurden aus Daten ermittelt, die bei Stellendam (bis Mai 2017; vor der Verlegung des Meldepunkts) und bei Middelharnis (ab Juni 2017; nach der Verlegung des Meldepunkts) gemessen wurden. Es besteht kein Grund zur Annahme, dass die Wasserqualität an diesen beiden Orten unterschiedlich ist. Deshalb wurde beschlossen, die Daten zusammenzufügen, sodass für diese Wasserentnahmestelle auch ein Fünf-Jahres-Trend berechnet werden kann.

Die gedruckte Fassung von Anhang 1 dieses Jahresberichts unterscheidet sich von der digitalen Fassung des Jahresberichts. In der gedruckten Fassung werden die Parameter aufgeführt, die den allgemeinen Zustand des Oberflächenwassers an einer Probenahmestelle beschreiben. Daneben werden nur Parameter aufgeführt, die an einer oder mehreren Standorten eine Überschreitung

des Zielwerts des European River Memorandum (ERM) erkennen lassen, einen Wert von 80 - 100% des ERM-Zielwerts aufweisen oder einen interessanten Trend erkennen lassen. Anhang 1 der digitalen Fassung des Jahresberichts umfasst die ganze Übersicht über alle verfügbaren Daten der gemessenen Parameter, d. h. auch der Parameter, die zwar analysiert, nicht aber gemessen wurden. Diese Fassung finden Sie auf unserer Website (www.riwa-rijn.org). Um die Suche nach Parametern zu erleichtern, wurde im Anhang die CAS-Nummer hinzugefügt.

Trends und Überschreitungen werden mithilfe des sogenannten RIWA-Piktogramms wiedergegeben. Eine Erklärung bezüglich der in den RIWA-Piktogrammen verwendeten Farben und Symbole findet sich in Anhang 1 auf Seite 131. Analyseverfahren werden regelmäßig angepasst, wobei sich auch die unteren Analysegrenzen häufig ändern. Dies kann zur Folge haben, dass ein Trend erfasst und in einem RIWA-Piktogramm aufgeführt wird, der nicht zwangsläufig auf eine Veränderung der Wasserqualität zurückzuführen ist. Wenn dies der Fall ist, kann dies nicht dem Piktogramm entnommen werden, wird aber nach der Konstatierung im Text der betreffenden Parametergruppe beschrieben.

In den nächsten Abschnitten dieses Kapitels werden die gemessenen Parameter besprochen, wobei Besonderheiten hervorgehoben werden.

3.1 Parameter und Messprogramme

Tabelle 1.1 kann entnommen werden, wie viele Parameter im Jahr 2018 an den einzelnen Probenahmestellen gemessen wurden und wie viele Messungen stattfanden. Wie letztes Jahr wurden die umfassendsten Monitoring-Programme bei Nieuwegein (858 Parameter) und Andijk (837 Parameter) ausgeführt. Insgesamt liegen für die Rhein-Meldepunkte im Jahr 2018 47.742 Messergebnisse vor. Die Gestaltung der Messprogramme an den Probenahmestellen ändert sich jedes Jahr. Tabelle 1.2 zeigt, wie viele Parameter für jede Probenahmestelle hinzugefügt (neue Parameter) oder aus dem Messprogramm entfernt wurden (verfallene Parameter) und wie das Nettoergebnis dieser Maßnahme aussieht (Gesamtunterschied). In welchem Maße sich das Messprogramm ändert, ist für jede Probeentnahmestelle unterschiedlich. Die größte Änderung fand bei Nieuwersluis statt. Dies ist der einzige Standort, an dem die Anzahl der gemessenen Parameter im Jahr 2018 im Vergleich zum Vorjahr abnahm (-57). An den übrigen Standorten war eine Nettozunahme der Anzahl Parameter zu verzeichnen. Die Änderungen, die zwischen 2017 und 2018 durchgeführt wurden, sind an den meisten Standorten geringer als zwischen den Jahren 2016 und 2017. (Die zwischen 2016 und 2017 erfolgten Änderungen werden im Jahresbericht 2017 Der Rhein aufgeführt).

Tabelle 1.1 Übersicht über die Anzahl Parameter und Messungen im Jahr 2018 für die einzelnen Meldepunkte

Meldepunkt	Anzahl der analysierten Parameter 2018	Anzahl der Messungen 2018
Lobith	437	7693
Nieuwegein	858	13673
Nieuwersluis	515	6349
Andijk	837	10821
Haringvliet	688	9206
Totaal		47742

Tabelle 1.2 Übersicht über die Anzahl Parameter, die im Jahr 2018 dem Messprogramm hinzugefügt (neue Parameter) und aus dem Messprogramm entfernt wurden (verfallene Parameter) und das Nettoergebnis dieser Maßnahme (Gesamtunterschied) für die einzelnen Meldepunkte

Meldepunkt	Anzahl der neuen Parameter	Anzahl der entfernten Parameter	Nettoergebnis
Lobith	7	0	7
Nieuwegein	19	4	15
Nieuwersluis	6	63	-57
Andijk	18	4	14
Haringvliet	26	2	24

3.2 ERM-Zielwerte und Überschreitungen

Die IAWR (Internationale Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet) hat in Zusammenarbeit mit der IAWD (Internationalen Arbeitsgemeinschaft der Wasserwerke im Donaueinzugsgebiet), der AWE (Arbeitsgemeinschaft der Wasserversorger im Einzugsgebiet der Elbe), der AWWR (Arbeitsgemeinschaft der Wasserwerke an der Ruhr) und dem RIWA-Maas (Verband der Flusswasserwerke Maas/Meuse) das European River Memorandum (ERM) festgelegt. Gemeinsam vertreten diese fünf Organisationen 115 Millionen Verbraucher in siebzehn Ländern mit 170 Wasserwerken. Was den Rhein betrifft, so handelt es sich hierbei um die sechste Fassung dieses Dokuments. Das Memorandum umfasst Anforderungen im Hinblick auf den nachhaltigen Schutz der Wasserqualität und konkrete Zielwerte für Stoffgruppen. Die Zielwerte (die ERM-Zielwerte) werden in diesem Memorandum als Höchstwerte definiert. Ausgenommen hiervon sind Sauerstoff (Minimalwert) und pH-Wert (Bandbreite). Allgemeiner Ausgangspunkt des ERM ist, dass es für viele Stoffe schon gesetzliche Normen gibt, während für andere Stoffe, die ausgehend von der Philosophie einer einfachen Aufbereitung problematisch sind, noch keine gesetzlichen Normen gelten. Das Europäische Fließgewässermemorandum richtet sich speziell auf diese Stoffe bzw. Stoffgruppen. Es herrscht Klarheit darüber, dass das ERM keinen gesetzlichen Status hat und

dass es auf dem Vorsorgeprinzip sowie der weithin geteilten Annahme basiert, dass Trinkwasserquellen sauber zu sein haben. Deshalb werden die Werte des ERM in diesem Jahresbericht auch konsequent als "Zielwerte" aufgeführt. Im nachstehenden Textrahmen wird zu Anschauungszwecken ein Teil der Zielwerte des ERM aufgeführt.

Ein Ausschnitt aus dem European River Memorandum

Anthropogene nicht-natürliche Stoffe	Zielwert (pro Stoff)
Die auf biologische Systeme einwirken:	
Pestizide, Biozide und die Metaboliten	0,1 μg/l*
Endokrin wirksame Substanzen	0,1 μg/l*
Pharmaka (einschl. Antibiotika)	0,1 μg/l*
Polyfluorhaltige Verbindungen (PFC) und sonstige organische Halogenverbindungen	0,1 μg/l*
Evaluierte Stoffe ohne biologische Wirkung	
Mikrobiologisch schwer abbaubare Stoffe	1,0 μg/l*
Nicht evaluierte Stoffe	
(möglicherweise in Trinkwasser eindringende** Stoffe oder Stoffe, die uncharakteristische Abbau- und Umwandlungsprodukte bilden)	0,1 μg/l

^{*} Es sei denn, es muss aufgrund neuerer toxikologischer Erkenntnisse diesbezüglich von einem niedrigeren Wert ausgegangen werden. z. B. für genotoxische Substanzen.

Die Messwerte der Parameter werden mit den ERM-Zielwerten verglichen. Tabelle 1.3 (siehe Seite 16) umfasst eine Übersicht über die Parameter, die im Jahr 2018 an einem oder mehreren Standortenden den ERM-Zielwert mindestens einmal überschritten. Für jeden Parameter wird der höchste Messwert (für Sauerstoff: der niedrigste Messwert) an jedem Standort aufgeführt, wobei die Überschreitungen des Zielwerts fett gedruckt sind. Wenn die untere Bestimmungsgrenze eines Parameters den ERM-Zielwert überschreitet, kann dieser Parameter nicht gut anhand dieses Zielwerts geprüft werden. Dies wird mit dem Symbol "*)" angedeutet. Parameter, auf welche dies zutrifft, werden auch in Tabelle 1.4 (siehe Seite 20) aufgeführt. Diese Tabelle erteilt eine Übersicht über alle Parameter, deren untere Bestimmungsgrenze nicht niedrig genug ist, um die Werte anhand des ERM-Zielwerts prüfen zu können.

^{**} Stoffe, die sich nicht oder nicht ausreichend mithilfe natürlicher Verfahren für die Trinkwasseraufbereitung entfernen lassen.

Die meisten Stoffe, die in Tabelle 1.3 aufgeführt werden, wurden schon im Jahr 2017 in der Tabelle aufgelistet. Im Vergleich zum letzten Jahr wurden die allgemeinen Parameter mit "Temperatur" und "Säuregrad" ergänzt. Daneben ist die Summe von Trihalomethanen (THM) neu in der Tabelle. Die Herbizide Bentazon und Triflusulfuron-methyl (ein Herbizid auf Sulfonylharnstoff-Basis) überschritten dieses Jahr - im Gegensatz zum Jahr 2017 - den ERM-Zielwert nicht. Ferner erscheint im Jahr 2018 der Benzinzusatzstoff Methyltertiärbutylether (MTBE), der letztes Jahr den Zielwert bei Nieuwersluis überschritt, nicht mehr in der Tabelle. Die industriellen Lösemittel Dichlormethan und Tetrahydrofuran kamen dahingegen hinzu. Beide lassen an einem Standort Überschreitungen des Zielwerts erkennen. Bezüglich des industriellen Stoffs Hexa(methoxymethyl)melamin (HMMM) wurden letztes Jahr mehrere Überschreitungen des Zielwerts bei Lobith nachgewiesen, dies ist dieses Jahr aber nicht mehr der Fall. Das Desinfektionsnebenprodukt Tribrommethan ist dieses lahr neu in der Tabelle, genauso wie das Antibiotikum Azithromycin und das schmerzstillende und fiebersenkende Mittel Salicylsäure. Alle diese Parameter überschritten an einem Standort den ERM-Zielwert. Das Arzneimittel Vigabatrin (Anti-Epileptikum) überschritt den ERM-Zielwert im Jahr 2018 im Gegensatz zum Vorjahr nicht und kommt daher in der Tabelle nicht mehr vor. Der GR-Calux akt, in Bezug auf Dexamethason wird auch nicht mehr in der Tabelle aufgeführt. Dahingegen wurde die Tabelle aber mit einer neuen Effektmessung, d. h. NRF2-Calux akt. bezüglich Kurkumin, erweitert.

Die Parameter in Tabelle 1.4 entsprechen weitgehend den Parametern, die in Tabelle 1.4 im Jahresbericht 2017 Der Rhein aufgeführt werden. Die Bestimmungsgrenzen von Nitrilotriessigsäure (NTA) und Diethylentriaminpentaessigsäure (DTPA) wurden verbessert, sodass die beiden Stoffe nicht mehr in der Tabelle erscheinen. Dahingegen wurden Vigabitrin und nichtionaktive Detergenzien der Tabelle hinzugefügt.

In den nächsten Abschnitten wird auf die Ergebnisse aus dem Jahr 2018 näher eingegangen.

Tabelle 1.3 Vergleich der Wasserqualitätsdaten des Oberflächenwassers im Rheineinzugsgebiet im Jahr 2018 mit dem ERM-Zielwert (ERM-Zw). Die aufgeführten Parameter überschritten den ERM-Zielwert an einem oder mehreren Standorten einmal oder häufiger.

In der Tabelle wird der höchste Messwert aufgeführt, wobei Überschreitungen fett gedruckt wiedergegeben werden. Ein "-" bedeutet, dass keine Messdaten vorliegen. Ein "*)" bedeutet, dass keine gute Normprüfung möglich ist, da die untere Bestimmungsgrenze den ERM-Zielwert überschreitet.

	CAS-Nummer	Einheit	ERM-Zw	Lobith	Nieuwegein	Andijk	Nieuwersluis	Haringvliet
Allgemeine Parameter								
Wassertemperatur Sauerstoff pH-Wert Elektrische Leitfähigkeit	7782-44-7	°C mg/l pH mS/m	25 8 9 70	25,5 7,73 8,38 84,4	23,3 7,5 8,21 74,1	23,6 7,9 8,18 77,7	24,9 7,2 9,06 108	25,1 5,7 8,4 82
Anorganische Stoffe Chlorid Sulfat Nährstoffe	16887-00-6 14808-79-8	mg/l mg/l	100 100	143 89	124 75	125 80	265 148	150 80
Stickstoff, Ammonium-NH4		mg/l	0,3	0,26	0,28	0,61	0,21	0,17
Gruppenparameter TOC (gesamter organischer Kohlenstoff) DOC (gelöster organischer Kohlenstoff) AOX (ads. org. geb. Chlor)		mg/l mg/l µg/l	4 3 25	4,1 3,2 42	3,48 3,4	6,71 6,66 -	10,4 8,03 -	- 4,7 19
Summenparameter								
Trihalogenmethane (Summe THM)		μg/l	0,1		< 0,03	< 0,03	0,03	0,17
Waschmittelbestandteile und Komplexbilde Anionaktive Detergentien Nichtionische + Kationische Detergentien Nitrilotriacetat (NTA) Ethylendinitrilotetraacetat (EDTA) Diethylentriaminpentaacetat (DTPA) Methylglycindiessigsäure (alpha ADA) Fungizide mit Amid-Gruppe N,N-Dimethylsulfamid (DMS) Herbizide aus der Anilid-Gruppe Metazachlor-C-Metabolit Metazachlor-S-Metabolit	139-13-9 60-00-4 67-43-6 164462-16-2 3984-14-3 1231244-60-2 172960-62-2	mg/l mg/l µg/l µg/l µg/l µg/l µg/l	0,001 0,001 1 1 1 1 0,1	2,6 8,9 2,8 2,7 0,042	<0,01*) 0,09 <1 7,4 <1 - 0,072	- <1 12 1,5 - 0,13	0,02 0,03 3,3 16 2,7 - < 0,05	<0,1*) - <1 10 1 - 0,052
Herbizide mit Triazin-Gruppe Metolachlor-C-Metabolit Metolachlor-S-Metabolit Nicht-eingeteilte Herbizide	152019-73-3 171118-09-5	μg/l μg/l	0,1 0,1	0,03 0,06	< 0,03 0,06	i.	0,14 0,24	:
Glyphosat Aminomethylphosphonsäure (AMPA) Chloridazon-desphenyl Industrielle Lösemittel	1071-83-6 1066-51-9 6339-19-1	μg/l μg/l μg/l	0,1 0,1 0,1	0,0346 0,596 0,09	0,11 0,54 -	0,12 0,78 -	0,14 0,31 -	0,054 0,76 0,15
Dichlormethan Tetrahydrofuran (THF) 1,4-Dioxan ^a Industriechemikalien (mit arom. Stickst. Ve	75-09-2 109-99-9 123-91-1	µg/l µg/l µg/l	0,1 0,1 0,1	< 0,5 *) - 2,438	< 0,05 - 1,5	14 - -	< 0,05 - 0,6	< 0,1 1,9 1,5
Pyrazol Industriechemikalien (mit Conazolen)	288-13-1	μg/l	1	4,4	2,8		1,2	2,5
Benzotriazol	95-14-7	μg/l	1	1,4	1,1	1	0,49	0,93

a Dieser Parameter fällt auch in die Parametergruppe "Ether"

16

Tabelle 1.3	CAS-Nummer	Einheit	ERM-Zw	Lobith	Nieuwegein	Andijk	Nieuwersluis	Haringvliet
Industriechemikalien (mit halog. Säure)								
Trifluoracetat (TFA)	76-05-1	μg/l	0,1	2,1	1,9	-	1,8	1,3
Monobromessigsäure	79-08-3	μg/l	0,1		0,1	-	0,12	-
Trichloressigsäure (TCA)	76-03-9	μg/l	0,1		0,11	-	0,06	-
Industriechemikalien (Vorläufer und Zwisc	henprodukte)							
Benzothiazol	95-16-9	μg/l	0,1		-	-	-	0,14
Methenamin	100-97-0	μg/l	1	2,4	2,5	-	1,3	2,8
Nicht-eingeteilte Industriechemikalien								
1,3,5-Triazin-2,4,6-Triamin (Melamin)	108-78-1	μg/l	1	5,3	3,1	-	1,3	2,7
Desinfektionsnebenprodukte (mit Halogene	en)							
Tribrommethan	75-25-2	μg/l	0,1	0,0234	0,0206	0,0117	0,042	0,102
Röntgenkontrastmittel		F3/ ·				9,0111	5,5 1.2	7,102
Amidotrizoesäure	117-96-4	μg/l	0,1	0,71	0,31	0,35	0,12	0,29
lohexol	66108-95-0	μg/l	0,1	0,57	0,25	0.55	0,13	0,18
lomeprol	78649-41-9	μg/l	0,1	1,5	0,66	1,1	0,44	0,51
lopamidol	60166-93-0	μg/l	0,1	0,71	0,26	0,3	0,12	0,2
lopromid	73334-07-3	μg/I	0,1	0,89	0,43	0,87	0,25	0,24
Antibiotika	7000+ 07 0	μ9/1	0,1	0,00	0,40	0,01	0,23	0,24
Azithromycin	83905-01-5	μg/l	0,1		< 0,02	0,028	0,21	< 0,05
Betablocker und Diuretika	03303-01-3	μу/1	U,1		< 0,02	0,020	0,21	< 0,00
	07050 50 0	/1	0.1	0.24	0.050	0.074	0.000	0.1
Metoprolol	37350-58-6	μg/l	0,1	0,31	0,056	0,074	0,032	0,1
Sotalol	3930-20-9	μg/l	0,1	0,042	0,11	0,16	0,016	0,033
Hydrochlorothiazid	58-93-5	μg/l	0,1	0,28	0,1	0,22	0,062	0,084
Valsartan	137862-53-4	μg/l	0,1	0,28	0,28	•	0,14	0,18
Valsartansäure	164265-78-5	μg/l	0,1	0,66	0,49		0,33	
Schmerzstillende und fiebersenkende Mitte								
Diclofenac	15307-86-5	μg/l	0,1	0,25	0,02	0,013	0,006	0,04
Salicylsäure	69-72-7	μg/l	0,1		< 0,011	0,11	< 0,011	< 0,02
N-Acetyl-4-Aminoantipyrin (AAA)	83-15-8	μg/l	0,1	0,29	0,21	-	0,13	•
N-Formyl-4-Aminoantipyrin (FAA)	1672-58-8	μg/l	0,1	0,39	0,28	-	0,14	-
Sonstige Arzneimittel								
Koffein	58-08-2	μg/l	0,1	•	0,26	0,24	0,13	0,21
Carbamazepin	298-46-4	μg/l	0,1	0,12	0,028	0,03	0,015	0,06
Metformin	657-24-9	μg/l	0,1	0,99	0,74	0,81	0,44	0,81
Guanylharnstoff	141-83-3	μg/l	0,1	3,2	1,3	-	0,84	1,7
Gabapentin	60142-96-3	μg/l	0,1	0,47	0,4	-	0,29	0,2
10,11-Dihydro-10,11-Dihydroxycarbamazepin	58955-93-4	μg/l	0,1	0,13	0,052	0,056	0,028	•
Lamotrigin	84057-84-1	μg/l	0,1	0,08	0,13	-	0,08	-
Sitagliptin	486460-32-6	μg/l	0,1	0,47	0,1	-	0,04	•
Oxipurinol	2465-59-0	μg/l	0,1	2,4	1,7	-	0,83	-
Atenololsäure	56392-14-4	μg/l	0,1	0,17	-	-		-
Candesartan	139481-59-7	μg/l	0,1	0,24	0,15	•	0,07	-
Künstliche Süssstoffe								
Sucralose	56038-13-2	μg/l	1	1,1	2,2	3,7	2,4	1,6
Acesulfam	55589-62-3	μg/l	1	0,82	0,92	2	0,82	0,94
Wirkungsteste								
AR-Anti-Calux Akt. gegen Flutamid		μg/l	0,1		64,6	-	46,5	-
NRF2-Calux Akt. gegen Curcumin		μg/l	0,1		266	-	8138	-

Tabelle 1.4 Für eine Anzahl Stoffe ist die vom Labor verwendete Bestimmungsgrenze für eine Prüfung anhand der ERM-Zielwerte (ERM-sw) nicht geeignet. Diese finden sich in dieser Tabelle.

	CAS-Nummer	Einheit	ERM-Zw	Lobith	Nieuwegein	Andijk	Nieuwersluis	Haringvliet
Waschmittelbestandteile und Komplexbildr	ner er							
Anionaktive Detergentien		mg/L	0,001	n.d.	keine Prüfung	n.d.	0,02	keine Prüfung
Kationaktive Detergentien		mg/L	0,001	n.d.	n.d.	n.d.	n.d.	keine Prüfung
Nichtionaktive Detergentien		mg/L	0,001	n.d.	n.d.	n.d.	n.d.	keine Prüfung
Fungizide aus der Benzimidazol-Gruppe								
Thiophanat-Methyl	23564-05-8	μg/L	0,1	n.d.	keine Prüfung	n.d.	keine Prüfung	n.d.
Insektizide aus der organischen Phosphor-								
Diazinon	333-41-5	μg/L	0,1	n.d.	keine Prüfung	keine Prüfung	keine Prüfung	<0,02
Biologische Insektizide								
Azadirachtin A ^a	11141-17-6	μg/L	0,1	n.d.	keine Prüfung	n.d.	keine Prüfung	n.d.
Nicht-eingeteilte Insektizide								
Flonicamid	158062-67-0	μg/L	0,1	n.d.	keine Prüfung	n.d.	keine Prüfung	n.d.
Industrielle Lösemittel								
Dichlormethan	75-09-2	μg/L	0,1	keine Prüfung	<0,05	14	<0,05	<0,1
1,1,2,2-Tetrachlorethan	79-34-5	μg/L	0,1	keine Prüfung	<0,03	<0,03	<0,03	<0,05
Industriechemikalien (mit arom. Kohlenw. S		"	0.1	l : p "(l : D "(l : D "(l : D "f	l : D ::(
3-Chlormethylbenzen	108-41-8	μg/L	0,1	keine Prüfung	keine Prüfung	keine Prüfung	keine Prüfung	keine Prüfung
Industriechemikalien (mit halog. Säure)	70.44.0	"	0.4		l : D "(l : D "f	
Monochloressigsäure	79-11-8	μg/L	0,1	n.d.	keine Prüfung	n.d.	keine Prüfung	n.d.
Zytostatika	F4 04 0	"	0.4					l : D "(
5-Fluoruracil (5-FU) Antibiotika	51-21-8	μg/L	0,1	n.d.	n.d.	n.d.	n.d.	keine Prüfung
	FF200 7F 2	/1	0.1				- 4	haina Dallforna
Cefuroxim Sonstige Arzneimittel	55268-75-2	μg/L	0,1	n.d.	n.d.	n.d.	n.d.	keine Prüfung
-	490-79-9	/1	0.1	- 4		n d		keine Prüfung
2,5-Dihydroxybenzoesäure (DHB) (Gentisinsäure) Vigabatrin	60643-86-9	μg/L μg/L	0,1 0,1	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	keine Prüfung keine Prüfung
Hormonell wirksame Stoffe (EDC)	00043-00-3	μg/L	0,1	II.u.	II.u.	II.u.	II.u.	Keille Fruiully
Di(2-Ethylhexyl)Phtalat (DEHP)b	117-81-7	μg/L	0,1	keine Prüfung	keine Prüfung	keine Prüfung	keine Prüfung	keine Prüfung
Di-(2-methylpropyl)phtalat (DIBP) ^b	84-69-5	μg/L μg/L	0,1	n.d.	keine Prüfung	n.d.	n.d.	n.d.
51 (2 mothyrpropyr)pritaide (bib) /	0+ 00-0	μ 9 / L	0,1	II.u.	Komo i raiding	n.u.	ii.u.	n.u.

a Dieser Parameter fällt auch in die Parametergruppe "nicht eingeteilte Fungizide"

b Dieser Parameter fällt auch in die Parametergruppe "Weichmacher"

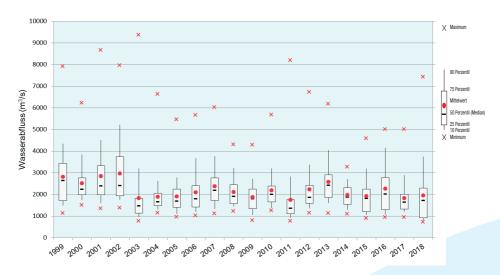
keine Prüfung : keine gute Normprüfung möglich

n.d. : keine Messdaten

Zahl : der höchste Messwert

fettgedruckte Zahl: Überschreitung von ERM-Zielwert

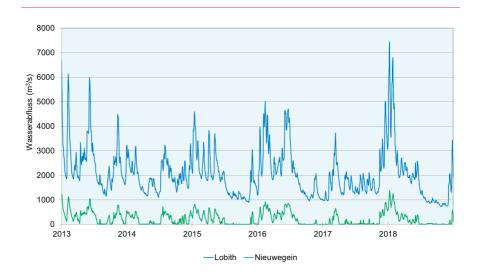
20



3.3 Allgemeine Parameter

Die allgemeinen Parameter vermitteln einen Eindruck des allgemeinen Zustands des Oberflächenwassers. Einige dieser Parameter haben einen ERM-Zielwert, und manche entsprachen beinahe dem Zielwert oder überschritten ihn leicht. Ein Teil dieser Parameter wird in den nachfolgenden Unterabschnitten behandelt.

3.3.1 Wasserabfluss


Der Abfluss ließ im Jahr 2018 extreme Werte erkennen. Das Jahr 2018 begann mit einer nassen Periode und einem hohen Wasserabfluss. Der höchste gemessene Abfluss bei Lobith betrug im Jahr 2018 7430 m³/s im Januar. Im späteren Verlauf des Jahres gab es eine lange Trockenperiode und nahm der Abfluss immer mehr ab. Der niedrigste Wert betrug 732 m³/s. In den letzten 20 Jahren ist der Abfluss bei Lobith nie zuvor so niedrig gewesen (siehe Grafik 1.1). In manchen Jahren betrug der Abfluss knapp unter 800 m³/s. Das letzte Mal, dass der Mindestabfluss niedriger als letztes Jahr war, war im Jahr 1963, als er 665 m³/s betrug. Trotz der langen Trockenperiode ist der durchschnittliche Abfluss von 1953 m³/s höher als im Jahr 2017. Dies ist auf die hohen Abflüsse zu Beginn der Jahres 2018 zurückzuführen.

Grafik 1.1 Boxplots des Wasserabflusses des Rheins bei Lobith im Zeitraum 1999 - 2018

Die 5- und 20-jährigen gleitenden Mittelwerte betragen 1984 bzw. 2194 m³/s und sind damit niedriger als im Jahr 2017. In Kapitel 2 auf Seite 67 wird ausführlich auf den Einfluss der Trockenheit auf das Oberflächenwasser und die betroffenen Organisationen eingegangen.

Der bei Hagestein gemessene Abfluss ist repräsentativ für den Abfluss bei Nieuwegein und wird deshalb in Grafik 1.2 unter Nieuwegein aufgeführt. Mit einem Wert von 1380 m³/s war der Höchstabfluss im Jahr 2018 wesentlich höher als im Jahr 2017 (910 m³/s) und den Vorjahren. Auch der durchschnittliche Abfluss (219 m³/s) war höher als im Jahr 2017 (130 m³/s). Der 20-jährige gleitende Mittelwert von 273 m³/s ist mit dem des Jahres 2017 vergleichbar, während der 5-jährige gleitende Mittelwert von 233 m³/s im Jahr 2017 auf 205 m³/s im Jahr 2018 gesunken ist.

Grafik 1.2 Wasserabfluss bei Lobith und bei Nieuwegein im Zeitraum 2013 - 2018. Für Nieuwegein wird der Abfluss bei Hagestein als repräsentativer Abfluss verwendet.

3.3.2 Temperatur, Sauerstoff und elektrische Leitfähigkeit

Im Jahr 2017 betrugen Temperatur und Säuregrad (pH) an allen Meldepunkten zwischen 80% des ERM-Zielwerts und dem eigentlichen Zielwert (dies entspricht einer Temperatur von 25 °C und dem pH-Wert 9). Im Jahr 2018 trifft dies für die Temperatur in Nieuwegein, Nieuwersluis und

Andijk immer noch zu, wobei Nieuwersluis auch immer noch einen steigenden Trend erkennen lässt. Bei Lobith wurde im Jahr 2018 allerdings einmal und bei Haringvliet zweimal der ERM-Zielwert mit Höchstwerten von 25,5 bzw. 25,1 °C (siehe Tabelle 1.3) überschritten. Auch der Säuregrad lag im Jahr 2018 an allen Standorten noch zwischen 80% des ERM-Zielwerts und des eigentlichen Zielwerts, mit Ausnahme von Andijk. Hier wurde der Zielwert bei 53 Messungen einmal mit einem Wert von 9,06 überschritten, und außerdem lässt sich hier ein steigender Trend erkennen. Bei Haringvliet weist der Säuregrad einen sinkenden Trend auf.

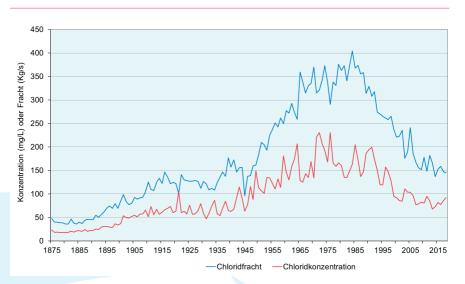
Der Sauerstoffgehalt ließ an allen Meldepunkten eine Unterschreitung des ERM-Zielwerts erkennen (einmal bei 26 Messungen bei Lobith, einmal bei dreizehn Messungen bei Nieuwersluis und Andijk, viermal bei dreizehn Messungen bei Nieuwegein und sechsmal bei 47 Messungen bei Haringvliet). Der niedrigste Wert wurde bei Haringvliet gemessen und betrug 5,7 mg/l. Dieser Wert war somit wesentlich niedriger als der Mindestwert des Jahres 2017 (7,3 mg/l). Für die Mindestwerte an den übrigen Standorten verweisen wir auf Tabelle 1.3.

Im Jahr 2018 überschritt die elektrische Leitfähigkeit wie im Vorjahr an allen Standorten den ERM-Zielwert. Die meisten Überschreitungen fanden in Andijk (21 von 53 Messungen) und im Haringvliet (11 von 47 Messungen) statt. Die Anzahl Überschreitungen in Andijk war niedriger als im Vorjahr (35 von 52 Messungen), aber der Höchstwert war wesentlich höher: 108 mS/m im Vergleich zu 89,3 mS/m im Jahr 2017. Bei Lobith stieg die Anzahl Überschreitungen bei 26 Messungen von drei auf sieben, aber der Höchstwert lag, wie an den übrigen Standorten, in derselben Größenordnung wie im Vorjahr (84,4 mS/m). Bei Andijk hingen die Überschreitungen im Jahr 2017 mit den erhöhten Chloridkonzentrationen zusammen, die in der zweiten Hälfte des Jahres 2017 gemessen wurden. Auch im Jahr 2018 war dies der Fall. In Abschnitt 3,5.1 wird näher hierauf eingegangen.

Die Trübung des Wassers lässt bei Nieuwegein einen steigenden Trend erkennen. Eine mögliche Erklärung hierfür sind die Arbeiten, die an den Beatrix-Schleusen stattfanden. Wir verweisen auf Anhang 1 Wasserqualitätsdaten 2018 auf Seite 129 für die Daten aller Parameter innerhalb dieser Gruppe.

3.4 Radioaktivität

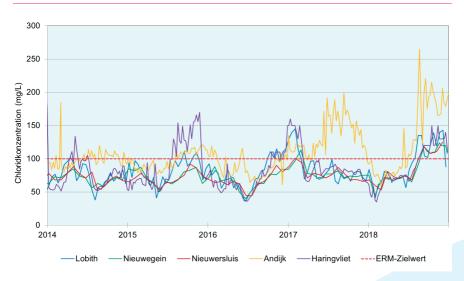
Die Parametergruppe Radioaktivität umfasst die Parameter Gesamtwert Beta-Radioaktivität, Gesamtwert Alpha-Radioaktivität, Restwert Beta-Radioaktivität (Gesamtw.-K40), Tritium-Radioaktivität, Strontium-90, Radium-226 und Radium-228. Einige dieser Parameter werden schon seit 1973 gemessen. Im ERM werden keine Zielwerte für diese Gruppe vorgesehen, da es für sie bereits gesetzliche Normen gibt. Die Gesamtanzahl der Messungen an den fünf Meldepunkten im


Jahr 2018 betrug 193 und war damit vergleichbar mit dem Jahr 2017. Bei 55% der Messwerte wurde eine Überschreitung der Bestimmungsgrenze konstatiert. Der sinkende Trend bezüglich der Aktivität von Tritium ist auf die herabgesetzten Bestimmungsgrenzen zurückzuführen. Die Daten dieser Gruppe finden sich in Anhang 1 Wasserqualitätsdaten 2018 der digitalen Fassung dieses lahresberichts.

3.5 Anorganische Stoffe

Ein Teil der anorganischen Stoffe, wie z. B. Chlorid und Sulfat, werden "konservativ" genannt, da ihr Gehalt nur durch Verdünnung und Einleitung der Ionen beeinflusst wird und nicht durch die physisch-chemischen oder biologischen Prozesse, die sich im Wasser abspielen. Schwankungen der Gehalte dieser Stoffe im Wasser werden demnach hauptsächlich durch den Umfang der Einleitungen und des Abflusses des Gewässerkörpers bestimmt.

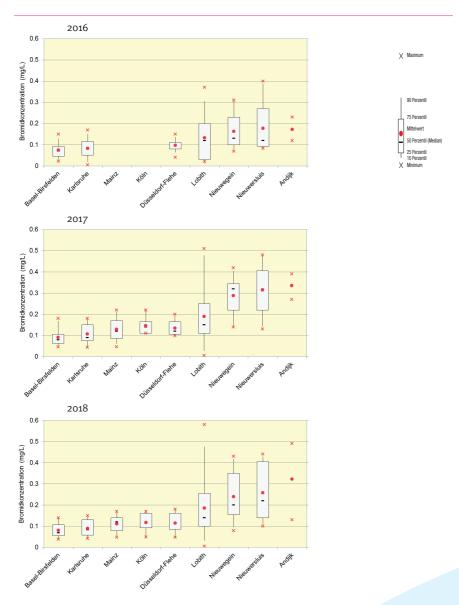
3.5.1 Chlorid


Die durchschnittliche Chloridkonzentration bei Lobith im Jahr 2018 betrug 92,0 mg/l und war daher höher als im Jahr 2017 (86,2 mg/l), während für die durchschnittliche Chloridfracht eine leichte Senkung von 147,0 auf 145,3 Kg/s ermittelt wurde (siehe Grafik 1.3).

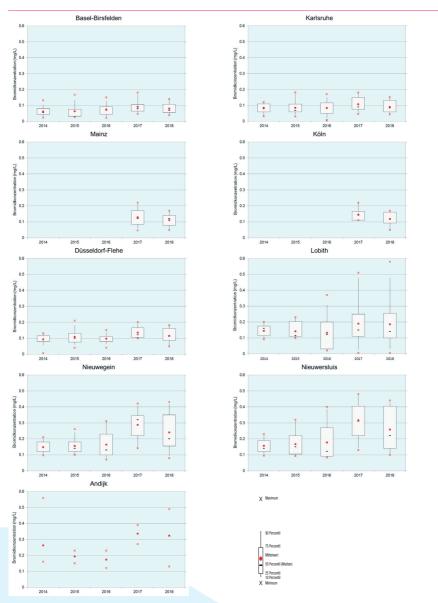
Grafik 1.3 Die durchschnittliche Chloridkonzentration (rote Linie) und die durchschnittliche Chloridfracht (blaue Linie) bei Lobith pro Jahr im Zeitraum 1875 - 2018

Es scheint, dass die Konzentration unter Einfluss eines geringeren Abflusses gestiegen ist. Wie im Jahr 2017 wurde auch im Jahr 2018 an allen Standorten der ERM-Zielwert von 100 mg/l überschritten. An den meisten Standorten nahm die Anzahl der Überschreitungen des Zielwerts im Vergleich zum Vorjahr zu. Dies bezieht sich auf 10 von 26 Messungen bei Lobith, 16 von 25 Messungen bei Nieuwegein, 4 von 13 Messungen bei Nieuwersluis und 15 von 47 Messungen bei Haringvliet. Die meisten Überschreitungen wurden bei Andijk konstatiert (28 von 53 Messungen). Diese Anzahl ist aber geringer als im Jahr 2017 (48 von 52 Messungen). Der Höchstwert bei Andijk lag dieses Jahr dahingegen viel höher, d. h. bei 265 mg/l, was rund 2,5 Mal dem Zielwert entspricht. Auch bei Nieuwegein und Nieuwersluis ließ Chlorid höhere Höchstwerte erkennen, d. h. 124 und 125 mg/l. Außerdem zeichnet sich hier ein steigender Trend ab. Die Chloridfracht bei Nieuwegein lässt keinen Trend erkennen. Für den Chloridverlauf an den verschiedenen Probenahmestellen im Zeitraum 2014 - 2018 verweisen wir auf Grafik 1.4. Bei Andijk haben die hohen Chloridkonzentrationen zu Problemen bei der Wasserentnahme für die Trinkwassergewinnung geführt. Eine Übersicht über die Entnahmestopps, die hierdurch stattgefunden haben, findet sich in Anhang 3 "Entnahmestopps und begrenzte Produktion" auf Seite 298 dieses Jahresberichts. Ferner werden in Kapitel 2 auf Seite 67 weitere Informationen bezüglich des Einflusses der Trockenheit auf die Chloridkonzentrationen erteilt.

Grafik 1.4 Die an den fünf Meldepunkten im Zeitraum 2014 - 2018 gemessene Chloridkonzentration


3.5.2 Sonstige anorganische Stoffe

Im Vergleich zum Vorjahr erscheint Sulfat neu in Tabelle 1.3. Die höchste Konzentration wurde bei Andijk gemessen und hatte einen Wert von van 148 mg/l. Sie überschritt damit den ERM-Zielwert von 100 mg/l. Bei Lobith wurde ein Höchstwert von 89 mg/l ermittelt, der 89% des ERM-Zielwerts entsprach. Während im Jahr 2017 für Fluorid schon ein steigender Trend bei Lobith, Nieuwersluis und Andijk zu erkennen war, ist dies im Jahr 2018 auch bei Nieuwegein der Fall. Die Fracht lässt allerdings keinen Trend erkennen, d. h. dass die höheren Konzentrationen mit niedrigeren Abflüssen zusammenzuhängen scheinen. Die Fluoridkonzentrationen unterschritten den ERM-Zielwert von 1 mg/l bei Weitem. Der steigende Trend von Cyanid (CN) bei Lobith und Nieuwegein ist auf die geänderte Bestimmungsgrenze zurückzuführen. Bei Lobith wurde einmal eine hohe Cyanidkonzentration von 76 μg/l gemessen. Dieser Wert überschreitet die Norm von 50 μg/l der Trinkwasserregelung.


In Nieuwegein und Nieuwersluis wurde genauso wie im Jahr 2017 ein steigender Trend für Bromid erfasst. Die Bromidfracht bei Nieuwegein lässt allerdings keinen Trend erkennen. Höhere Bromidkonzentrationen sind für die Trinkwassergewinnung unerwünscht, da dieser Stoff bei der Anwendung von Ozon im Trinkwassergewinnungsprozess in das giftige Nebenprodukt Bromat verwandelt werden kann. Mit zunehmender Anwendung von Ozonverfahren als zusätzlichem Reinigungsschritt in Kläranlagen, stellen die Entstehung dieses Nebenprodukts und die möglichen Folgen für die Trinkwassergewinnung (höhere Bromatkonzentrationen) einen wichtigen Punkt dar, dem Aufmerksamkeit geschenkt werden muss. Aus diesem Grund wurde Bromat im Jahr 2018 dem RIWA-Rhein-Messprogramm bei Lobith hinzugefügt. Alle Messungen waren kleiner als 1 µg/l. Weitere Informationen finden sich im Bericht "Large scale water treatment and the implications for the water cycle" ("Großtechnische Abwasseraufbereitung und die Implikationen für den Wasserkreislauf") auf unserer Website www.riwa-rijn.org.

Eine Analyse der Bromidkonzentrationen entlang dem Rhein zeigt, dass die Messdaten an den Messstellen vor der niederländischen Grenze eine wesentlich kleinere Streuung aufweisen als hinter der niederländischen Grenze. Zwischen Düsseldorf-Flehe und Lobith ist eine Zunahme erkennbar. Allerdings nimmt die Konzentration auch in den Niederlanden zu (siehe Grafik 1.5). Ferner zeigt sich in den Jahren 2016 und 2017 eine Zunahme der Konzentrationen an den niederländischen Probenahmestellen (siehe Grafik 1.6). In den Jahren 2017 und 2018 trifft dies weniger zu, aber es gibt Unterschiede. Die Konzentrationen weisen ab dem Jahr 2016 eine größere Streuung als in den Vorjahren auf. Eine mögliche Quelle des Bromids sind Kohlekraftwerke. Brom oder Bromid wird bei der Rauchgasbehandlung von Kohlekraftwerken genützt, um elementares Quecksilber in oxidiertes Quecksilber umzuwandeln, um das Quecksilber erfassen zu können. Müllverbrennungsanlagen sind auch als Quelle von Bromid bekannt.

Grafik 1.5 Boxplots der Bromidkonzentrationen im Rhein an den einzelnen Probenahmestellen pro Jahr im ganzen Rheineinzugsgebiet. Die Probenahmestellen werden von links nach rechts von stromaufwärts nach stromabwärts aufgeführt.

Grafik 1.6 Boxplots der Bromidkonzentrationen im Rhein an den einzelnen Probenahmestellen in den letzten fünf Jahren im ganzen Rheineinzugsgebiet. Die Probenahmestellen werden von oben nach unten und von links nach rechts von stromaufwärts nach stromabwärts aufgeführt.

3.6 Nährstoffe

Die Gruppe von Nährstoffen, die auch eutrophierende Stoffe genannt werden, umfasst Ammonium, Stickstoff, Nitrit, Nitrat und Phosphat. Bei Nieuwersluis überschritt Ammonium wie schon in den Vorjahren den ERM-Zielwert (0,3 mg/l), siehe Tabelle 1.3. Mit einem Wert von 0,61 mg/l war der Höchstwert wesentlich höher als im Jahr 2017 (0,37 mg/l). Bei Lobith und Nieuwegein kamen die Höchstwerte mit 0,26 bzw. 0,28 mg/l dicht an den ERM-Zielwert heran, wobei sich in Nieuwegein ein steigender Trend abzeichnet.

Der Höchstwert von Nitrat betrug im Jahr 2017 bei Lobith 80 - 100% des Zielwerts. Im Jahr 2018 war der Höchstwert niedriger als 80% des Zielwerts. Bei Haringvliet lag der Höchstwert zwischen 80 und 100% des ERM-Zielwerts, es zeichnet sich aber ein sinkender Trend ab. Ferner lassen sich steigende Trends für Nitrit bei Nieuwegein und Kjeldahl-Stickstoff bei Nieuwersluis erkennen. Gesamtphosphat weist bei Nieuwersluis und bei Lobith einen sinkenden Trend auf. An letzterem Standort gilt dies auch für Orthophosphat. Alle verfügbaren Daten finden Sie in Anhang 1 Wasserqualitätsdaten 2018 auf Seite 129.

3.7 Gruppenparameter

Ein Gruppenparameter ist ein Parameter, der eine bestimmte Gruppe verwandter Verbindungen charakterisiert und mithilfe eines Analyseverfahrens definiert wird, das sich auf die gemeinsamen Eigenschaften dieser Gruppe verwandter Verbindungen richtet. Beispiele für Gruppenparameter sind gesamter organischer Kohlenstoff (TOC), gelöster organischer Kohlenstoff (DOC, die gefilterte Variante von TOC), gesamter anorganischer Kohlenstoff (TAC), chemischer Sauerstoffverbrauch (CSV), biochemischer Sauerstoffverbrauch (BSV), UV-Extinktion und Farbintensität. Adsorbierbare organische Halogene (AOX) fallen auch in diese Kategorie. Aufgrund der wenig brauchbaren Informationen bezüglich dieser Gruppe von Halogenen, wurde allerdings beschlossen, entsprechende Messungen im Jahr 2016 zu reduzieren. AOX-Messungen geben beispielsweise keinen Aufschluss über das Risiko für die öffentliche Gesundheit, da diesen Messungen nicht entnommen werden kann, um welche spezifischen Stoffe es sich handelt.

TOC und DOC stellen nicht-spezifische Indikatoren für die Belastung des Wassers mit organischen Stoffen dar. Beide Parameter überschritten wieder an mehreren Standorten den ERM-Zielwert (TOC: 4 mg/l; DOC: 3 mg/l, siehe Tabelle 1.3). Bei Andijk lagen alle dreizehn Messwerte von TOC (max. 10,4 mg/l) und alle 53 Messwerte von DOC (max. 8,03 mg/l) über dem Zielwert. Wie im Vorjahr wurden auch im Jahr 2018 nur bei Nieuwegein keine Überschreitungen bezüglich TOC

beobachtet. Der Höchstwert betrug aber über 80% des ERM-Zielwerts. Für DOC wurde hier - genauso wie in Lobith - einmal eine Überschreitung des Zielwerts festgestellt. Bei Nieuwersluis und Haringvliet wurden mehr Überschreitungen nachgewiesen und zwar bei neun von dreizehn bzw. acht von zwölf Messungen. Ferner wurde für TOC sowohl bei Lobith als auch bei Nieuwersluis einmal eine Überschreitung des ERM-Zielwerts konstatiert.

AOX werden nur noch in Lobith und Haringvliet gemessen. Bei Lobith wurden diesbezüglich bei vier von 26 Messungen Überschreitungen festgestellt. Für den chemischen Sauerstoffverbrauch (CZV) ist bei Lobith ein steigender Trend erkennbar, während die UV-Extinktion (254 nm) bei Nieuwersluis einen sinkenden Trend aufweist.

3.8 Summenparameter

Ein Summenparameter basiert auf einzelnen Messungen einer Anzahl definierter individueller chemischer Verbindungen, die in einem Analysegang getrennt voneinander quantifiziert werden. Der Wert der Summenparameter wird durch Addition der Gehalte dieser Messungen ermittelt. In dieser Gruppe wurden Wolman-Salze, PAK, Trihalomethane, Aromate und eine Summe von 35 Schädlingsbekämpfungsmitteln gemessen. Die Trihalomethane überschritten einmal den ERM-Zielwert bei Haringvliet mit einem Wert von 0,17 µg/l. 16 EPA-PAK und 10 Wassererlass-NL-PAK weisen bei Nieuwersluis einen sinkenden Trend auf. Dies gilt auch für 16 EPA-PAK und 6 Borneff-PAK bei Nieuwegein. An diesem Standort betrug die Summe der Aromate bei einem Wert von 0,9 µg/l 90% des ERM-Zielwerts und lässt der Parameter Wolman-Salze einen steigenden Trend erkennen. Für eine Übersicht über alle Ergebnisse verweisen wir auf den ausführlichen Anhang 1 Wasserqualitätsdaten 2018 in der digitalen Fassung des Jahresberichts auf www.riwa-rijn.org.

3.9 Biologische Parameter

Diese Parametergruppe umfasst alle mikrobiologischen Beobachtungen. Bei einigen Parametern handelt es sich um sogenannte Leitparameter, d. h. dass sie als Maß für die bakteriologische Verschmutzung des Oberflächenwassers dienen. Hierfür sind im ERM keine Zielwerte vorgesehen, da es für sie bereits gesetzliche Normen gibt. Die Gesamtzahl der Messwerte im Jahr 2018 in dieser Gruppe betrug für alle fünf Standorte 635 und war damit mit der Anzahl des Vorjahres vergleichbar.

Bei Andijk und Haringvliet wurden für Bakterien der Coli-Gruppe, Escherichia coli und Enterokokken im Jahr 2018 keine Überschreitungen der Qualitätsanforderungen aus Anhang 5 der

Trinkwasserregelung beobachtet. Bei Lobith überschritten sowohl die unbestätigten (vier von dreizehn Messungen) als auch die bestätigten Bakterien der Coli-Gruppe (fünf von zehn Messungen) die Qualitätsanforderung von 2000 n/100 ml. Die Höchstwerte betrugen 54000 bzw. 19860 n/100 ml und waren damit viel höher als im Jahr 2017. Auch bei Nieuwegein wurden diesmal Überschreitungen für diese beiden Parameter konstatiert (dreimal bzw. einmal bei dreizehn Messungen), mit Höchstwerten von 3700 und 3400 n/100 ml. Bei Nieuwersluis überschritten sie drei- und zweimal die Qualitätsanforderung, wobei beide Male ein Höchstwert von 13000 n/100 ml ermittelt wurde. Auch diese Höchstwerte sind wesentlich höher als im Vorjahr (2700 n/100 ml). Bei Lobith ließen daneben auch die thermotoleranten Bakterien der Coli-Gruppe und Escherichia coli mehrere Überschreitungen erkennen, wobei Höchstwerte von 14000 und sogar 92710 n/100 ml gemessen wurden. Mit einem Wert von 5200 n/100 ml überschritt Escherichia coli bei Nieuwersluis auch einmal die Qualitätsanforderung. Für die Enterokokken wurde bei Lobith eine Überschreitung der Qualitätsanforderung von 1000 n/100 ml konstatiert, mit einem Höchstwert von 1500 n/100 ml. Die Daten aller biologischen Parameter finden sich in Anhang 1 der digitalen Fassung dieses Jahresberichts.

3.10 Hydrobiologische Parameter

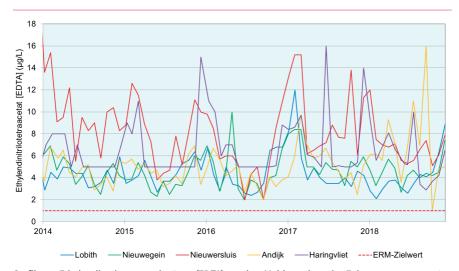
Bei den Parametern in dieser Gruppe handelt es sich um die makrobiologischen Parameter. Nur bei Andijk wird noch ein hydrobiologisches Monitoring-Programm ausgeführt. Daneben wurde Chlorophyll-a an allen fünf Standorten gemessen. Die Daten dieser Parameter finden sich in dem ausführlichen Anhang 1 Wasserqualitätsdaten 2018 in der digitalen Fassung des Jahresberichts auf www.riwa-rijn.org.

3.11 Metalle

Im ERM werden keine Zielwerte für Metalle vorgesehen, da es für sie bereits gesetzliche Normen gibt. Die Kläranlagen der Wasserversorgungsunternehmen können die Metalle relativ leicht aus dem entnommenen Wasser entfernen. Ein Vergleich der gemessenen Werte mit den Qualitätsanforderungen aus Anhang 5 der Trinkwasserregelung zeigt, dass die gemessenen Konzentrationen den Qualitätsanforderungen entsprachen. Verschiedene Metallarten ließen zu Beginn des Jahres an verschiedenen Standorten höhere Werte erkennen. Während bei Nieuwegein überwiegend steigende Trends konstatiert wurden, wurden bei Lobith und Nieuwersluis hauptsächlich sinkende Trends festgestellt. Für eine Übersicht über diese Daten verweisen wir auf Anhang 1 Wasserqualitätsdaten 2018 in der digitalen Fassung des Jahresberichts (www.riwa-rijn.org).

3.12 Waschmittelbestandteile und Komplexbildner

Diese Parametergruppe umfasst u. a. die Stoffe Nitrilotriessigsäure (NTA), Ethylendiamintetraessigsäure (EDTA) und Diethylentriaminpentaessigsäure (DTPA). Diese Stoffe, die an sich schon toxisch sind, haben aufgrund ihres Komplexierungsvermögens die Eigenschaft, Schwermetalle aus Schlamm freizusetzen und in Wasser aufgelöst zu bewahren, wodurch sie bei der Trinkwasseraufbereitung schlechter entfernt werden können. Außerdem werden Schwermetalle, wie z. B. Cadmium und Quecksilber, auf diese Art für allerlei Wasserorganismen erneut verfügbar, was nachteilige Folgen haben kann.


Früher wurden für die Untersuchung von DTPA und NTA an den Trinkwasserentnahmestellen Bestimmungsgrenzen verwendet, die den ERM-Zielwert von 1 μ g/l überschritten. Hierdurch konnten diese Parameter im Hinblick auf Überschreitungen des Zielwerts nicht korrekt geprüft werden. Dank der neuen Bestimmungsgrenze von 1 μ g/l war dies jetzt aber möglich. NTA überschritt den Zielwert bei Lobith und Andijk (bei neun bzw. einer von dreizehn Messungen), wobei Höchstwerte von 2,6 und 3,3 μ g/l anfielen (siehe Tabelle 1.3). Daneben weist NTA bei Lobith einen steigenden Trend auf. DTPA überschritt bei Lobith, Nieuwersluis und Andijk den ERM-Zielwert (bei vier, einer bzw. zwei von dreizehn Messungen). Die höchsten Konzentrationen wurden bei Lobith (2,8 μ g/l) und Andijk (2,7 μ g/l) gemessen.

Die Bestimmungsgrenze der EDTA-Messungen bei Haringvliet ist jetzt auch niedrig genug für eine Prüfung. Diese Parameter überschritten wie in den Vorjahren bei fast allen Messungen den ERM-Zielwert. Der Höchstwert aller Messwerte betrug 16 μ g/l und entspricht damit dem im Jahr 2017 festgestellten Wert, aber diesmal wurde er bei Andijk anstelle von Haringvliet gemessen. An allen anderen Standorten variierten die höchsten Konzentrationen von 7,4 μ g/l (Nieuwegein) bis 12 μ g/l (Nieuwersluis). In Grafik 1.7 werden die EDTA-Konzentrationen der letzten fünf Jahre aufgeführt. Wie Sie der Grafik entnehmen können, sind diese Konzentrationen in den letzten Jahren nicht gesunken.

Daneben wurde bei Lobith alpha-ADA gemessen. Die Anzahl der Überschreitungen für diesen Stoff war im Jahr 2018 niedriger als im Vorjahr: Bei dreizehn Messungen wurden sechs Überschreitungen festgestellt. Die höchste gemessene Konzentration betrug 2,7 µg/l. Ferner wurden Messungen bezüglich einiger Detergenzien ausgeführt. Die unteren Analysegrenzen dieser Detergenzien waren in Nieuwegein, Andijk und Haringvliet nicht niedrig genug, um eine gute Prüfung anhand des Zielwerts zu ermöglichen (Tabelle 1.4). In Nieuwegein und Andijk (Tabelle 1.3) wurden

dieses Jahr allerdings auch echte Überschreitungen konstatiert. Für die Daten der oben stehenden Parameter verweisen wir auf Anhang 1 Wasserqualitätsdaten 2018.

Grafik 1.7 Ethylendiamintetraessigsäure (EDTA) an den Meldepunkten im Zeitraum 2014 - 2018.

3.13 Polyzyklische aromatische Kohlenwasserstoffe (PAK)

Polyzyklische aromatische Kohlenwasserstoffe werden hauptsächlich bei Verbrennungsprozessen freigesetzt, wie z. B. bei der Verbrennung fossiler Brennstoffe und bei der Abfallverbrennung. Die atmosphärische Ablagerung ist deshalb eine wichtige Quelle für Wasserverschmutzung durch PAK. Auch im Straßenverkehr werden insbesondere von Fahrzeugen mit Dieselmotor beträchtliche Mengen PAK produziert. Daneben kommen diese Stoffe auch in Teerprodukten vor. Sie werden u. a. in Straßenbelägen, in der Holzkonservierung, im Schiffsbau, im Wasserbau und für die Verkleidung von Rohren und Fässern verwendet. Für diese Gruppe Stoffe wurde kein ERM-Zielwert festgelegt. Die Norm von 1 μg/l, die in Anhang 5 der Trinkwasserregelung festgelegt ist, wurde nicht überschritten. Bei Nieuwegein und Nieuwersluis sind sinkende Trends erkennbar und bei Lobith einige steigende Trends. Insgesamt wurden in dieser Parametergruppe 963 Analyseergebnisse berichtet, von denen fast 55% die Bestimmungsgrenze überschritten. Die Daten finden sich in Anhang 1 Wasserqualitätsdaten 2018 der digitalen Fassung dieses Jahresberichts auf unserer Website www.riwa-rijn.org.

3.14 Biozide

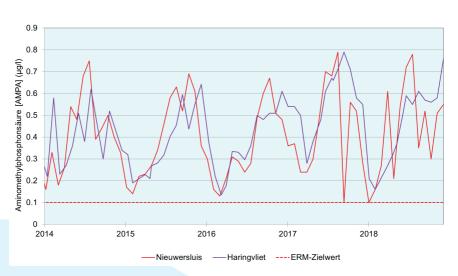
Seit 1996 wird Oberflächenwasser bezüglich des Vorhandenseins einer Anzahl Vertreter der Gruppe der Biozide geprüft. Ein bekannter Stoff ist Diethyltoluamid (DEET). Insgesamt wurden in dieser Parametergruppe 695 Analyseergebnisse berichtet, von denen 23% die Bestimmungsgrenze überschritten. Der ERM-Zielwert wurde nicht überschritten. Einzelne Trends, die hier aufgeführt werden, sind auf veränderte Bestimmungsgrenzen zurückzuführen. Die Daten finden sich in Anhang 1 Wasserqualitätsdaten 2018 in der digitalen Fassung dieses Jahresberichts.

3.15 Fungizide (alle acht Gruppen)

Die Fungizid-Gruppe wurde in der RIWA-base in acht Gruppen unterteilt. Insgesamt wurden in dieser ganzen Gruppe 4161 Analyseergebnisse berichtet, von denen 3,1% die untere Analysegrenze überschritten. Nieuwegein verfügt über das umfangreichste Programm für diese Gruppe von Stoffen. Wie im letzten Jahr entsprachen fast alle gemessenen Parameter dem ERM-Zielwert von 0,1 µg/l. Bei Nieuwersluis wurden für N,N-Dimethylsulfamid (DMS), ein Metabolit eines Fungizids auf Amid-Basis, fünf Überschreitungen konstatiert (Höchstwert 0,13 µg/l). Auch in diesem Jahr konnten die Messwerte von Thiofanat-methyl (ein Fungizid auf Benzimidazol-Basis) und von Azadirachtin A (ein nicht eingeteiltes Fungizid und daneben ein biologisches Insektizid) bei Andijk und Nieuwegein aufgrund der Bestimmungsgrenzen von 0,5 und 1 µg/l (siehe Tabelle 1.4) nicht gut anhand des ERM-Zielwerts geprüft werden. Der steigende Trend, den Thiofanat-methyl erkennen lässt, ist auf die höhere Bestimmungsgrenze zurückzuführen, die seit dem Jahr 2017 gilt. Dies gilt auch für die sonstigen Trends an allen Standorten. Eine komplette Übersicht über die Daten der Fungizide findet sich in der ausführlichen Fassung von Anhang 1 Wasserqualitätsdaten 2018 in der digitalen Fassung des Jahresberichts.

3.16 Herbizide (alle 13 Gruppen)

Auch für die Gruppe der Herbizide wurde in der RIWA-base eine Unterteilung vorgenommen, die in dreizehn Gruppen resultierte. Im Jahr 2018 wurden für diese Parameter insgesamt 6395 Messungen ausgeführt, von denen 14% die Bestimmungsgrenze überschritten. Bei 84 Werten wurde eine Überschreitung des ERM-Zielwerts von 0,1 μg/l festgestellt, was 1,3% aller Messwerte in dieser Gruppe entspricht. Für eine Übersicht über alle Herbizide, die im Jahr 2018 den ERM-Zielwert überschritten, verweisen wir auf Tabelle 1.3. Auch in diesem Jahr geht ein Teil dieser Überschreitungen auf das Konto der Metabolite von Metazachlor (ein Herbizid auf Anilid-Basis) und Metolachlor (ein Herbizid auf Basis einer Triazin-Gruppe). Diese Metabolite wurden bei Lobith, Nieuwegein und Andijk gemessen. Bei Lobith wurde eine Überschreitung für das



Metazachlor-C-Metabolit nachgewiesen; der entsprechende Wert betrug 0,11 μg/l. Dies ist niedriger als der Höchstwert im Jahr 2017 (0,17 μg/l). Das Metazachlor-S-Metabolit ließ sowohl bei Lobith als auch bei Nieuwegein zwei Überschreitungen erkennen (mit einem Höchstwert von 0,18 μg/l bzw. 0,15 μg/l). Bei Andijk wurde im Jahr 2017 ein Höchstwert für dieses Metabolit ermittelt, der 90% des ERM-Zielwerts entsprach. Im Jahr 2018 wurde der Zielwert einmal mit einem Wert von 0,13 μg/l überschritten. Die sinkenden Trends für die Muttersubstanz Metazachlor sind auf die geänderten Bestimmungsgrenzen zurückzuführen. Wie im Jahr 2017 überschritten das Metolachlor-C-Metabolit und das Metolachlor-S-Metabolit im Jahr 2018 nur in Andijk den ERM-Zielwert; dies erfolgte bei sechs bzw. neun von dreizehn Messungen. Die Höchstwerte betrugen 0,14 bzw. 0,24 μg/l und sind daher mit denen des Jahres 2017 vergleichbar.

Die meisten Überschreitungen innerhalb dieser Gruppe betreffen Aminomethylphosphonsäure (AMPA), ein Abbauprodukt des Herbizids Glyphosat und von Phosphonaten aus beispielsweise Kühlwasseradditiven. Zu diesen Überschreitungen kam es wie in den Vorjahren an allen Standorten (siehe Tabelle 1.3 und Grafik 1.8). Die Gesamtzahl der Überschreitungen war etwas niedriger als im Jahr 2017. Bei Haringvliet wurden bei allen Konzentrationen Überschreitungen konstatiert, mit einem Höchstwert von 0,76 µg/l. Dieser Wert ist mit dem Wert des Vorjahrs vergleichbar. Außerdem ist hier ein steigender Trend erkennbar. Bei dreizehn Messungen wurden elf Überschreitungen bei Lobith (Höchstwert 0,596 µg/l) und bei Nieuwegein (Höchstwert 0,54 µg/l), zwölf bei Nieuwersluis (Höchstwert 0,78 µg/l) und acht bei Andijk (Höchstwert 0,31 µg/l) festgestellt. Die Höchstwerte von Nieuwersluis und Andiik sind mit denen des Jahres 2017 vergleichbar. während die Höchstwerte von Lobith im Jahr 2018 im Vergleich zum Vorjahr (0,404 μg/l) höher und die von Nieuwegein niedriger waren (0,66 µg/l im Jahr 2017). Glyphosat ist der Wirkstoff in verschiedenen Schädlingsbekämpfungsmitteln, die auch für Privatpersonen weithin erhältlich sind. Seit dem 30. März 2016 ist die gewerbliche Verwendung von chemischen Pflanzenschutzmitteln auf befestigten Geländen verboten, und seit 1. November 2017 ist die gewerbliche Anwendung auf allen anderen Flächen auch nicht mehr erlaubt. Privatpersonen können diese Mittel noch erwerben, aber sie dürfen sie nicht auf Belägen anwenden. Glyphosat überschritt den ERM-Zielwert bei Nieuwersluis (0,12 µg/l) und bei Andijk (0,14 µg/l) einmal. Bei Nieuwegein war dies zweimal der Fall, mit einem Höchstwert von 0,11 µg/l.

Desphenylchloridazon, ein Metabolit von Chloridazon, wurde bei Lobith und Haringvliet gemessen. An letzterem Standort überschritt es wieder den ERM-Zielwert (bei vier von zwölf Messungen). Mit einem Wert von 0,15 µg/l ist der Höchstwert im Vergleich zum Vorjahr (0,24 µg/l) niedriger. Bei Lobith wurde ein Höchstwert von 0,09 µg/l dieses Stoffs gemessen, der damit 90% des ERM-Zielwerts entsprach. Der sinkende Trend von Chloridazon bei Nieuwegein ist auf die geänderte Bestimmungsgrenze zurückzuführen. Auch die Höchstwerte von Terbuthylazin und Cyanazin nähern sich dem ERM-Zielwert, d. h. sie entsprechen 98% und 87% (bei Haringvliet und Nieuwegein) und 90% (Nieuwegein) des ERM-Zielwerts. Für 2,4-Dinitrophenol wurde bei Lobith ein Höchstwert von 0,091 µg/l gemessen, der damit 91% des ERM-Zielwerts entsprach. Bentazon und Triflusulfuron-methyl (ein Herbizid auf Sulfonylharnstoff-Basis) überschritten dieses Jahr - im Gegensatz zum Jahr 2017 - den ERM-Zielwert nicht.

Alle übrigen aufgeführten Trends in dieser Gruppe sind auf geänderte Bestimmungsgrenzen zurückzuführen. Die Daten der oben beschriebenen Parameter aus dieser Gruppe finden sich in Anhang 1 Wasserqualitätsdaten 2018 auf S. 129.

Grafik 1.8 Aminomethylphosphonsäure (AMPA) gemessen bei Nieuwersluis und Haringvliet im Zeitraum 2014 - 2018

3.17 Herbizid-Safener

Herbizid-Safener sind Stoffe, die in Verbindung mit einem Herbizid verwendet werden, um Pflanzen vor dem Herbizid zu schützen. So wird beispielsweise Benoxacor zusammen mit Metolachlor versprüht, um Maispflanzen zu schützen, und wird Mefenpyr-Diethyl mit Fenoxaprop-P-ethyl und mit Iodosulfuron eingesetzt (Quelle: Pesticide Properties DataBase, University of Hertfordshire). Ferner wurde in dieser Gruppe der Stoff Triapenthenol analysiert. Die Parameter in dieser Gruppe wurden bei Andijk und Nieuwegein gemessen, und alle Messwerte lagen unter der unteren Analysegrenze. Die Daten finden sich in Anhang 1 der digitalen Fassung des Jahresberichts.

3.18 Physiologisch wirkende und nicht-eingeteilte Pflanzenwachstumsregler

Pflanzenwachstumsregler sind natürliche oder synthetische Stoffe, die die Entwicklung oder Fortpflanzung von Pflanzen beeinflussen. Sie haben allerdings keinen Nährwert für die Pflanze. Pflanzenwachstumsregler sind Pflanzenhormone oder haben dieselbe Wirkung wie Pflanzenhormone. Obwohl sie zu den Pestiziden gezählt werden, werden sie auch verwendet, um Pflanzen zu modifizieren. Beispiele hierfür sind Stiele, die kurz und stark gehalten werden, der Schutz von Obst vor Verderben oder die Verhinderung von Keimbildung bei Kartoffeln. Diese beiden Parametergruppen umfassten zusammen 581 Messwerte, von denen keiner die Bestimmungsgrenze überschritt. Alle aufgeführten Trends sind auf geänderte Bestimmungsgrenzen zurückzuführen. Alle Daten finden sich in der digitalen Fassung des Jahresberichts 2018 auf unserer Website.

3.19 Keimhemmer und Bodendesinfektionsmittel

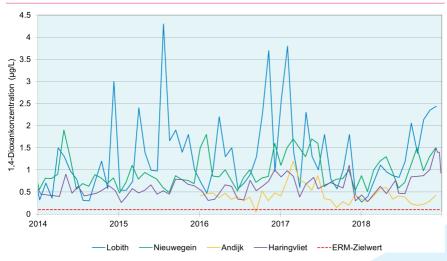
Keimhemmer sind Stoffe, die eingesetzt werden um zu verhindern, dass Pflanzen, Bulben und Knollen unerwünscht keimen. Wie im Jahr 2017 umfasste diese Gruppe auch im Jahr 2018 nur den Parameter Chlorprofam. Er wurde an allen Messstellen mit Ausnahme von Lobith gemessen, und es wurden keine Überschreitungen des ERM-Zielwerts berichtet. Auch bei der Gruppe von Bodendesinfektionsmitteln kam wie im Vorjahr auch im Jahr 2018 an den meisten Messstellen nur ein Parameter vor, d. h. Dimethyldisulfid (DMDS). Bei Haringvliet wurde daneben auch 1,1-Dichlorpropen gemessen. Auch diese Stoffe wurden in niedrigen Konzentrationen vorgefunden und ließen keine Überschreitungen erkennen. Bei Nieuwersluis wurde für DMDS ein sinkender Trend konstatiert. Die Daten finden sich in Anhang 1 der digitalen Fassung des Jahresberichts.

3.20 Insektizide (alle neun Gruppen)

Das Oberflächenwasser wird schon seit Jahren auf Anwesenheit von Parametern aus der Gruppe der Insektizide geprüft. Wie für die Fungizide und Herbizide wurde in der RIWA-base für die Gruppe der Insektizide eine Unterteilung vorgenommen, die in neun Gruppen resultierte. Insgesamt wurden in diesen neun Parametergruppen in diesem Jahr 7961 Analyseergebnisse berichtet, von denen 4% die untere Analysegrenze überschritten. Es wurden keine Überschreitungen des ERM-Zielwerts festgestellt. In dieser Gruppe wurden letztes Jahr drei Stoffe behandelt, deren Bestimmungsgrenze den ERM-Zielwert überschritt, weshalb eine gute Prüfung nicht möglich war. Daran hat sich dieses Jahr auch nichts geändert. Zu diesen Stoffen gehören Diazinon bei Nieuwegein, Nieuwersluis und Andijk (<0,31 µg/l) sowie Azadirachtin A (<1 µg/l) und Flonicamid (<0,5 µg/l) bei Nieuwegein und Andijk (siehe Tabelle 1.4). Diazinon hat bei Haringvliet aber eine Bestimmungsgrenze, die niedrig genug ist: Sie beträgt 0,02 µg/l. Bei Haringvliet weisen sowohl alpha-Hexachlorcyclohexan (alpha-HCH) als auch delta-Hexachlorcyclohexan (delta-HCH) einen steigenden Trend auf. Diese Stoffe wurden allerdings in sehr niedrigen Konzentrationen vorgefunden (die Höchstwerte betrugen 0,00078 µg/l bzw. 0,00034 µg/l). Bei Andijk lässt beta-Hexachlorcyclohexan (beta-HCH) einen sinkenden Trend erkennen, und dies gilt auch für gamma-Hexachlorcyclohexan (gamma-HCH) bei Lobith. Auch diesbezüglich wurden niedrige Konzentrationen gemessen.

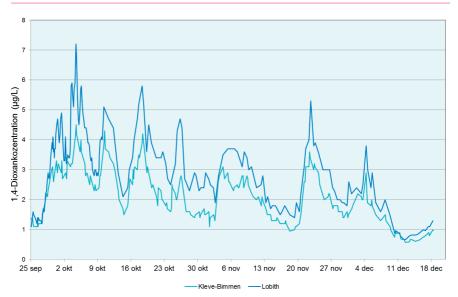
Die übrigen Trends in dieser Parametergruppe werden von geänderten unteren Analysegrenzen verursacht. Für alle verfügbaren Daten verweisen wir auf Anhang 1 Wasserqualitätsdaten 2018 in der digitalen Fassung dieses Jahresberichts.

3.21 Molluskizide, Akarizide, Rodentizide und Nematizide


Diese Gruppen umfassen Mittel gegen Weichtiere (u. a. Schnecken), Milben, Nagetiere und Rundwürmer. Im Jahr 2018 wurden bezüglich dieser Gruppen insgesamt 2843 Messwerte in die RIWAbase aufgenommen, von denen fast 3,4% die Bestimmungsgrenze überschritten. Es lagen keine Überschreitungen des Zielwerts vor. Das Akarizid gamma-Hexachlorcyclohexan ist auch ein Insektizid auf der Basis organischer Chlorverbindungen und wurde bereits in Abschnitt 3.20 beschrieben. Die übrigen Trends sind auf herabgesetzte Bestimmungsgrenzen zurückzuführen. Eine komplette Übersicht über die Daten findet sich in der digitalen Fassung dieses Jahresberichts.

3.22 Ether und Benzinzusatzmittel

Die Parametergruppen "Ether" und "Benzinzusatzmittel" umfassen 870 Messwerte, von denen 41,5% die Bestimmungsgrenze überschritten. Der auffälligste Parameter in dieser Gruppe ist wieder einmal der Ether 1,4-Dioxan. Dieser Stoff wird u. a. als Lösemittel für Tinten und Kleber verwendet (und wird daher auch in der Parametergruppe "industrielle Lösemittel" aufgeführt). Auch kommt dieser Stoff als Verunreinigung in Glyphosat vor. 1,4-Dioxan ist gut wasserlöslich und



schwer biologisch abbaubar. Dieser Stoff wurde an allen Standorten mit Ausnahme von Nieuwersluis gemessen. Alle Messungen überschritten den ERM-Zielwert (siehe Tabelle 1.3 und Grafik 1.9). Obwohl für die Ether und Benzinzusatzmittel ein ERM-Zielwert von 1,0 µg/l bestimmt wurde, wurde der Zielwert für 1,4-Dioxan auf 0,1 µg/l festgelegt, da dieser Stoff im Verdacht steht, krebserregend zu sein. Die höchsten Konzentrationen der regulären Messungen waren etwas niedriger als letztes Jahr: Die Höchstwerte variierten von 0,6 bis 2,44 µg/l. Seit Ende September 2018 gab es Probleme mit erhöhten Konzentrationen von 1,4-Dioxan im Rhein. Diese erhöhten Konzentrationen, bei denen es Schwankungen gab, traten bis Mitte Dezember auf und führten zu mehreren Rheinalarmmeldungen (siehe auch Anhang 2 auf S. 297). Aufgrund der erhöhten Konzentrationen wurden an mehreren Standorten zusätzliche Messungen ausgeführt. Grafik 1.10 erteilt eine Übersicht über die erhöhten Konzentrationen von 1,4-Dioxan bei Bimmen und Lobith. Die Konzentration war lange Zeit höher als 3 μg/l, wobei bei Lobith mehrmals Spitzenwerte von über 5 μg/l gemessen wurden. Die höchste gemessene Konzentration betrug 7,2 µg/l bei Lobith. Waternet verfügt für Nieuwegein über eine Befreiung bezüglich der Entnahme von Wasser mit 1,4-Dioxan-Konzentrationen bis 3 µg/l. Letztendlich wurden für 1,4-Dioxan bei Nieuwegein keine Überschreitungen des Werts von 3 µg/l konstatiert. In Kapitel 4 auf Seite 113 wird ausführlicher auf die Quellen dieses Stoffs eingegangen.

Grafik 1.9 Verlauf der 1,4-Dioxan-Konzentrationen im Rahmen der regulären Messungen bei Lobith, Nieuwegein, Andijk und Haringvliet im Zeitraum 2014 - 2018

Triglym lässt in Nieuwersluis einen steigenden Trend erkennen, wobei die Konzentrationen allerdings niedrig sind. Letztes Jahr überschritt Methyltertiärbutylether (MTBE) bei Nieuwersluis den ERM-Zielwert, aber dieses Jahr war dies nicht der Fall. Für die Daten bezüglich 1,4-Dioxan verweisen wir auf Anhang 1 Wasserqualitätsdaten 2018. Die übrigen Daten finden sich in der digitalen Fassung des Jahresberichts.

Grafik 1.10 Verlauf der erhöhten 1,4-Dioxan-Konzentrationen von September bis Dezember 2018 hei Kleve-Bimmen und Lobith

3.23 Industrielle Lösemittel

Insgesamt wurden in der Parametergruppe "industrielle Lösemittel" 2097 Analyseergebnisse berichtet, von denen 11,3% die untere Analysegrenze überschritten. Wie im Vorjahr wurde für Dichlormethan und 1,1,2,2-Tetrachlorethan bei Lobith eine Bestimmungsgrenze von 0,5 µg/l (siehe Tabelle 1.4) verwendet. Diese liegt über dem ERM-Zielwert von 0,1 µg/l, wodurch eventuelle Überschreitungen nicht gut festgestellt werden können. An den anderen Messstellen war die Bestimmungsgrenze niedrig genug für eine Prüfung und wurden für 1,1,2,2-Tetrachlorethan keine Überschreitungen festgestellt. Dichlormethan überschritt einmal den ERM-Zielwert bei Nieuwersluis,

mit einem Wert von 14 µg/l. Tetrahydrofuran ist ein neuer Parameter, der seit 2018 bei Haringvliet gemessen wird. Dieser überschritt bei sieben von vierzehn Messungen den ERM-Zielwert, wobei der Höchstwert 1,9 µg/l betrug. Die Überschreitungen von 1,4-Dioxan wurden bereits im vorigen Abschnitt Ether und Benzinzusatzmittel behandelt. Bei Lobith weist Trichlormethan einen sinkenden Trend auf und lassen Methylbenzen (Toluol) sowie 1,3- und 1,4-Dimethylbenzen einen steigenden Trend erkennen. Letzterer Parameter weist bei Nieuwegein einen sinkenden Trend auf. Die Stoffe, für die Trends konstatiert wurden, kamen in niedrigen Konzentrationen vor. Ferner entsprach der Höchstwert von 1,2-Dichlorethan 90% des ERM-Zielwerts und von Tetrachlorethen 92%. Alle übrigen Trends sind auf geänderte Bestimmungsgrenzen zurückzuführen. Der vollständige Datensatz findet sich in der digitalen Fassung des Jahresberichts.

3.24 Industriechemikalien mit Perfluor-Stoffen

Bei Lobith wurden die meisten Industriechemikalien mit Perfluor-Stoffen gemessen. Insgesamt wurden an den Meldepunkten 1087 Messwerte ermittelt, von denen 44% die Bestimmungsgrenze überschritten. Auch im Jahr 2018 wurden diese Parameter in niedrigen Konzentrationen vorgefunden und wurde der ERM-Zielwert daher nicht überschritten. Bei Lobith war im Jahr 2017 ein steigender Trend für Perfluoroctansulfonat (PFOS) erkennbar. Dies ist auch im Jahr 2018 der Fall. Bei Andijk wurde allerdings ein sinkender Trend für PFOS konstatiert. Perfluorbutansäure (PFBA) weist an allen Standorten mit Ausnahme von Haringvliet einen steigenden Trend auf. Perfluorhexansäure (PFHxA) lässt wie im Jahr 2017 bei Nieuwersluis einen steigenden Trend erkennen. Für Andiik gilt dies aber nicht mehr. Bei Nieuwersluis und Andiik wurde für Perfluorhexansäure ein sinkender Trend ermittelt. In allen Fällen waren die gemessenen Konzentrationen allerdings sehr niedrig. Ab 2016 wurde früheren Einleitungen von PFOA durch das Chemieunternehmen Chemours in Dordrecht und von GenX, die anstelle von PFOA verwendet wird, große Aufmerksamkeit geschenkt. Aus diesem Grund wurde das Monitoring-Programm an verschiedenen Standorten mit Tetrafluor-2-(heptafluorpropoxy)propansäure (HFPO-DA) (GenX), dem Ersatzstoff von PFOA, ergänzt. Die gemessenen Konzentrationen waren niedrig. Im Januar 2018 wurde dieser Stoff auch in das RIWA-Rhein-Messprogramm bei Lobith aufgenommen. Alle gemessenen Konzentrationen unterschritten dort die Bestimmungsgrenze von 0,01 µg/l. Für alle verfügbaren Daten verweisen wir auf Anhang 1 Wasserqualitätsdaten 2018 in der digitalen Fassung des Jahresberichts.

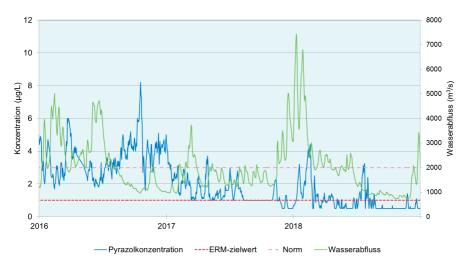
In den letzten beiden Jahresberichten wurden die Themen PFOA und GenX ausführlicher behandelt. Die Diskussion und gesellschaftliche Unruhe bezüglich der Einleitung von PFOA und GenX durch Chemours hat zu besseren nationalen Bestimmungen und strengeren Genehmigungen ge-

führt. Die Einleitung nahm hierdurch stark ab. Die Erkenntnisse, die in diesem Fall hinsichtlich dieser Art von Stoffen im Rahmen der Handlungskette Zulassung von Stoffen, Regeln für Einleitungen, Genehmigungserteilung und Durchsetzung der Vorschriften gesammelt wurden, wurden von dem Ministerium für Infrastruktur und Wasserwirtschaft aufgegriffen und für die strukturelle Vorgehensweise bezüglich problematischer Stoffe übernommen. Es wird einige Zeit dauern, bevor die Bestimmungen angepasst werden, weshalb noch nicht alle gemeldeten Verbesserungspunkte durchgeführt wurden. Wir werden dieses Thema im Auge behalten und weiter hierüber berichten. Auch auf europäischer Ebene und Einzugsgebietsebene wird immer wieder darauf aufmerksam gemacht werden (müssen).

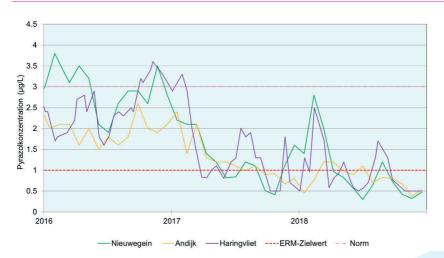
Am 27. Juni wurde bekannt gegeben, dass die Europäische Chemikalienagentur (ECHA) beschlossen hat, die an der GenX-Technik beteiligten Stoffe als "besonders besorgniserregende Stoffe" (ZZS) einzustufen. ZZS-Stoffe können potenziell schwerwiegende gesundheitliche Auswirkungen haben und werden in der Umwelt nicht abgebaut. Diese Stoffe verbreiten sich ebenfalls schnell und sind sehr schwer zu entfernen, was bei der Trinkwasseraufbereitung zu Problemen führen kann. Der niederländische Vorschlag wurde vom RIVM in enger Zusammenarbeit mit dem Ministerium für Infrastruktur und öffentliche Arbeiten ausgearbeitet und der ECHA im März dieses Jahres vorgelegt. Für die Erteilung von Genehmigungen für ZZS-Stoffe gelten sehr strenge Anforderungen. Unternehmen, die mit diesen Stoffen arbeiten, müssen alles in ihrer Macht Stehende tun, um Emissionen in die Luft oder Einleitungen in das Wasser zu verhindern.

3.25 Industriechemikalien mit aromatischen Stickstoffverbindungen

Stoffe aus der Gruppe der Industriechemikalien mit aromatischen Stickstoffverbindungen werden überall gemessen - mit Ausnahme von Nieuwersluis. Insgesamt wurden in dieser Parametergruppe 2104 Analyseergebnisse berichtet, von denen fast 29% die untere Analysegrenze überschritten. Wie im Vorjahr war Pyrazol auch in diesem Jahr der einzige Parameter in dieser Gruppe, bezüglich dessen Überschreitungen des ERM-Zielwerts festgestellt wurden. Pyrazol ist ein Abfallprodukt bei der Herstellung von Acrylnitril. Im Rheineinzugsgebiet wird Acrylnitril im Chempark Dormagen bei Köln hergestellt. Das Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen hat ein deutschsprachiges Merkblatt zum Thema Pyrazol veröffentlicht. Der Jahresbericht 2015 Der Rhein umfasst auch mehr Informationen über Pyrazol im Rhein. Im Juli 2017 erlosch der Richtwert vor Pyrazol in Höhe von 15 µg/l und wurde eine niederländische Norm für Pyrazol von 3 µg/l für Oberflächenwasser festgelegt, das zur Trinkwassergewinnung verwendet wird. Anfang des Jahres 2018 wurden bei Lobith einige Tage hintereinander Konzentration von


über 3 µg/l vorgefunden (siehe auch Anhang 2 auf Seite 297). Die Mitglieder der RIWA-Rhein haben erklärt, dass ein Höchstwert von 1 µg/l im Rhein bei Lobith niedrig genug ist, um Trinkwasser produzieren zu können, ohne zusätzliche Maßnahmen ergreifen zu müssen. Deshalb wurden die Pyrazol-Konzentrationen anhand des Zielwerts von 1 µg/l geprüft.

Bei Lobith war Pyrazol der einzige Stoff, der in dieser Parametergruppe gemessen wurde. Hier wurden aber die meisten Messungen dieses Stoffs ausgeführt, d. h. 340. Davon überschritten 104 Messungen den Zielwert von 1 µg/l. Dies sind wesentlich weniger als im Jahr 2017 (169 von 240 Messungen). Der höchste gemessene Wert betrug 4,4 µg/l und war damit mit dem Vorjahreswert vergleichbar (4,5 µg/l). Die größte Fracht betrug im Jahr 2018 1097 kg/d (12,7 g/s) und war damit doppelt so groß wie im Jahr 2017 (550 kg/d). Diese Höchstfracht nähert sich den Werten des lahres 2016 (1200 kg/d). In Grafik 1.11 findet sich eine Übersicht über die Pyrazol-Konzentrationen und den Wasserabfluss bei Lobith im Zeitraum 2016 - 2018. Der Übersicht ist zu entnehmen, dass insbesondere zu Beginn des Jahres 2018 ein Anstieg der Konzentration zu verzeichnen war, was bedeutet, dass die Fracht zu diesem Zeitpunkt zunimmt. Dies ist ein Hinweis darauf, dass die Einleitung von Pyrazol auf den Abfluss abgestimmt wird. Auch bei Nieuwegein, Andijk und Haringvliet fanden Überschreitungen des ERM-Zielwerts statt (siehe Tabelle 1.3 und Grafik 1.12). Bei Nieuwegein war der Höchstwert mit 2,8 µg/l etwas höher als im Jahr 2017 (2,2 µg/l). Bei Andijk und Haringvliet fiel der Höchstwert mit 1,2 bzw. 2,5 µg/l im Vergleich zu 2,4 bzw. 3,3 µg/l im Jahr 2017 niedriger aus. An allen drei Standorten nahm wie bei Lobith die Anzahl der Überschreitungen im Jahr 2018 im Vergleich zum Jahr 2017 ab. Die gesetzliche Norm von 3 μg/l wurde hier nicht überschritten. Wie gesagt, kam es aber bei Lobith zu Überschreitungen: Dies war zehnmal der Fall, und sie fanden im Januar, Februar und Juli statt (siehe Grafik 1.11). Der Einleiter von Pyrazol (INEOS, Dormagen) hat im Dezember 2018 eine neue Ozonanlage in Gebrauch genommen, um die Einleitung von Pyrazol zu reduzieren.


Alle aufgeführten Trends in dieser Parametergruppe sind auf geänderte Bestimmungsgrenzen zurückzuführen.

Für die Pyrazol-Daten verweisen wir auf Anhang 1 Wasserqualitätsdaten 2018. Die Daten der übrigen Parameter dieser Gruppe finden sich in der digitalen Fassung dieses Jahresberichts.

Grafik 1.11 Die Pyrazol-Konzentration und der Wasserabfluss bei Lobith im Zeitraum 2016 - 2018, einschließlich des ERM-Zielwerts (1 µg/l) und der gesetzlichen Norm (3 µg/l)

Grafik 1.12 Pyrazol im Zeitraum 2016 - 2018, gemessen bei Nieuwegein, Andijk und Haringvliet, einschließlich des ERM-Zielwerts (1 μ g/l) und der gesetzlichen Norm (3 μ g/l)

3.26 Industriechemikalien mit Conazolen, mit aromatischen Kohlenwasserstoffen und mit flüchtigen halogenierten Kohlenwasserstoffen

In der Gruppe der "Industriechemikalien mit Conazolen" ist Benzotriazol der einzige Parameter, der an allen fünf Standorten gemessen wurde. Bei Lobith und Nieuwegein wurde der ERM-Zielwert in Höhe von 1 µg/l zweimal überschritten, mit Höchstwerten von 1,4 und 1,1 µg/l. Bei Lobith lagen den beiden Überschreitungen dreizehn Messungen und bei Nieuwegein 53 Messungen zugrunde. Bei Nieuwersluis entsprach der Höchstwert genau dem Zielwert, und bei Haringvliet wurden 0,093 µg/l dieses Stoffs gemessen, was 93% des Zielwerts entspricht. In der Parametergruppe "Industriechemikalien mit aromatischen Kohlenwasserstoffen" wurde für 3-Chlormethylbenzen wie im Vorjahr an allen Standorten eine zu hohe Bestimmungsgrenze verwendet (<0,5 µg/l), die keine gute Prüfung anhand des ERM-Zielwerts erlaubte (Tabelle 1.4). Ferner wurden keine Überschreitungen des Zielwerts festgestellt. Die einzelnen sinkenden Trends bei Andijk sind auf die veränderten Bestimmungsgrenzen zurückzuführen. Insgesamt umfassen diese drei Gruppen 1366 Messwerte, von denen 8,1% die Bestimmungsgrenze überschritten. Alle verfügbaren Daten finden sich in der digitalen Fassung dieses Jahresberichts auf unserer Website.

3.27 Industriechemikalien mit halogenierten Säuren

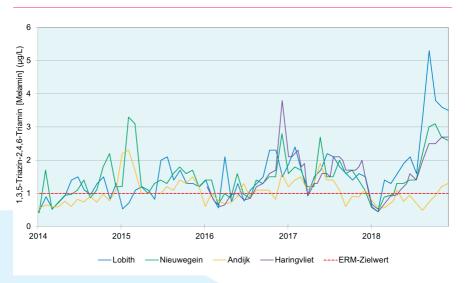
Im Jahr 2017 wurden die Parameter aus der Gruppe "Industriechemikalien mit halogenierten Säuren" in Nieuwersluis nur einmal gemessen. Im Jahr 2018 wurden hier keine Parameter aus dieser Gruppe analysiert. Bei Lobith und Haringvliet wurde nur Trifluoressigsäure (TFA) gemessen. TFA wurde ab 2017 den Messprogrammen hinzugefügt, nachdem man entdeckt hatte, dass dieser Stoff in hohen Konzentrationen im Rheineinzugsgebiet vorkam. Er gelangt vom Neckar aus in den Rhein, und die größte Punktquelle ist eine Einleitung des Unternehmens Solvay Fluor GmbH aus Bad Wimpfen. Der Stoff wird für industrielle Zwecke verwendet und ist daneben ein Abbauprodukt von beispielsweise langkettigen Perfluorverbindungen, Fluorkohlenwasserstoffen (die in Kühlungen und Klimaanlagen verwendet werden), Pestiziden und Arzneimitteln (persönliche Kommunikation KWR, Jan. 2017). Dieser Parameter wurde auch bei Nieuwegein gemessen und ab 2018 auch bei Andijk. An allen vier Standorten überschritten alle dreizehn Messungen den ERM-Zielwert von 0,1 µg/l. Die Höchstkonzentrationen variieren von 1,3 µg/l (Haringvliet) bis 2,1 µg/l (Lobith) (siehe Tabelle 1.3).

Trichloressigsäure (TCA) überschritt wie im letzten Jahr den Zielwert in Nieuwegein. Im Jahr 2018 wurde bei 52 Messungen allerdings nur eine Überschreitung (0,11 μg/l) festgestellt, während dies im Jahr 2017 noch elf waren. Wie im Jahr 2017 lag die Bestimmungsgrenze von Monochloressigsäure

bei Nieuwegein und Andijk bei $0,5~\mu$ g/l. Dies ist im Hinblick auf den ERM-Zielwert zu hoch, um eine gute Prüfung zu gewährleisten (siehe Tabelle 1.4). Für Monobromessigsäure wurde bei Andijk bei zwei der dreizehn Messungen wieder eine Überschreitung des Zielwerts konstatiert, mit einem Höchstwert von $0,12~\mu$ g/l. Bei Nieuwegein wurde für diesen Stoff im Jahr 2017 eine Überschreitung ermittelt. Dieses Jahr entsprach der Höchstwert dem ERM-Zielwert von $0,1~\mu$ g/l. Der Höchstwert von Dichloressigsäure betrug ebenfalls $0,1~\mu$ g/l. Die sinkenden Trends für diese Stoffe bei Nieuwegein sind wahrscheinlich auf die Anpassung der Bestimmungsgrenzen zurückzuführen. Dies gilt auch für die übrigen Trends. Insgesamt wurden in dieser Parametergruppe 589 Analyseergebnisse berichtet, von denen 33% die untere Analysegrenze überschritten.

3.28 Industriechemikalien mit Phenolen und mit Polychlorbiphenylen (PCB)

Insgesamt wurden in diesen beiden Parametergruppen 1005 Analyseergebnisse berichtet, von denen 27% die untere Analysegrenze überschritten. Bei Nieuwegein und Andijk wurden auch im Jahr 2018 nur zwei Parameter aus der Gruppe Industriechemikalien mit Phenolen gemessen. Bei den übrigen Meldepunkten wurden die übrigen Parameter im Allgemeinen drei-, sechs- oder siebenmal gemessen. Bei Lobith wurde bei einer Messung von 2,4-Dinitrophenol einmal 0,091 µg/l ermittelt. Damit überschritt dieser Wert die Bestimmungsgrenze und entsprach 91% des ERM-Zielwerts. Die Industriechemikalien mit PCB wurden in sehr niedrigen Konzentrationen und mit niedrigen Bestimmungsgrenzen bestimmt. Es fanden keine Überschreitungen statt. Verschiedene Industriechemikalien mit PCB lassen bei Nieuwersluis einen sinkenden Trend erkennen. Für alle Daten verweisen wir auf Anhang 1 Wasserqualitätsdaten 2018 in der digitalen Fassung dieses lahresberichts.


3.29 Industriechemikalien (Vorläufer und Zwischenprodukte)

In der Gruppe "Industriechemikalien (Vorläufer und Zwischenprodukte)" wurde im Jahr 2018 ein Parameter an allen Standorten gemessen, d. h. 2,2,5,5-Tetramethyltetrahydrofuran. Die meisten übrigen Parameter wurden bei Haringvliet analysiert. Methenamin (auch unter den Bezeichnungen Hexamin oder Urotropin bekannt), wurde den Messprogrammen von Nieuwegein, Andijk und Lobith im Jahr 2018 hinzugefügt. An diesen Standorten überschritt dieser Parameter den ERM-Zielwert in Höhe von 1 µg/l. Bei Nieuwegein, Andijk und Haringvliet kamen die Überschreitungen bei dreizehn Messungen zehn-, neun- und ebenfalls neunmal vor. Die entsprechenden höchsten Konzentrationen lagen bei 2,5 µg/l, 1,3 µg/l und 2,8 µg/l (siehe Tabelle 1.3). Bei Haringvliet wurde für Methenamin ein sinkender Trend konstatiert. Bei Lobith wurde der Parameter ab Mai gemessen und wurde der Zielwert bei sieben von acht Messungen überschritten, wobei ein Höchstwert

von 2,4 μ g/l ermittelt wurde. Methenamin wird in industriellen Anwendungen, wie z. B. in der Fotografie und Zahnmedizin, verwendet. Ferner wird der Stoff auch häufig in der organischen Synthese verwendet. Bei Haringvliet wurde einmal eine Überschreitung des Zielwerts für den Stoff Benzothiazol ermittelt, wobei der Wert bei 0,14 μ g/l lag. Insgesamt wurden in dieser Parametergruppe 288 Analyseergebnisse berichtet, von denen fast 22% die untere Analysegrenze überschriften.

3.30 Nicht eingeteilte Industriechemikalien

Die letzte Gruppe der Industriechemikalien betrifft die Gruppe "nicht eingeteilte Industriechemikalien." Diese Gruppe umfasst 1399 Analyseergebnisse, von denen fast 28% die Bestimmungsgrenze überschritten. In dieser Gruppe gibt es nur einen Stoff, für den im Jahr 2018 Überschreitungen des ERM-Zielwerts ermittelt wurden. Bei diesem Stoff handelt es sich um 1,3,5-Triazin-2,4,6-triamin (Melamin), einem Stoff, der an allen Messstellen mit Ausnahme von Nieuwersluis gemessen wurde. Melamin wird bei der Herstellung von Kunststoffgeschirr verwendet. Daneben wird er als Bestandteil einer Anzahl Arzneimittel benutzt. Dieser Stoff überschritt auch in früheren Jahren regelmäßig den Zielwert (Grafik 1.13).

Grafik 1.13 1,3,5-Triazin-2,4,6-triamin (Melamin), gemessen bei Lobith, Nieuwegein, Andijk und Haringvliet im Zeitraum 2014 - 2018.

Die meisten Überschreitungen fanden im Jahr 2018 bei Lobith statt (bei elf von dreizehn Messungen); es folgen Nieuwegein und Haringvliet (bei neun von dreizehn Messungen), und die wenigsten Überschreitungen des Zielwerts wurden bei Andijk ermittelt (bei drei von dreizehn Messungen). Die höchste Konzentration wurde bei Lobith gemessen. Mit einem Wert von 5,3 μ g/l ist dieser Höchstwert mehr als zweimal so hoch wie der im Jahr 2017 ermittelte Wert (2,4 μ g/l). Außerdem wurde hier ein steigender Trend festgestellt. An den anderen Standorten sind die Höchstwerte mit denen des Vorjahrs vergleichbar: Nieuwegein 2,7 μ g/l, Andijk 1,9 μ g/l und Haringvliet 2,3 μ g/l (siehe Tabelle 1.3).

Hexa(methoxymethyl)melamin (HMMM) wird in der Beschichtungsindustrie u. a. als Vernetzer für Wasserlacke verwendet. Dieser Stoff wurde den Messprogrammen von Nieuwegein und Andijk im Jahr 2018 hinzugefügt. Im Jahr 2017 überschritt HMMM den ERM-Zielwert bei Lobith. Damals wurde bei acht von dreizehn Messungen der Zielwert überschritten, wobei der Höchstwert 4,3 µg/l betrug. In diesem Jahr wurden allerdings keine Überschreitungen bezüglich HMMM bei Lobith festgestellt. Die höchste gemessene Konzentration betrug 0,8 µg/l. Auch an den anderen beiden Standorten wurden keine Überschreitungen konstatiert. Ferner ließ Triphenylphosphinoxid (TPPO) bei Haringvliet einen steigenden Trend erkennen, während für 5-Methyl-1H-benzotriazol (Tolyltriazol) bei Andijk ein sinkender Trend ermittelt wurde. Die gemessenen Konzentrationen dieser beiden Stoffe sind niedrig. Die übrigen Trends sind auf die Änderung der Bestimmungsgrenzen zurückzuführen Die Melamin-Daten finden sich in Anhang 1 auf Seite 129.

3.31 Kühlmittel

In der Gruppe der Kühlmittel wurden auch dieses Jahr nur bei Haringvliet zwei Stoffe gemessen, d. h. Dichlordifluormethan (Freon 12) und Trichlorfluormethan (Freon 11). Für beide gab es siebzehn Messwerte. Alle Werte unterschritten die Bestimmungsgrenze. Es wurden auch keine Überschreitungen des ERM-Zielwerts konstatiert. Die Daten finden sich in Anhang 1 des digitalen Jahresberichts.

3.32 Desinfektionsmittel, Desinfektionsnebenprodukte mit Halogenen und Desinfektionsnebenprodukte auf der Basis von Nitrosoverbindungen

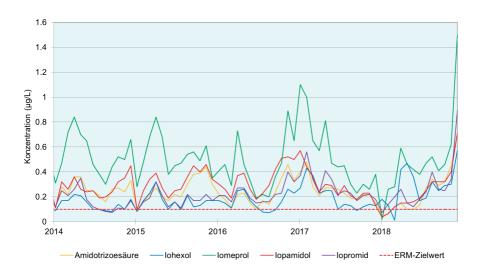
Aus der Gruppe der "Desinfektionsmittel" wurde wie im Vorjahr an allen Messstellen ein Parameter (1,4-Dichlorbenzen) gemessen. In Haringvliet wurden daneben auch einzelne andere Stoffe dreimal gemessen. Diese Gruppe ließ keine Besonderheiten erkennen, und es wurden auch keine Überschreitungen des ERM-Zielwerts festgestellt. In der Gruppe der "Desinfektionsnebenpro-

dukte mit Halogenen" überschritt Tribrommethan bei Haringvliet einmal knapp den ERM-Zielwert in Höhe von 0,1 µg/l, mit einem Wert von 0,102 µg/l. Daneben weist dieser Stoff an diesem Standort und bei Lobith einen steigenden Trend auf. Die gemessenen Konzentrationen waren allerdings niedrig. Die Parameter auf der Basis von Nitrosoverbindungen wurden in Nieuwegein, Nieuwersluis und Haringvliet gemessen. Bei Haringvliet wurden sie nur dreimal analysiert. Die übrigen Trends in allen drei Gruppen sind auf geänderte Bestimmungsgrenzen zurückzuführen. Insgesamt wurden in diesen drei Parametergruppen 638 Analyseergebnisse berichtet, von denen 4,1% die untere Analysegrenze überschritten.

3.33 Flammschutzmittel

Von der zur Gruppe der Flammschutzmittel gehörenden Stoffe wurden insgesamt 846 Daten ermittelt, von denen 6,4% die Bestimmungsgrenze überschritten. Es wurden keine Überschreitungen des ERM-Zielwertes festgestellt. Die steigenden Trends bei Lobith sind auf die geänderten Bestimmungsgrenzen zurückzuführen. Für alle verfügbaren Daten in dieser Gruppe verweisen wir auf den Jahresbericht 2018 (www.riwa-rijn.org).

3.34 Arzneimittel


Schon seit Längerem werden Messungen bezüglich einer großen Auswahl von Arzneimitteln ausgeführt. Diese Auswahl umfasst Röntgenkontrastmittel, Zytostatika, Antibiotika, Betablocker und Diuretika, schmerzstillende und fiebersenkende Mitteln, Antidepressiva und Betäubungsmittel, cholesterinsenkende Mittel, Anti-Epileptika und Blutverdünner. Streng genommen sind Röntgenkontrastmittel keine Arzneimittel, da sie aber im Gesundheitswesen häufig angewandt werden, wurden sie hier in diese Stoffgruppe eingeteilt. Alle Stoffe werden in großem Umfang auch in der intensiven Viehzucht eingesetzt und gelangen u. a. über Kläranlagen und Abschwemmungen in die Oberflächengewässer. Bei einer großen Anzahl von Untergruppen in der Hauptgruppe Arzneimittel wurden im Jahr 2018 Überschreitungen des ERM-Zielwerts festgestellt (siehe Tabelle 1.3). Sie werden nachstehend für die einzelnen Unterkategorien ausgearbeitet.

3.34.1 Röntgenkontrastmittel

Die größte Quelle von Röntgenkontrastmitteln ist die Einleitung über den Urin von Menschen, denen diese Mittel vor einem CT-Scan verabreicht wurden. Bei der Klärung von Abwässern in herkömmlichen Abwasserkläranlagen werden diese Mittel nicht vollständig entfernt und gelangen so in Oberflächengewässer. Eine Bekämpfung an der Quelle ist daher wünschenswert und könnte große Wirkung zeigen. Ein Beispiel hierfür ist der Einsatz von Urinbeutel. Weitere Informationen

zu diesem Thema finden sich in Kapitel 3 des Jahresberichts 2015 Der Rhein. Ähnlich wie in den Vorjahren ließ diese Untergruppe im Vergleich zu anderen Untergruppen von Arzneimitteln (und sogar im Vergleich zu den anderen Stoffgruppen im Jahr 2018) die meisten Überschreitungen des Zielwerts erkennen. Fünf Röntgenkontrastmittel überschritten den ERM-Zielwert an allen Messstellen (die Namen finden sich in Grafik 1.14).

Grafik 1.14 Die fünf gemessenen Röntgenkontrastmittel bei Lobith im Zeitraum 2014 - 2018. Fast alle Messungen überschritten den ERM-Zielwert.

Im Jahr 2018 wurden für diese fünf Mittel insgesamt 320 Messungen ausgeführt, von denen 225 den ERM-Zielwert von 0,1 µg/l überschritten. Dies entsprach 70% aller Messwerte. Dies bedeutet, dass die Anzahl Überschreitungen im Vergleich zum Jahr 2017 (83%) abgenommen hat. Auch dieses Jahr ließ Iomeprol die höchsten Werte erkennen: So betrug der Höchstwert 1,5 µg/l bei Lobith, 0,66 µg/l bei Nieuwegein, 1,1 µg/l bei Nieuwersluis, 0,44 µg/l bei Andijk und 0,51 µg/l bei Haringvliet (siehe Tabelle 1.3). In Grafik 1.14 findet sich eine Übersicht über die Konzentrationen von Röntgenkontrastmitteln, die in den letzten fünf Jahren bei Lobith gemessen wurden. Anfang des Jahres 2018 wurden niedrigere Konzentrationen gemessen, die auch unter dem ERM-Zielwert lagen. Allerdings kam es Ende des Jahres 2018 zu einer starken Zunahme der Konzentrationen.

Zu diesem Zeitpunkt wurden auch die höchsten Konzentrationen gemessen. Diese Höchstwerte waren wieder höher als die in den Vorjahren ermittelten Höchstwerte. Dies bedeutet, dass die im Jahr 2018 gemessenen Höchstwerte die höchsten Konzentrationen sind, die in den letzten sechs Jahren (Amidotrizoinsäure und Iopamidol), neun Jahren (Iohexol und Iomeprol) oder sogar vierzehn Jahren (Iopromid) an dieser Messstelle gemessen wurden.

Abbildung 1.1 erteilt eine Übersicht über die RIWA-Piktogramme, die zu den Röntgenkontrastmitteln im Jahr 2018 gehören. Weitere Erläuterungen zu diesen Piktogrammen finden Sie in der Einleitung von Anhang 1 auf Seite 131.

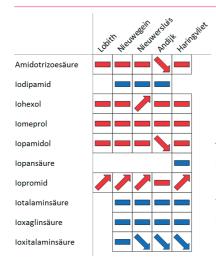


Abbildung 1.1 RIWA-Piktogramme der gemessenen Röntgenkontrastmittel für die einzelnen Meldepunkte. Der aufgeführte Trend wurde für den Zeitraum 2014 - 2018 bestimmt. Für weitere Erläuterungen bezüglich der Piktogramme verweisen wir auf Seite 131 dieses Berichts

Ein Vergleich der Trends der Jahre 2017 und 2018 (bzw. der in den Zeiträumen 2013 - 2017 und 2014 - 2018 bestimmten Trends) zeigt, dass sich die Trends hinsichtlich lodipamid, lomeprol, lopanoinesäure, lotalaminsäure und loxaglinsäure nicht geändert haben. Ferner lässt lopromid noch immer an allen Standorten mit Ausnahme von Andijk einen steigenden Trend erkennen. Für Amidotrizoinsäure und lopamidol war im Jahr 2017 nirgendwo ein Trend erkennbar. Dahingegen lässt sich im Jahr 2018 für beide ein sinkender Trend bei Andijk feststellen. Letztes Jahr wies lohexol an vier Meldepunkten einen steigenden Trend auf. Nur bei Nieuwersluis war kein Trend erkennbar. Im Jahr 2018 wurde bei Nieuwersluis ein steigender Trend ermittelt, während an den anderen Standorten kein Trend konstatiert wurde. Für loxitalaminsäure wurden eine Verbesserung sowie

sinkende Trends bei Nieuwersluis, Andijk und Haringvliet festgestellt. Daneben liegt kein steigender Trend mehr bei Nieuwegein vor. In Anhang 1 Wasserqualitätsdaten 2018 auf Seite 129 finden sich alle Messungen der Röntgenkontrastmittel, die den ERM-Zielwert überschreiten.

3.34.2 Zytostatika

Zytostatika werden bei der Krebsbehandlung verwendet. Sie stören die Vervielfältigung von DNA und RNA. Die Wirkung beruht im Allgemeinen auf dem Eingriff in die chemischen Reaktionen der Zelle, die für eine Zellteilung (Mitose) erforderlich sind. Dabei werden insbesondere schnell wachsende Zellen beschädigt. Aus dieser Parametergruppe wurden im Jahr 2018, wie bereits im Vorjahr, zwei Parameter bei Nieuwegein, Nieuwersluis und Andijk gemessen. Bei Haringvliet wurden sieben Parameter gemessen. Insgesamt wurden in dieser Gruppe 148 Analyseergebnisse berichtet, von denen 2,7% die untere Analysegrenze überschritten. 5-Fluorouracil (5-FU) konnte aufgrund der Bestimmungsgrenze von 1 µg/l nicht gut anhand des ERM-Zielwerts von 0,1 µg/l geprüft werden (siehe Tabelle 1.4). Ferner wurden keine Überschreitungen in dieser Gruppe festgestellt. Für die Daten verweisen wir auf die digitale Fassung dieses Jahresberichts.

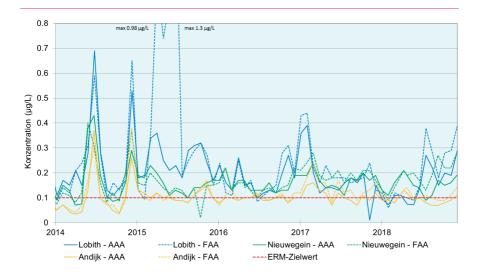
3.34.3 Antibiotika

An allen fünf Standorten wurden Messungen bezüglich Antibiotika ausgeführt. Bei Lobith ist die Anzahl Parameter in dieser Gruppe am kleinsten, und bei Haringvliet wurden die meisten Parameter analysiert. Antibiotika auf Sulfamid-Basis wurden nur bei Haringvliet gemessen. Azithromycin überschritt zum ersten Mal bei Andijk bei drei von sieben Messungen den ERM-Zielwert von 0,1 µg/l, mit einem Höchstwert von 0,21 µg/l (siehe Tabelle 1.3). Bei Haringvliet war die Bestimmungsgrenze für Cefuroxim (1,5 µg/l) zu hoch, um eine gute Prüfung anhand des ERM-Zielwerts zu ermöglichen (siehe Tabelle 1.4). Bei Nieuwegein, Nieuwersluis und Andijk wurde für Lincomycin ein sinkender Trend konstatiert. Dies gilt auch für Sulfamethoxazol bei Andijk. Acetyl-Sulfamethoxazol weist bei Lobith einen steigenden Trend auf. Dabei handelt es sich allerdings um niedrige Konzentrationen. Die übrigen Trends sind auf geänderte untere Analysegrenzen zurückzuführen. Insgesamt wurden in diesen beiden Parametergruppen 769 Analyseergebnisse berichtet, von denen 24% die untere Analysegrenze überschritten. Für den gesamten Datensatz verweisen wir auf Anhang 1 Wasserqualitätsdaten 2018 in der digitalen Fassung des Jahresberichts 2018.

3.34.4 Betablocker und Diuretika

Betablocker sind Mittel, die sehr häufig Anwendung finden. Sie senken die Ruheherzfrequenz und den Blutdruck. Diuretika sind die sogenannten Wassertabletten. Valsartan, ein Blutdrucksenker,

und Valsartansäure, ein Metabolit von Valsartan, wurden dem Messprogrammen von Nieuwegein und Andijk im Jahr 2018 hinzugefügt. Beide Stoffe überschritten den ERM-Zielwert von 0,1 μ g/l an allen Standorten, an denen sie gemessen wurden (siehe Tabelle 1.3). Die meisten Überschreitungen fanden bei Lobith und Nieuwegein statt, und hier wurden auch die höchsten Konzentrationen gemessen. Für Valsartan betrugen sie an beiden Standorten 0,28 μ g/l und für Valsartansäure 0,66 μ g/l (Lobith) sowie 0,49 μ g/l (Nieuwegein). Im Jahr 2017 war die Bestimmungsgrenze für Valsartan (0,5 μ g/l) bei Haringvliet zu hoch, um eine gute Prüfung anhand des Zielwerts zu ermöglichen. Dieses Problem wurde im Jahr 2018 gelöst, da eine neue Bestimmungsgrenze von 0,05 μ g/l festgelegt wurde.


Hydrochlorthiazid (ein Diuretikum) wurde an allen Standorten gemessen. Dieses Mittel überschritt den ERM-Zielwert zweimal bei Lobith und dreimal bei Nieuwersluis. Im Gegensatz zum Jahr 2017 wurden bei Nieuwegein keine Überschreitungen konstatiert. Der Höchstwert entsprach hier dem Zielwert von 0,1 µg/l Die höchste Konzentration (0,28 µg/l) wurde wieder bei Lobith gemessen. Bei Andijk und Haringvliet waren die Konzentrationen wesentlich niedriger. Die Betablocker Metoprolol und Sotalol überschritten den ERM-Zielwert ebenfalls. Bei Metoprolol war dies bei Lobith viermal der Fall (bei dreizehn Messungen). Der Höchstwert von 0,31 µg/l war höher als im Jahr 2017 (0,21 µg/l). Bei Haringvliet entsprach der Höchstwert in Höhe von 0,1 µg/l dem ERM-Zielwert. Sotalol überschritt den Zielwert einmal bei Nieuwegein (0,11 µg/l) und fünfmal bei Nieuwersluis (Höchstwert 0,16 µg/l). Bei Andijk und Haringvliet wurde für diesen Stoff ein sinkender Trend konstatiert. Ferner weist Bisoprolol bei Nieuwegein, Nieuwersluis und Andijk einen sinkenden Trend auf. Dies gilt auch für Atenolol bei Nieuwegein und Nieuwersluis. Die Konzentrationen sind in diesen Fällen sehr niedrig. Insgesamt wurden in dieser Parametergruppe 509 Analyseergebnisse berichtet, von denen rund 70% die untere Analysegrenze überschritten. Wir verweisen diesbezüglich auf Anhang 1 Wasserqualitätsdaten 2018 auf Seite 129.

3.34.5 Schmerzstillende und fiebersenkende Mittel

Insgesamt wurden in der Parametergruppe "schmerzstillende und fiebersenkende Mittel" 749 Analyseergebnisse berichtet, von denen 42% die untere Analysegrenze überschritten. Die meisten Überschreitungen des ERM-Zielwerts (o,1 µg/l) betrafen N-acetyl-aminoantipyrin (AAA) und N-formyl-4-aminoantipyrin (FAA). Diese Stoffe wurden bei Lobith, Nieuwegein und Andijk gemessen. Die Überschreitungen fanden hauptsächlich bei Nieuwegein statt, wo für beide Stoffe bei zwölf von dreizehn Messungen Überschreitungen des Zielwerts festgestellt wurden (siehe Grafik 1.15). Die höchsten AAA- und FAA-Konzentrationen wurden bei Lobith (o,29 µg/l) bzw. o,39 µg/l)

gemessen. Im Jahr 2017 wurde bei Nieuwegein und Andijk ein steigender Trend für FAA festgestellt. Dies ist im Jahr 2018 aber nicht mehr der Fall. Bei Messungen bezüglich Diclofenac, einem Schmerzmittel und Entzündungshemmer, wurden bei Lobith zweimal Überschreitungen des Zielwerts festgestellt, wobei ein Höchstwert von 0,25 μ g/l ermittelt wurde. Neu in diesem Jahr ist eine Überschreitung des Zielwerts von Salicylsäure bei Nieuwersluis mit einem Wert von 0,11 μ g/l. Für die übrigen Höchstwerte verweisen wir auf Tabelle 1.3 und für alle Daten dieser Parameter auf Anhang 1 Wasserqualitätsdaten 2018.

Grafik 1.15 N-acetyl-aminoantipyrin (AAA) und N-formyl-4-aminoantipyrin (FAA) bei Andijk, Lobith und Nieuwegein im Zeitraum 2014 - 2018.

3.34.6 Antidepressiva und Betäubungsmittel

An jedem Meldepunkt wurden vier bis fünf Parameter gemessen, die zur Gruppe der Antidepressiva und Betäubungsmittel gehören. Insgesamt wurden in dieser Parametergruppe 244 Analyseergebnisse berichtet, von denen 57% die untere Analysegrenze überschritten. Es wurden keine Überschreitungen des ERM-Zielwerts konstatiert. Allerdings wurde bei Lobith für O-Desmethylvenlafaxin ein Wert von 0,09 µg/l ermittelt, der damit 90% des ERM-Zielwerts entsprach. Ferner weisen Oxazepam und Temazepam bei Nieuwegein und Andijk einen sinkenden Trend auf. Beide

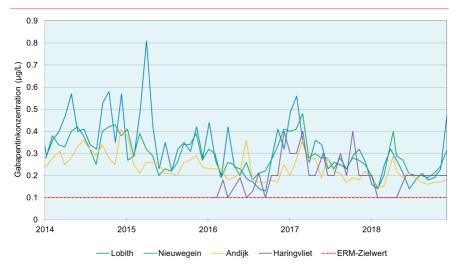
Stoffe wurden in sehr niedrigen Konzentrationen gemessen. Alle verfügbaren Daten dieser Parametergruppe finden sich in der digitalen Fassung dieses Jahresberichts.

3.34.7 Cholesterinsenkende Mittel

Bei Lobith wurde ein zur Parametergruppe "cholesterinsenkende Mittel" gehörender Parameter gemessen, und an den anderen Probenahmestellen sieben oder acht Parameter. Insgesamt wurden in dieser Gruppe 356 Analyseergebnisse berichtet, von denen 9,3% die untere Analysegrenze überschritten. Die Bestimmungsgrenzen waren in allen Fällen niedrig genug, um eine Prüfung anhand des ERM-Zielwerts zu ermöglichen. Es wurden keine Überschreitungen konstatiert. Bezafibrat lässt bei Nieuwegein, Nieuwersluis und Andijk wie im Jahr 2017 einen sinkenden Trend erkennen. Der sinkende Trend für diesen Stoff bei Haringvliet ist wahrscheinlich auf die Änderung der Bestimmungsgrenzen zurückzuführen. Alle Daten werden in dem digitalen Jahresbericht 2018 aufgeführt.

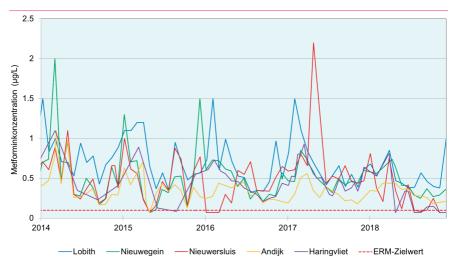
3.34.8 Sonstige Arzneimittel

Insgesamt wurden in der Parametergruppe "sonstige Arzneimittel" 1100 Analyseergebnisse berichtet, von denen 54% die Bestimmungsgrenze und 23% den ERM-Zielwert von 0,1 μ g/l überschritten.


Bei Lobith entsprach die Höchstkonzentration von Carbamazepin, einem Arzneimittel gegen Epilepsie, im Jahr 2017 90% des Zielwerts. Im Jahr 2018 wurde der Zielwert hier einmal überschritten (0,12 µg/l). Bei Nieuwegein und Nieuwersluis weist dieser Parameter einen sinkenden Trend auf. 10,11-Dihydro-10,11-dihydroxycarbamazepin, ein Metabolit von Carbamazepin, überschritt ebenfalls den Zielwert bei Lobith. Dies kam bei vier von dreizehn Messungen vor, wobei der Höchstwert 0,13 µg/l betrug. Dieser Stoff weist nicht nur hier, sondern auch bei Nieuwegein, Nieuwersluis und Andijk einen sinkenden Trend auf.

Im Jahr 2017 überschritten alle Messungen sowohl von Metformin als auch von Gabapentin den ERM-Zielwert. Im Jahr 2018 gilt dies noch immer für Lobith, Nieuwegein und Andijk. Metformin wurde an allen fünf Standorten gemessen. Bei Nieuwersluis und Haringvliet wurden bei dreizehn Messungen acht bzw. sieben Überschreitungen festgestellt.

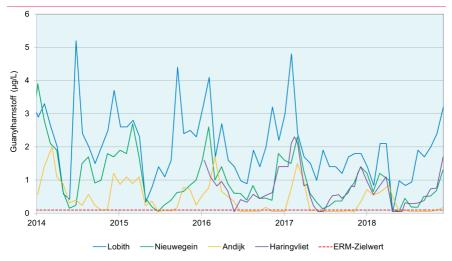
Gabapentin wird für die Behandlung von Epilepsie sowie für Nervenschmerzen und postoperative Schmerzen verschrieben. Messungen bezüglich Gabapentin wurden nicht nur bei Lobith,



Nieuwegein und Andijk, sondern auch bei Haringvliet durchgeführt, wo bei neun von zwölf Messungen Überschreitungen des ERM-Zielwerts festgestellt wurden. Die höchste Konzentration wurde bei Lobith (0,47 μg/l) vorgefunden. Die Höchstkonzentrationen von Nieuwegein (0,4 μg/l), Andijk (0,29 μg/l) und Haringvliet (0,2 μg/l) waren niedriger. Gabapentin lässt bei Lobith, Nieuwegein und Andijk einen sinkenden Trend erkennen. In Grafik 1.16 wird der Verlauf der Konzentrationen dieses Stoffs in den letzten fünf Jahren dargestellt.

Grafik 1.16 Der Verlauf von Gabapentin an den vier Meldepunkten im Zeitraum 2014 - 2018. Dieser Parameter wird seit 2016 bei Haringvliet gemessen.

Metformin ist ein Arzneimittel, das bei der Behandlung von Diabetes des Typs 2 angewandt wird. Die Werte ließen sehr hohe Überschreitungen des Zielwerts erkennen: Höchstwerte variierten von 0,44 μg/l (Andijk) bis 0,99 μg/l (Lobith). Wir verweisen diesbezüglich auf Tabelle 1.3. Diese Konzentrationen waren etwas niedriger als im Jahr 2017 (siehe Grafik 1.17). Dieser Stoff weist bei Lobith einen sinkenden Trend auf. Die Höchstfracht an diesem Standort in Höhe von 3,05 g/s war mit der des Vorjahres vergleichbar (2,8 g/s). Ein möglicher Grund für die hohen Konzentrationen von Metformin sind die hohen Dosierungen dieses Arzneimittels (2 Gramm/Tablette) und die Tatsache, dass der Stoff fast ganz über den Urin ausgeschieden wird. Mittels einer einfachen Aufbereitung lässt sich der Stoff nicht entfernen, aber auch bei Anwendung von Ozon und UV/H₂O₂ ist eine Entfernung unzureichend.



Grafik 1.17 Der Verlauf von Metformin an allen Meldepunkten im Zeitraum 2014 - 2018.

Daneben wurde auch Guanylharnstoff, ein Metabolit von Metformin, gemessen. Bei Lobith und Nieuwegein überschritten fast alle Messwerte den Zielwert. Bei Haringvliet galt dies für zehn von dreizehn Messwerten und bei Andijk für sechs von dreizehn. Die Höchstwerte liegen weit über dem ERM-Zielwert, waren aber niedriger als im Jahr 2017: So betrug der Höchstwert bei Lobith 3,2 μ g/l, bei Nieuwegein 1,3 μ g/l, bei Andijk 0,84 μ g/l und bei Haringvliet 1,7 μ g/l. Wir verweisen diesbezüglich auf Tabelle 1.3 und Grafik 1.18. Bei Andijk und auch bei Nieuwegein lässt Guanylharnstoff wie schon im Jahr 2017 einen sinkenden Trend erkennen.

Im Jahr 2017 überschritt Lamotrigin, ein Arzneimittel, das u. a. zur Behandlung von Epilepsie verwendet wird, den Zielwert in Nieuwegein. Im Jahr 2018 war dies auch der Fall, wobei ein Höchstwert von 0,13 µg/l ermittelt wurde. Ferner weist dieser Stoff hier immer noch einen steigenden Trend auf. Vigabatrin, bei dem es sich ebenfalls um ein Anti-Epileptikum handelt, wurde nur bei Haringvliet gemessen. Wie im Vorjahr überschritt die Bestimmungsgrenze (0,5 µg/l) den ERM-Zielwert, sodass keine gute Prüfung durchgeführt werden konnte. Im Jahr 2017 wurden noch Werte von über 0,5 µg/l gemessen, aber dies war im Jahr 2018 nicht der Fall. Auch 2,5-Dihydroxybenzoesäure (DHB, Gentisinsäure) konnte aufgrund der Bestimmungsgrenze von 1 µg/l wie im letzten Jahr nicht gut geprüft werden (siehe Tabelle 1.4).

Grafik 1.18 Guanylharnstoff bei Lobith, Nieuwegein, Andijk und Haringvliet im Zeitraum 2014 - 2018. Dieser Stoff wird seit 2016 bei Haringvliet gemessen.

Sitagliptin (senkt den Blutzucker), Oxypurinol (ein Metabolit von Allupurinol, das bei Gicht und Nierensteinen verwendet wird) und Candesartan (ein Blutdrucksenker) wurden zuvor nur bei Lobith gemessen. Im Jahr 2018 wurden sie den Messprogrammen von Nieuwegein und Andijk hinzugefügt (siehe Tabelle 1.3). Sitagliptin überschritt nur bei Lobith den ERM-Zielwert (bei neun von dreizehn Messungen), wobei der Höchstwert 0,47 µg/l betrug. Bei Nieuwegein entsprach der Höchstwert dem Zielwert von 0,1 µg/l. Was Oxypurinol betrifft, so überschritten fast alle Messwerte den ERM-Zielwert. Die Bestimmungsgrenze dieses Parameters bei Nieuwegein und Andijk lag bei 0,5 µg/l und war damit höher als der Zielwert. Die meisten Messwerte überschritten allerdings die Bestimmungsgrenze. Daher handelt es sich um echte Überschreitungen des Zielwerts. Der Höchstwert (2,4 μg/l) wurde bei Lobith gemessen. Candesartan ließ bei Lobith (bei fünf von dreizehn Messungen) und bei Nieuwegein (bei zwei von dreizehn Messungen) Überschreitungen erkennen, wobei Höchstwerte von 0,24 und 0,15 µg/l ermittelt wurden. Der letzte Parameter in dieser Gruppe, bezüglich dessen Überschreitungen des Zielwerts festgestellt wurden, ist Atenololsäure. Dieser Stoff wurde nur bei Lobith gemessen, und es wurde einmal eine Überschreitung mit einem Wert von 0,17 µg/l festgestellt. Wir verweisen auf Anhang 1 Wasserqualitätsdaten 2018 für eine umfassende Übersicht über die Daten der beschriebenen Parameter.

3.35 Körperpflegeartikel

Aus der Gruppe der "Körperpflegeartikel" wurde ein Stoff gemessen, d. h. Climbazol, und zwar bei Nieuwegein und Andijk. Auch bei Haringvliet wurde ein Stoff gemessen, d. h. Triclobarban. Alle 26 Messwerte von Climbazol lagen unter der Bestimmungsgrenze von 0,01 μ g/l, und die dreizehn Messwerte von Triclobarban unterschritten die Bestimmungsgrenze von 0,05 μ g/l. Die Daten finden sich in der digitalen Fassung dieses Jahresberichts.

3.36 Veterinärstoffe

Auch im Jahr 2018 wurde die größte Auswahl von Veterinärstoffen bei Nieuwegein und Andijk gemessen. Insgesamt wurden in dieser Gruppe an allen Probenahmestellen 886 Messungen ausgeführt, von denen fast 4% die Bestimmungsgrenze überschritten. Es wurden keine Überschreitungen des ERM-Zielwerts festgestellt. Gamma-Hexachlorcyclohexan (gamma-HCH) lässt bei Lobith einen sinkenden Trend erkennen. Die übrigen Trends sind auf geänderte Bestimmungsgrenzen zurückzuführen. Alle verfügbaren Daten finden sich in der digitalen Fassung dieses Jahresberichts.

3.37 Duft-, Farb- und Aromastoffe

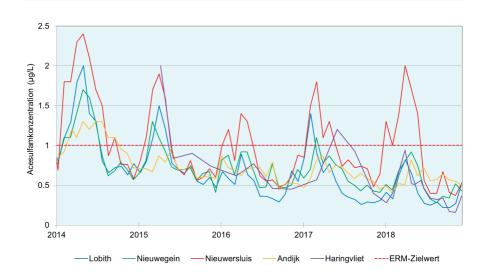
An allen Standorten wurde ein Stoff gemessen, d. h. Dimethyldisulfid (DMDS). Dieser Stoff ist als Aromastoff in manchen Nahrungsmitteln zugelassen. Es wurden keine Überschreitungen des Zielwerts konstatiert. Bei Nieuwersluis weist dieser Stoff einen steigenden Trend auf. Die Gruppe künstlicher Süßstoffe wird separat behandelt. Wir verweisen diesbezüglich auf Abschnitt 3.40 auf Seite 62.

3.38 Hormonell wirksame Stoffe (EDC)

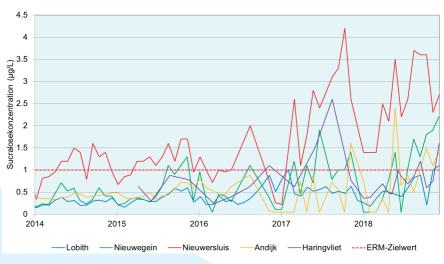
Hormonelle Störungen können bei Mensch und Tier von organischen Mikroverunreinigungen verursacht werden. Hierbei handelt es sich um eine sehr heterogene Gruppe von Stoffen, deren gemeinsame Eigenschaft ist, dass sie hormonelle Funktionen beeinträchtigen können. Sie können die Fortpflanzungsorgane von Organismen schädigen, aber auch Verhaltensänderungen bewirken.

Es kann zwischen natürlichen und künstlichen (synthetischen) hormonell wirksamen Stoffen unterschieden werden. Dabei kann es sich um allerlei Stoffe handeln, wie z. B. Flammschutzmittel, Landwirtschaftschemikalien, Lösemittel, Weichmacher (insbesondere Phthalate und Nonylphenole). Insgesamt wurden in dieser Gruppe 1026 Analysen ausgeführt, von denen fast 14% die Bestimmungsgrenze überschritten.

Di(2-ethylhexyl)phthalat (DEHP) wurde wie im Vorjahr auch im Jahr 2018 an allen Probenahmestellen gemessen. Aufgrund der Bestimmungsgrenze von 1,0 µg/l war eine Prüfung anhand des ERM-Zielwerts von 0,1 µg/l aber nicht gut möglich. Auch Di-(2-methylpropyl)phthalat (DIBP), ein Parameter, der nur bei Nieuwegein gemessen wurde, wies noch immer eine Bestimmungsgrenze (0,5 µg/l) auf, die für eine gute Prüfung zu hoch war (siehe Tabelle 1.4). Der steigende Trend ist auf die geänderte Bestimmungsgrenze zurückzuführen. Ferner lagen keine Überschreitungen des Zielwerts in dieser Parametergruppe vor. Dibutylzinn lässt bei Lobith, Nieuwegein und Andijk einen sinkenden Trend erkennen. Dieser Parameter wird in sehr niedrigen Konzentrationen gemessen. Die übrigen Trends sind auf geänderte Bestimmungsgrenzen zurückzuführen.


Die Calux-Messungen wurden letztes Jahr in diesem Abschnitt behandelt. Ab diesem Jahr gibt es eine neue Parametergruppe mit der Bezeichnung "Effektmessungen", die auch die Calux-Messungen umfasst. Diese Gruppe wird in Abschnitt 3.41 behandelt.

3.39 Weichmacher


Zwei Parameter aus dieser Gruppe, d. h. DEHP und DIBP, wurden im letzten Abschnitt behandelt. Die übrigen Parameter aus dieser Gruppe wurden nur bei Nieuwegein gemessen. Es wurden keine Überschreitungen des ERM-Zielwerts (0,1 µg/l) festgestellt. Die erfassten Trends sind auf erhöhte Bestimmungsgrenzen zurückzuführen. Insgesamt wurden 168 Messwerte in dieser Gruppe ermittelt, die alle die Bestimmungsgrenze unterschritten.

3.40 Künstliche Süßstoffe

Künstliche Süßstoffe finden breite Anwendung und wurden aus diesem Grund im Jahr 2013 in das Messprogramm aufgenommen. Da Acesulfam-K in Abwasserkläranlagen kaum abgebaut wird, hat die IAWR die IKSR auf diesen Stoff, als Vertreter der Gruppe künstlicher Süßstoffe, aufmerksam gemacht. Insgesamt wurden im Jahr 2018 in dieser Parametergruppe 293 Messungen ausgeführt, von denen 79% die Bestimmungsgrenze überschritten. Bei 31 Messwerten wurde eine Überschreitung des ERM-Zielwerts von 1,0 µg/l konstatiert. Für Acesulfam-K wurden im Jahr 2017 an allen Standorten Überschreitungen des ERM-Zielwerts festgestellt. Im Jahr 2018 war dies wie schon im Jahr 2016 nur bei Nieuwersluis der Fall, wobei eine Höchstkonzentration von 2 µg/l ermittelt wurde. An den übrigen Standorten entsprachen die Höchstwerte 80 - 100% des Zielwerts. Ferner lässt Acesulfam-K bei Lobith, Nieuwegein und Andijk einen sinkenden Trend erkennen. In Grafik 1.19 findet sich eine Übersicht über den Verlauf von Acesulfam-K-Konzentrationen in den letzten fünf Jahren. Sucralose überschritt an allen fünf Messstellen den ERM-Zielwert (siehe Tabelle 1.3 und Grafik 1.20).

Grafik 1.19 Acesulfam-K an den fünf Meldepunkten im Zeitraum 2014 - 2018.

Grafik 1.20 Sucralose an den fünf Meldepunkten im Zeitraum 2014 - 2018

Die meisten Überschreitungen wurden wie schon im Jahr 2017 bei Nieuwersluis konstatiert (bei dreizehn von dreizehn Messungen). Hier wurde auch die höchste Konzentration gemessen, d. h. 3,7 μ g/l. Diese Konzentration war zwar etwas niedriger als der Höchstwert im Jahr 2017 (4,2 μ g/l), aber wesentlich höher als die im Jahr 2016 gemessene höchste Konzentration (1,3 μ g/l). Acesulfam-K und Sucralose werden seit 2015 bei Haringvliet gemessen, wodurch eine 5-Jahres-Trendberechnung für diesen Standort noch nicht möglich ist. Die entsprechenden Daten finden sich in Anhang 1 Wasserqualitätsdaten 2018 auf Seite 129.

3.41 Effektmessungen

Es werden immer mehr Calux-Effektmessungen ausgeführt. Deshalb wurde der Beschluss gefasst, eine separate Parametergruppe für Effektmessungen in der RIWA-base zu erstellen. Calux steht für "Chemically Activated LUciferase eXpression" (Quelle: BioDetection Systems). ER-Calux akt. bezüglich 17-beta-Estradiol wurde auch bei Haringvliet gemessen, aber die übrigen Effektmessungen wurden nur bei Nieuwegein und Andijk ausgeführt. Anti-AR-Calux akt. wurde in Bezug auf Flutamid (Anti-Androgen-Reaktion) im Jahr 2018 bei Nieuwegein und Andijk gemessen. Bei Andijk überschritten zwölf von dreizehn Messwerten 0,1 µg/l. Der Höchstwert von 46,5 µg/l war mit dem des Jahres 2017 (46 µg/l) vergleichbar. Bei Nieuwegein lagen alle dreizehn Messwerte über 0,1 µg/l. Der Höchstwert von 64,6 µg/l ist höher als der von Andijk und fast dreimal so hoch wie der bei Nieuwegein im Jahr 2017 gemessene Höchstwert (23 µg/l). NRF2-Calux akt. bezüglich Kurkumin (Reaktion auf oxidativen Stress) hat eine Bestimmungsgrenze von 100 µg/l, weshalb eine gute Prüfung anhand des Zielwerts von 0.1 ug/l nicht möglich ist. Es wurden hohe Höchstwerte gemessen: 266 µg/l bei Nieuwegein und sogar 8140 µg/l bei Andijk. GR-Calux akt. bezüglich Dexamethason (Reaktion auf Glukokortikoid) hatte im Jahr 2017 bei Andijk den Wert von 0,1 µg/l überschritten, aber das war im Jahr 2018 nicht der Fall. An den anderen Standorten wurden keine Überschreitungen konstatiert. Insgesamt wurden in dieser Parametergruppe 167 Messungen ausgeführt, von denen 52% die untere Analysegrenze überschritten. Wir verweisen auf Anhang 1 Wasserqualitätsdaten 2018 auf Seite 129 für die Daten der beschriebenen Parameter.

2

Einfluss der Trockenheit

Autor: Frau I. Zeegers (Portretten in woorden)

Das Jahr 2018 geht als ein besonderes Jahr in die Geschichtsbücher ein. Es zeichnet sich durch einen großen Niederschlagsmangel in Verbindung mit einem niedrigen Wasserabfluss des Rheins aus, der zu allem Überfluss auch noch monatelang anhielt. Welchen Einfluss hatte die Trockenheit auf die Trinkwassergewinnung im Rheineinzugsgebiet?

Gerard Stroomberg, der Direktor von RIWA-Rhein, findet es wichtig, diese Frage den Wasserversorgungsunternehmen zu stellen, die im niederländischen Teil des Rheineinzugsgebiets tätig sind. So möchte er einen besseren Einblick in die sich verändernden Bedingungen erhalten, unter denen Wasserversorgungsunternehmen arbeiten mussten. PWN, Waternet, Oasen, Vitens, Dunea und Evides berichten nacheinander über die Trockenheit im Jahr 2018.

Auch das Ministerium für Infrastruktur und Wasserwirtschaft sowie die Ausführungsbehörde Rijkswaterstaat werden nach ihrer Einschätzung gefragt. Was bedeutete die Trockenheit für die Wasserpolitik?

RIWA-Rhein

"Der Schutz der Quellen wird bei Trockenheit immer wichtiger"

Aber zunächst: Was hat RIWA-Rhein selbst von der Trockenheit gemerkt? Stroomberg: "Meiner Meinung hat das Jahr 2018 vor allem gezeigt, wie verletzlich wir sind, wenn eine Trockenperiode lange andauert. Einerseits wegen der zunehmenden Versalzung der Nordsee, andererseits wegen der stromaufwärts des Flusses erfolgenden Einleitungen. Eine kleine Rechensumme: Wenn der Rhein längere Zeit nur ein Drittel der durchschnittlichen Abflussmenge aufweist, sind die Konzentrationen von Verunreinigungen auch langfristig dreimal so hoch. Unser Worst Case Scenario? Dass der Entnahmestopp bei Andijk (aufgrund des hohen Chloridgehalts im IJsselmeer) mit einem Entnahmestopp des Wassers des Leks (aufgrund der Einleitung von 1,4-Dioxan) zusammenfallen würde. In diesem Fall wären die beiden "Anker", die für die Wasserversorgungsunternehmen in Nordholland und Amsterdam lebensnotwendig sind, nicht mehr brauchbar. Die Trinkwasserunternehmen hätten ihre Reserven an Grundwasser und Dünenwasser zur Deckung des Bedarfs nutzen müssen, was zu Schäden an der Natur hätte führen können.

Dies ist nicht geschehen. Es klingt paradoxal, aber der niedrige Abfluss des Rheins hat uns gerettet. Die Durchlaufzeit von Lobith bis zur Entnahmestelle am Lek war nämlich besonders lang. Was normalerweise in zwei bis drei Tagen passiert, dauerte jetzt zwei Monate. Hierdurch trafen wir an der Entnahmestelle letztendlich keine Erhöhung der Werte von 1,4-Dioxan an. Aber dies war ein glückliches Zusammentreffen verschiedener Faktoren.

Für RIWA-Rhein stellt sich jetzt die Frage, wie wir uns auf strukturelle Trockenheit vorbereiten müssen. Wenn sich nämlich herausstellt, dass diese Art von Trockenperioden keine historischen Ausnahmen sind, sondern der neue Standard werden, werden die Einleitungsgenehmigungen jetzt schon entsprechend angepasst werden müssen. Schließlich werden die Genehmigungen im Allgemeinen für einen Zeitraum von fünf bis zehn Jahren auf der Grundlage maßgebender niedriger Abflüsse erteilt, die schnell überholt sind. Wie werden Einleitungen bei einem extrem niedrigen Abfluss ausreichend berücksichtigt?"

Die Antwort auf diese Frage wird noch etwas auf sich warten lassen. Während RIWA-Rhein u. a. über das Genehmigungsverfahren versucht, die stromaufwärts erfolgenden Einleitungen in den Griff zu bekommen, richten sich Wasserversorgungsunternehmen vor allem auf die aus dem Westen abkünftige Versalzung. Nachstehend folgt eine Übersicht.

"In ein strukturelles Messnetz am IJsselmeer investieren"

Im Jahr 2018 war das Wasser aus dem IJsselmeer zum ersten Mal seit langem für die Trinkwassergewinnung ungeeignet. Joke Cuperus, CEO von PWN, über den Kampf gegen die vorrückende Versalzung.

"Das IJsselmeer ist unsere Lebensader. Es wird von der IJssel bzw. dem Rhein gespeist. Wir sind immer davon ausgegangen, dass der Süßwasservorrat unbegrenzt war. Wir haben uns getäuscht. Bei der Trockenheit im Jahr 2018 gab es zwar genug Wasser, dessen Qualität war aber nicht ausreichend. Das war neu für uns. Zum ersten Mal konnten wir kein Wasser an der Wasserentnahmestelle Andijk entnehmen, da der Chloridgehalt zu hoch war. Die Konzentrationen stiegen auf 300 Milligramm pro Liter an. Dies überstieg den Jahresdurchschnittswert der

Wasserentnahmegrenze von 150 Milligramm pro Liter. In solch einem Fall müssen wir die Wasserentnahme unterbrechen und der ILT ("Inspectie voor de Leefomgeving en Transport") gegenüber Verantwortung ablegen."

Handlungsperspektive IJsselmeer

"Als der erste Schreck vorbei war, passten wir unsere Arbeitsweise an. So arbeiteten wir im Jahr 2018 faktisch mit Tageskursen für Chlorid: Wir hielten die Bedingungen im IJsselmeer im Auge um zu bestimmen, wann die Wasserentnahme erfolgen konnte. Dabei spielten auch Faktoren, wie z. B. die Windrichtung und die Wasserableitungspolitik an den Schleusen, eine wichtige Rolle. Es stellte sich heraus, dass es im Jahr 2018 keine angepasste Schleusendurchfahrt für die Schifffahrt über die Abschlussdeichschleusen gab. Bezüglich dieser Themen haben wir intensive Kontakte zu Rijkswaterstaat unterhalten, damit sie uns bei das Stauen und Ableiten von Wasser berücksichtigen konnten.

An manchen Tagen konnten wir gar kein Wasser entnehmen. Rijkswaterstaat hatte schon Schiffe bereitgestellt, die - im Notfall - Wasser mit einem niedrigen Chloridgehalt zu unserer Entnahmestelle transportieren sollten. Das war letztendlich nicht nötig. Wir haben zusätzliches Wasser bei unseren Kollegen des Wasserversorgungsunternehmens Waternet, an das wir uns im Notfall immer wenden können, eingekauft. Das Wasser stammt u. a. von der Entnahmestelle am Lek.

Im Jahr 2018 haben wir auch gelernt, unsere Wasserströme so anzupassen, dass das Chlorid verdünnt wird. Ferner wenden wir ein intelligentes Wasserbecken-Management an, denn es hat sich als sehr wichtig erwiesen, der Verwaltung der Wasservorräte noch mehr Aufmerksamkeit zu schenken."

Bedeutung eines strukturellen Messnetzes am IJsselmeer

Um mit Tageskursen für Chlorid arbeiten zu können, werden Informationen benötigt. "Während der Trockenheit im Jahr 2018 stellte sich heraus, dass die verfügbaren Informationen über den aktuellen Salzgehalt des IJsselmeers unzureichend waren. Es gab zu wenig Messpunkte, und die verfügbaren Daten waren nicht aufeinander abgestimmt. Hierdurch war ein Datenaustausch mit den Wasserbewirtschaftern nicht möglich. Wir haben deshalb beschlossen, gemeinsam mit Wetterskip Fryslân, dem Hoogheemraadschap Hollands Noorderkwartier und Rijkswaterstaat in ein besseres Monitoring- und Messprogramm zu investieren. Dieses Messprogramm befindet sich noch in Entwicklung."

Versalzung vorhersehen

Was passiert, wenn es in Zukunft aufgrund des Klimawandels häufiger zu einer Trockenheit kommt? "Um uns darauf einstellen zu können, prüfen wir verschiedene Lösungen. Wir schauen, ob wir zusätzliche Grundwasservorräte einrichten können und ob es andere Wasserquellen gibt. Sollten wir zum Beispiel eine Leitung zu einem anderen Wasserversorgungsunternehmen verlegen? Oder ein großes Sammelbecken im IJsselmeer einrichten? Ferner prüfen wir auch, ob Entsalzung eine gute Lösung wäre. Zu diesem Zweck müsste die Fabrik in Andijk umgebaut werden. Alle diese Varianten müssen sorgfältig abgewägt werden, bevor wir entscheiden, wie es weitergeht."

"Verweilzeit von 1,4-Dioxan aufgrund von Trockenheit schwieriger vorherzusagen"

Trotz der Trockenheit konnte Waternet im Jahr 2018 weiterhin ohne große Probleme Trinkwasser liefern. Grund hierfür war, dass ein Luftblasenschirm im Amsterdam-Rheinkanal platziert worden war. Dies erzählt Leon Kors, Teamleiter Wasserqualität und Prozessunterstützung bei Waternet.

"Waternet bezieht sein Wasser aus Nieuwegein. Der Trinkwasserproduzent PWN und Tata Steel beziehen normalerweise sowohl Wasser aus dem Lek als auch aus dem IJsselmeer. Aber wegen der Versalzungsprobleme im IJsselmeer war die Wasserentnahme für Trink- und Industriewasser in Andijk begrenzt. Die Folge war, dass mehr Wasser aus Nieuwegein geliefert wurde. Daneben kaufte PWN im Jahr 2018 mehr Trinkwasser bei Waternet ein. Wir haben PWN daher etwa 13 Prozent mehr Trinkwasser als normal geliefert. Mit anderen Worten: Wasserversorgungsunternehmen können sich im Notfall gegenseitig beliefern."

Die unvorhersehbare Reise von 1,4-Dioxan

Im Herbst 2018, als die Trockenheit des Rheins noch nicht vorbei war, wurde bei der Messstation Lobith etwa zehn Wochen lang eine hohe Konzentration von 1,4-Dioxan, einem bekannten industriellen Hilfsstoff und Lösemittel, gemessen. Die Konzentration stieg auf sieben Mikrogramm pro Liter an. Da diese Verunreinigung im Rhein und Lek öfter vorkommt, verfügt Waternet über eine Befreiung, um trotzdem Flusswasser entnehmen zu dürfen. Im Rahmen dieser Befreiung wurde die Entnahmegrenze auf drei Mikrogramm pro Liter festgelegt. Kors: "Wenn wir im Jahr 2018 eine Woche lang 1,4-Dioxan in ähnlich hohen Konzentrationen wie bei Lobith an unserer Entnahmestelle angetroffen hätten, hätten wir die Wasserentnahme unterbrechen müssen. Aber es lief ganz anders.

Aufgrund des niedrigen Abflusses des Rheins - und weil das meiste Wasser über den Waal und die IJssel geleitet wurde -, strömte im Sommer sehr wenig Wasser in den Lek. Es dauerte zwei Monate, bevor die Verunreinigung mit 1,4-Dioxan Nieuwegein erreichte, und zu diesem Zeitpunkt war die Konzentration so gesunken, dass sie unter 3 Mikrogramm blieb."

Wir haben zwei Monate gewartet, und das ist eine ziemlich lange Zeit. Die Frage stellte sich: Wo war das 1,4-Dioxan geblieben? Kors: "Nach der Meldung aus Lobith hatten wir Szenarien erstellt, aber es erwies sich als schwierig, die Durchflussgeschwindigkeit des Wassers vorherzusagen. Wir haben uns diesbezüglich an den Wasserbewirtschafter, Rijkswaterstaat, gewandt. Die Kontakte mit dem Wasserbewirtschafter wurden seit diesem Sommer vertieft. Weitere gute Nachrichten sind, dass Evaluierungen des trockenen Sommers gezeigt haben, dass alle unsere Protokolle gut funktioniert haben. Die meisten Dinge sind daher einfach gut gegangen."

Luftblasenschirm Amsterdam-Rheinkanal

Die zweite Wasserentnahmestelle für die Trinkwasserproduktion liegt ein bisschen nördlicher als die Entnahmestelle im Lek bei Nieuwegein und näher an der Mündung des Amsterdam-Rheinkanals (ARK) im versalzten IJ. Von dem IJ bewegt sich eine Salzzunge in Richtung des ARK. Hierdurch entsteht die Gefahr, dass die Versalzung auch auf andere verbundene Süßwassergewässer übergreift.

Kors: "Da Waternet auch Ausführungsaufgaben für die Wasserbehörde Waterschap Amstel Gooi en Vecht übernimmt, ist das Qualitätsmanagement des ARK für uns sehr wichtig. Die Versalzung des ARK hätte direkte Folgen für andere Wasserkörper und Natura2000-Gebiete. Um die Versalzungsgefahr in den Griff zu bekommen, denkt Waternet - gemeinsam mit Rijkswaterstaat und anderen betroffenen Wasserbewirtschaftern - über praktische Lösungen für dieses Versalzungsproblem nach."

Eine vielversprechende Lösung scheint der Luftblasenschirm zu sein. Diese Konstruktion besteht aus Rohren mit Löchern und wird im Kanalboden aufgestellt. Durch die Löcher wird Luft gedrückt, sodass ein Schirm mit Luftblasen entsteht. Salzwasser ist schwerer als Süßwasser. Durch die Blasen wirbelt das Salzwasser hoch und vermischt sich mit dem Süßwasser. Anschließend kann es in den Nordseekanal zurückgeleitet werden.

Kors: "Der Luftblasenschirm wurde erst im Sommer 2018 getestet. Als sich herausstellte, dass das Konzept funktionierte, hat Rijkswaterstaat im November 2018 eine verbesserte Version des Luftblasenschirms im Amsterdam-Rheinkanal in Höhe der Amsterdamsebrug installiert."

"Zusätzliches Ablasswehr erforderlich, um Versalzung zu verhindern"

Um zu gewährleisten, dass der Salzgehalt im Lek die Entnahmenorm für Trinkwasser nicht überschreitet, wurde im Jahr 2018 zusätzliches Flusswasser am Wehr Hagestein durchgelassen. Der Oasen-Hydrologe Harrie Timmer erläutert, weshalb dies erforderlich war.

"Unser Grundwasser stammt aus einer Tiefe von 10 bis 40 Metern, abhängig vom Standort. Bei dem Grundwasser handelt es sich um Flusswasser, das einige Jahre im Boden unterwegs war. Verunreinigungen des Flusswassers werden zu 95 Prozent entfernt, ein Rest von 5 Prozent bleibt übrig.

Der Vorteil der Uferinfiltration besteht darin, dass die Auswirkungen auf den Grundwasserspiegel geringer sind als bei der reinen Grundwasserentnahme. Der Vorteil gegenüber der direkten Oberflächenwasseraufbereitung besteht darin, dass der Bodendurchgang ein robuster erster Reinigungsschritt ist, so dass das entnommene Wasser hygienisch zuverlässig ist und keine Spitzenkonzentrationen von Schadstoffen enthält. Der Nachteil dieser Methode der Wasserentnahme ist, dass wir alle Stoffe, die über einen längeren Zeitraum im Leck waren, in niedrigen Konzentrationen finden. Tatsächlich ist das Grundwasser am Flussufer ein Archiv des Rheins oder der Leckage. Dies sind polare Substanzen wie 1,4-Dioxan (Lösungsmittel), PFAS (perfluorierte Verbindungen) und MTBE (Antiklopfmittel in fossilen Brennstoffen). Wir entfernen diese Verunreinigungen durch Schnellfiltration und Aktivkohleaufbereitung."

Grundwasser unter dem Lek

Was bemerkte Oasen zu den Folgen der Trockenheit im Jahr 2018? "Die Trockenheit hat kaum Auswirkungen auf unseren Produktionsprozess gehabt, aber wir verzeichneten im Jahr 2018 eine Zunahme des Verbrauchs. Im Juli 2018 stieg der Wasserverbrauch um 16 Prozent im Vergleich zum durchschnittlichen Wasserverbrauch der letzten zehn Jahre. Aufgrund der großen Nachfrage haben wir die regelmäßige Wartung von Leitungen und Anlagen vorübergehend vorsorglich unterbrochen.

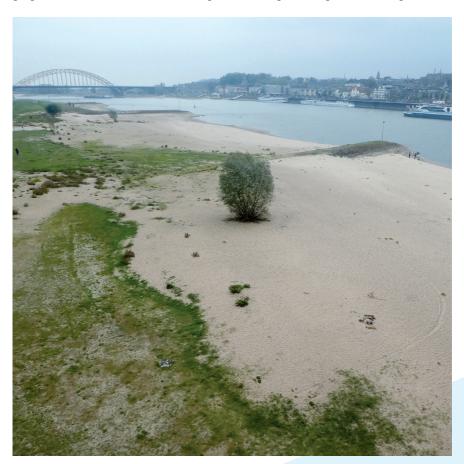
Wenn aber in Zukunft öfter solche langen Trockenperioden auftreten, wird dies auch Auswirkungen auf unsere Produktionsprozesse haben. Grund hierfür ist vor allem die zunehmende Versalzung. Normalerweise findet sich Süßwasser an der Mündung des Leks. Studien haben aber gezeigt, dass sich dies ändern wird. Laut der Vorhersagen wird es sich bei dem Lekwasser im Jahr 2050 von der Mündung bis Bergambacht um Brackwasser handeln. Dies bedeutet, dass es über

150 Milligramm Salz pro Liter enthält. Dies überschreitet die Norm für die Trinkwassergewinnung. Chlorid können wir mit den heutigen Aufbereitungsverfahren nicht entfernen."

Zusätzliches Ablass am Wehr bei Hagestein

"Die zunehmende Versalzung des Leks ist u. a. darauf zurückzuführen, dass Rijkswaterstaat eine ausreichende Wassermenge für die Schifffahrt gewährleisten muss. Bei Niedrigwasser wird das Wehr bei Hagestein geschlossen. So bleibt das Wasser stromaufwärts tief genug. Dieses Verfahren steht jetzt allerdings zur Diskussion, da Wasserversorgungsunternehmen in Zukunft durch die aus dem Westen kommende zunehmende Versalzung in Schwierigkeiten geraten werden.

Aufgrund der extremen Trockenheit fanden viele zusätzliche Anhörungen bezüglich der Wasserverteilung in den Niederlanden statt. Bei diesen Anhörungen werden Wasserversorgungsunternehmen durch den Entschließungsantrag Geurts unterstützt, der im Jahr 2015 von der Zweiten Kammer des niederländischen Parlaments angenommen wurde. Damals wurde festgelegt, dass der Staat dafür sorgen muss, dass die Chloridkonzentration an den Entnahmestellen für Trinkwasser immer unter 150 Milligramm pro Liter bleibt. Diese Vereinbarung wird auch im Deltaprogramm Süßwasser bekräftigt und wird jetzt von den entsprechenden Verwaltungsorganen weiter ausgearbeitet.


Konkret bedeutet dies, dass Rijkswaterstaat prüft, ob und auf welche Art trotzdem eine ausreichende Menge Süßwasser durch das Wehr bei Hagestein dem Lek zugeführt werden kann. Aus Desktop-Studien ging hervor, dass eine zusätzliche Durchflussmenge von 20 bis 40 m³ pro Sekunden im Lek schon eine große Hilfe wäre, um Versalzung zu verhindern. Aber dies ist leichter gesagt als getan: Das Wehr ist ein riesiges Betonbauwerk. Man kann nicht einfach sagen: "Wir brauchen mal kurz 20 m³ zusätzlich." Letzten Sommer wurden daher Experimente mit dem Wehr ausgeführt. Und es ist wirklich gelungen, das Schiebetor geringfügig anzuheben. Gleichzeitig wurden auch Durchflussmessungen ausgeführt." [Bericht "Inzetbaarheid stuw Hagestein ter bestrijding van verzilting op de Lek', Rijkswaterstaat WVL, 2019].

Versalzung stoppen

Wenn es durch den Klimawandel öfter extrem trocken wird, was bedeutet das für die Trinkwasserproduktion von Oasen? "Wir müssen weiter untersuchen, wie wir die Versalzung begrenzen können. Dazu ist eine Abstimmung mit allen Beteiligten erforderlich. Szenario-Studien zeigen jedoch, dass dies in unserem Fall an der Mündung des Lek aufgrund von Tidewirkung wahrscheinlich nicht ganz erfolgreich sein wird.

Deshalb setzen wir jetzt Membranverfahren wie die Umkehrosmose an den Behandlungsstandorten im westlichen Teil unseres Versorgungsgebietes ein. Diese Technik wurde einst für die Meerwasser- und Brackwasserentsalzung entwickelt. Die Technik ist inzwischen alltäglich geworden und ist heute auch allgemein für die Aufbereitung von Trinkwasser aus Oberflächensüßwasser, Grundwasser und Ufergrundwasser einsetzbar. Insbesondere ist es eine gute Alternative zu unseren relativ kleinen Pumpstationen, die eine konstante Qualität des Ufergrundwassers verbrauchen. Ob diese Umkehrosmosebehandlung schließlich für alle Behandlungsstandorte flussaufwärts entlang des Lek notwendig wird, hängt von der Entwicklung der Wasserqualität des Lek ab. Dies betrifft nicht nur die Versalzung, sondern auch das Vorhandensein von organischen Mikroverunreinigungen. Bei all dem bleibt die Verhinderung der Versalzung eine dringende Notwendigkeit. "

"Lernen, Spitzenlasten vorherzusehen"

Die Trockenheit des Jahres 2018 hatte relativ wenig Einfluss auf das Produktionsverfahren des Grundwasserwerks Vitens. "Aber der Zwischenfall illustriert die Wichtigkeit unabhängiger Wasserquellen", erläutert der strategische Berater Rian Kloosterman.

"Das Jahr 2018 war kein extremes Jahr für uns. Situationen dieser Art kommen einmal alle 20 Jahre vor, darauf müssen Wasserversorgungsunternehmen vorbereitet sein. Im Jahr 2018 gab es bei uns keinen Grundwassermangel oder einen Mangel an zu entnehmendem Wasser."

Aber die Nachfrage nach Trinkwasser wächst schnell. Während Vitens im Jahr 2014 noch 346 Millionen m³ Trinkwasser lieferte, waren es im Jahr 2018 schon 377 Millionen m³. "Aufgrund der steigenden Nachfrage bei der extremen Trockenheit hatten wir Schwierigkeiten, den Wasserdruck überall aufrechtzuerhalten. Die gesetzliche Norm für den Wasserdruck beträgt 15 Meter Wassersaule (bei einem Durchfluss von 1 m³ pro Stunde). Insbesondere in den abgeschiedenen Gebieten von Friesland, dem Achterhoek und Twente war es problematisch, den Druck aufrechtzuerhalten. Wenn alle Leute gleichzeitig ihren Garten bewässern möchten, bringt uns das in Schwierigkeiten."

Welche Handlungsperspektive gibt es? "Wir haben zum sparsamen Umgang mit Wasser aufgerufen, sodass der Druck in den Spitzenzeiten besser aufrechterhalten werden konnte. Ferner haben wir das Wasser möglichst intelligent verteilt. In Gelderland hat die Provinzverwaltung an die Bevölkerung appelliert, den Wasserverbrauch in den Spitzenzeiten zu reduzieren. Später wurde auch zu Wassereinsparungen aufgerufen. Um die Lieferpflicht erfüllen zu können, sah sich Vitens gezwungen, bei einer begrenzten Anzahl Wasserentnahmestellen monatliche und jährliche Grenzwerte der Wasserentnahmegenehmigung zu überschreiten."

Weniger verletzlich durch mehrere Quellen

Wie kommt es, dass die Trockenheit trotzdem wenig Auswirkungen gehabt hat? "Vitens verfügt über viele unabhängige Grundwasserquellen, und dies ist einzigartig. Unser Unternehmen besteht aus vielen kleinen Betrieben, die später mit lokalen Wasserentnahmestellen fusioniert sind.

Nach der Fusion ist das Wasserentnahmegebiet insgesamt wesentlich größer geworden. Hierdurch können wir jetzt viel besser Wasser an Stellen gewinnen, an denen dies auf nachhaltige

Weise möglich ist, an denen ausreichend Wasser vorhanden ist und an denen der Schaden für die Umgebung begrenzt ist. Hierdurch sind wir weniger anfällig für Trockenheit beispielsweise."

Laut Kloosterman haben die Grundwasserentnahmen in Trockenzeiten nur begrenzte Auswirkungen auf den gesamten Wasserhaushalt. "Der größte Teil des Abgangs wird durch Verdampfung und Abfluss verursacht. Was das Grundwasser betrifft, so entziehen wir einige Prozente der Menge, die durch Niederschlagsüberschuss angefüllt wird. Außerdem entziehen wir Wasser aus tiefen Schichten. Daher entsteht nicht so schnell Grundwassermangel. Dieser würde erst entstehen, wenn der Grundwasserpegel um 15 Meter sinken würde. Dies wäre der Fall, wenn es viele Jahre nicht regnen würde."

Wie andere Wasserversorgungsunternehmen sieht sich auch Vitens mit der Versalzung des Grundwassers konfrontiert. Dies ist in Teilen von Friesland oder in den IJsselmeerpoldern der Fall. Was ist zu tun? "Dort entnehmen wir kein Wasser. Wir können vor dem Salz flüchten."

Die Wichtigkeit eines sauberen Flusses

Die niederländischen Gewässer stehen miteinander in Verbindung, und dies gilt auch für Grundund Oberflächenwasser. Verunreinigende Stoffe, die sich im Rhein und in der IJssel befinden, gelangen letztendlich auch in das Grundwasser.

Was bedeutet dies für Vitens? "Die chemische Wasserqualität der Flüsse IJssel bzw. Rhein stellt wirklich einen Grund zur Sorge dar. Neu aufkommende Stoffe, die im Rhein gemessen werden, finden wir auch im Grundwasser vor. Wie lange es genau dauert, bevor die Stoffe ins Grundwasser gelangen, hängt von der jeweiligen Situation ab. Es gibt Gebiete, in denen wir Wasser entnehmen, das mehrere tausend Jahre alt ist, und es gibt Gebiete, in denen das entnommene Wasser fünf bis zehn Jahre alt ist.

Bei Zwolle strömt das IJssel-Wasser zwei Jahre durch den Boden, bevor wir es verwenden. An dieser Wassergewinnungsstelle finden wir dieselben Stoffe wie im Rhein vor. Für sie werden andere Reinigungsverfahren benötigt. Wir haben aus diesem Grund Membranfiltration installiert. Unsere Botschaft? Die Qualität des Oberflächenwassers ist nicht nur für den Fluss, sondern auch für das Grundwasser entscheidend."

"Das Jahr 2018 war ein Signaljahr, was den Klimawandel betrifft"

Im Jahr 2018 beschloss Dunea, Maaswasser mit Wasser aus dem Lek zu vermischen, um der steigenden Wassernachfrage entsprechen zu können. Jaap Mos, Prozessmanager von der Quelle zum Hahn bei Dunea, erläutert die Gründe.

"Dunea verwendete nicht immer Maaswasser. Früher wurde Wasser aus dem Lek bzw. dem Rhein verwendet. Aus diesem Grund wurde 1955 die Entnahmestelle in Bergambacht am Fluss Lek eröffnet. Aber aufgrund der schlechten Wasserqualität des Rheins wurde 1976 beschlossen, auf Wasser aus der Maas überzugehen. Seither diente die Wasserentnahmestelle am Lek nur als Reserve.

Die Entnahmestelle für Lekwasser wurde im Jahr 2014 wieder für die Entnahme operativ gemacht. Der "zweite Anker" bei Bergambacht konnte in den Jahren 2015 und 2016 sofort eingesetzt werden, als das Maaswasser infolge von Einleitungen von Pyrazol (2015) und später Dimethoat (Anfang 2016) lange Zeit unbrauchbar war."

Eine geringere Zufuhr, ein höherer Verbrauch und hitzebedingte Probleme

Auch im Jahr 2018 wurde Lekwasser für die Trinkwasserproduktion verwendet. Nicht wegen Notfällen in der Maas, sondern aufgrund von Problemen durch die unzureichende Zufuhr aus Brakel, der Entnahmepumpstation an der Afgedamde Maas.

Mos: "Im Jahr 2018 blieb der Wasserverbrauch auf einem gleichbleibend hohen Niveau. Wir haben 16 Prozent mehr Wasser als normalerweise geliefert.

Aufgrund der im Jahr 2018 herrschenden Hitze hatten wir mit praktischen Problemen zu kämpfen. Infolge erhöhter biologischer Aktivität im Wasser kam es zu regelmäßigen Verstopfungen der Mikrosiebe in den Kühlern der Pumpen. Und dann gab es noch die Blaualge. Ein zusätzliches Problem war außerdem, dass wir den Grundwasserpegel in den Dünen für die Natur aufrechterhalten müssen, um Versalzung zu verhindern. Wir müssen über ein ausreichendes Überbrückungsvermögen verfügen, wenn sich ein Notfall ereignet und kein Wasser zugeführt werden kann.

Um weiterhin eine Lieferung auf Spitzenniveau gewährleisten zu können, sind wir auf einen Mischbetrieb von Maas- und Lekwasser übergegangen. Um genau zu sein: Wir mischen 10.000 m³ Maaswasser pro Stunde mit 2.500 m³ Lekwasser pro Stunde. Dies haben wir dem Wasserbewirtschafter (Rijkswaterstaat) mitgeteilt, und er hat dies bei der Wasserverteilung am Wehr bei Hagestein berücksichtigt."

Praktische Aspekte eines Mischbetriebs für Lek und Maas

Kan man einfach so von Maas- auf Rheinwasser übergehen? Mos: "In Bezug auf die Wasseraufbereitungsanlage waren kaum Anpassungen erforderlich, in Bezug auf die Prozessautomatisierung dahingegen schon. Dies war nötig, um die Mischung zweier Wasserströme zu ermöglichen.

Ferner musste im Voraus auch der Gehalt an Schwebstoffe besonders geprüft werden. Der Lek enthält siebenmal so viel Schwebstoffe wie die Maas. Um Wasser in die Dünen infiltrieren zu dürfen, darf es aber nur 0,5 Milligramm pro Liter an Schwebstoffe enthalten. Dies erfordert zusätzliche Anstrengungen bei der Wasserentnahme bei Bergambacht. Für kurze Zeiträume ist die Anlage geeignet. Wenn es aber um eine strukturelle Anwendung geht, muss noch viel geschehen."

Chemische Stoffe in Zeiten von Trockenheit besonders problematisch

Mos fährt fort: "Ein weiteres praktisches Dilemma ist das Vorkommen der Chemikalie 1,4-Dioxan im Lek. Da der Stoff im Rhein regelmäßig den Signalwert überschreitet, haben Wasserversorgungsunternehmen, die Rheinwasser verwenden, eine Befreiung erhalten, sodass sie auch Wasser entnehmen dürfen, wenn 1,4-Dioxan im Rhein nachgewiesen wird. Der Stoff wird aber nicht in die Maas eingeleitet, und deshalb verfügt Dunea nicht über eine entsprechende Befreiung. Glücklicherweise blieb der 1,4-Dioxan-Gehalt an unserer Entnahmestelle den ganzen Sommer unter dem Signalwert."

Wirkliche Sorgen bereitete den Technologen von Dunea die zunehmende Versalzung des Leks. Mos: "Im Wasser der Hollandse IJssel stieg die Konzentration schon auf 1000 Milligramm pro Liter an. Die für die Trinkwassergewinnung geltende Norm sieht 150 Milligramm pro Liter vor. Diese Norm wurde im Lek in Höhe von Bergambacht glücklicherweise weit unterschritten, da der Wasserbewirtschafter ab dem Wehr Hagestein zusätzliches Rheinwasser einströmen ließ."

"Verschiebung der teilweisen Öffnung der Haringvliet-Schleusen"

Um die Trinkwasserversorgung nicht zu gefährden, wurde die teilweise Öffnung der Haringvliet-Schleusen im Sommer des Jahres 2018 vorübergehend verschoben. Henk Ketelaars von Evides über den Umgang mit der zunehmenden Versalzung im Südwestlichen Delta.

"Das Haringvliet ist offiziell Teil des Einzugsgebiets der Maas, aber das Wasser stammt zu 80 bis 90 Prozent aus dem Rhein. Unser Messpunkt im Haringvliet wurde deshalb auch in den Jahresbericht des Rheins aufgenommen."

Rückblickend auf das Jahr 2018 zeigt sich, dass die Trockenheit nicht zu unüberwindlichen Problemen für Evides geführt hat, dass aber die teilweise Öffnung der Haringvliet-Schleusen gut im Auge behalten wurde. So konnten Versalzungsprobleme vorhergesehen werden.

Andere Quellen infolge der Versalzung

Wie geht Evides mit dem Wandel im Haringvliet um? Ketelaars: "Sofort nach dem Bau der Haringvliet-Schleusen im Jahr 1970 öffneten wir die Entnahmestelle am Naturgebiet Scheelhoek, das sich direkt hinter den Schleusen befindet. Grund hierfür war der Wassermangel bei Goeree-Overflakkee und Schouwen-Duiveland. Wir dachten damals noch, dass das Haringvliet unser neuer Süßwasserspeicher werden würde."

In diesem Punkt musste unser Unternehmen umdenken. Es stellte sich heraus, dass die Haringvliet-Schleusen nicht nur eine starke Grenze zwischen Süß- und Salzwasser, sondern auch ein unüberwindliches Hindernis für Wanderfische darstellten.

Dank der teilweisen Öffnung der Schleusen können Wanderfische mit dem Salzwasser in das Haringvliet schwimmen. Durch die Öffnung der Schleusen versalzt das Wasser aber im westlichen Teil des Haringvliets. Was bedeutet dies für die Trinkwasserproduktion?

Ketelaars: "Wir wurden von Anfang an bei der Öffnung der Haringvliet-Schleusen mit einbezogen. Im Vorgriff auf die Ausführung war es erforderlich, unsere Wassergewinnung anzupassen. Aus diesem Grund haben wir die Entnahmestelle bei Scheelhoek auch in östlicher Richtung verlegt. Sie befindet sich jetzt hinter Middelharnis. Die neue Entnahmestelle ist seit 2018 in Betrieb. Rijkswaterstaat hat versprochen, dass dort immer Süßwasser entnommen werden kann."

Vereinbarungen im Rahmen des Beschlusses zur teilweisen Öffnung der Haringvliet-Schleusen

Um die Situation im Haringvliet im Griff zu behalten, erging der Beschluss zur teilweisen Öffnung der Haringvliet-Schleusen. Dieser sieht vor, dass die Schleusen bei einer niedrigen Abflussmenge des Rheins geschlossen werden (<1300 m³/s bei Lobith), da das Süßwasser dann dem Salzwasser wenig Widerstand bieten kann. Diese Vereinbarungen waren für alle beteiligten Parteien akzeptabel. Die feierliche Eröffnung der teilweisen Öffnung der Haringvliet-Schleusen war für den 5. September 2018 geplant. Aber aufgrund der Trockenheit und des Wassermangels musste die Eröffnung verschoben werden.

Ein zweiter Versuch fand am 15. November 2018 statt. Damals wurde der Beschluss zur teilweisen Öffnung der Haringvliet-Schleusen von der Ministerin für Infrastruktur und Wasserwirtschaft, Cora van Nieuwenhuizen, offiziell in Kraft gesetzt. Aber auch damals blieben die Schleusen aufgrund der niedrigen Abflussmenge des Flusses vorübergehend noch geschlossen. Erst am 16. Januar 2019 wurden die Schleusen zum ersten Mal wirklich einen Spaltbreit geöffnet und strömte Salzwasser in das Haringvliet.

Probieren geht über Studieren. Die Frage stellt sich: Was merkt Evides hiervon? Ketelaars: "Bisher nicht so viel. Die teilweise Öffnung erfolgt langsam. Bei dieser schrittweisen Implementierung können Erkenntnisse gesammelt werden. Es werden immer ganz kleine Schritte gesetzt, wobei die Salzkonzentrationen in verschiedenen Tiefen gemessen werden. So wird der Einfluss von Wind, der Abflussmenge und des sich ändernden Meeresspiegels untersucht. Rijkswaterstaat hält uns über die Entwicklungen auf dem Laufenden."

Neue Herausforderung durch Salz im Volkerak-Zoommeer

Neben dem westlichen Teil des Haringvliets versalzt auch das Volkerak-Zoommeer in naher Zukunft möglicherweise. Die Wasserqualität des Süßwassersees ist schlecht, und deshalb wird erwogen, das Süßwasser des Sees in Salzwasser zu verwandeln. Führt das nicht zu Problemen bei der Trinkwassergewinnung? Ketelaars: "Wenn dieser Beschluss gefasst wird, müssen wir zusätzliche Maßnahmen ergreifen. Modellberechnungen zufolge kann der Salzgehalt an der Entnahmestelle im Herbst auf 300 mg/l ansteigen. Dieser Wert liegt weit über der gesetzlich festgelegten Norm für Chlorid (150 mg/l). In diesem Fall müssen wir eine kleine Entsalzungsanlage bei der Vorreinigung in Ouddorp errichten. Die Kosten hierfür werden auf 15 Millionen Euro veranschlagt. Dies sind Ausgleichskosten, die zur gesellschaftlichen Kosten-Nutzen-Abwägung gehören."

Regelung bezüglich anthropogener Stoffe mithilfe von Genehmigungen

Neben der Versalzung macht sich Evides auch ständig Sorgen über anthropogene Stoffe, wie z. B. Arzneimittelreste und industrielle Stoffe. Ketelaars: "Im Jahr 2018 haben wir Glück gehabt, denn das Flusswasser wies trotz der Trockenheit eine gute Qualität auf. Wir merken, dass auf Landesebene viel getan wird, um neu aufkommende Stoffe besser in den Griff zu bekommen. Rijkswaterstaat prüft beispielsweise 70 Genehmigungen im Hinblick auf die Vermeidung von neu aufkommenden und sehr besorgniserregenden Stoffen. Außerdem wird in dem Schulungsprogramm für Genehmigungserteiler der Kenntnis bezüglich neu aufkommender Stoffe mehr Aufmerksamkeit geschenkt. Das freut uns. Aber das Thema anthropogene Verunreinigung bleibt ein empfindliches Thema, dem langfristig Aufmerksamkeit geschenkt werden muss. Insbesondere im Zusammenhang mit dem Klimawandel. Schließlich nehmen die Konzentrationen von Verunreinigungen bei niedrigen Abflussmengen ständig zu."

"Krisenorganisation von Wasserbewirtschaftern funktionierte gut"

Dass 2018 ein besonderes Jahr war, geht aus der Tatsache hervor, dass der Landesweite Koordinierungsausschuss Wasserverteilung fast fünf Monate hintereinander im Einsatz war.

Rijkswaterstaat ist der Wasserbewirtschafter der großen Gewässer in den Niederlanden. Hierzu gehören die großen Flüsse, die großen Kanäle, Seen und die Nordsee. Hans de Vries von Rijkswaterstaat arbeitet mit der "Unie van Waterschappen", dem KNMI und dem Verteidigungsministerium im "Water Management Centrum Nederland" (WMCN) zusammen. Auf dieser Grundlage wurde ein Landesweiter Koordinierungsausschuss Wasserverteilung (LCW) eingerichtet. Während der Trockenheit war De Vries einer der (turnusmäßigen) Vorsitzenden dieses Ausschusses. Ihm stellten wird die Frage: Wie besonders war das Jahr 2018?

"Ziemlich besonders. Das Jahr 2018 zeichnete sich durch einen großen Niederschlagsmangel in Verbindung mit einem niedrigen Wasserabfluss insbesondere des Rheins aus, der zu allem Überfluss auch noch monatelang anhielt. Solche Umstände kommen in den Niederlanden - im Schnitt - weniger als einmal alle dreißig Jahre vor."

Laut De Vries hat das Krisenteam die Aufgabe, den Wasserbewirtschaftern – Rijkswaterstaat und den Wasserverbänden – zu helfen, die Folgen der extremen Trockenheit möglichst zu begrenzen und die Funktionalität des Wassersystems so gut wie möglich aufrechtzuerhalten. Was waren die größten Herausforderungen aus Sicht der Wasserqualität?

"Der LCW erteilt Empfehlungen bezüglich der Verteilung des knappen Süßwassers. Diese Empfehlungen werden den Wasserbewirtschaftern und bei einem tatsächlichen Wassermangel dem landesweiten Krisenteam unter Leitung des Generaldirektors von Rijkswaterstaat vorgelegt. Die Wassermenge ist ein Faktor, der einen großen Einfluss auf die Wasserqualität hat. Je weniger Wasser der Rhein führt, desto höher sind die Konzentrationen verunreinigender Stoffe und desto schlechter ist die Wasserqualität."

Versalzung

"In dem niedrig gelegenen Teil der Niederlande wurde der zunehmenden Versalzung im Jahr 2018 viel Aufmerksamkeit geschenkt. Solange die Rheinarme viel Wasser führen, können sie dem eindringenden Salzwasser ausreichenden Widerstand bieten. Bei einer Abnahme der Abflussmenge des Rheins wird dies aber immer schwieriger. Betroffen von dem Versalzungsproblem sind insbesondere die West- und Südwestniederlande, aber auch das IJsselmeer.

Für das Thema Versalzung liegen Drehbücher und operative Pläne bereit. Im Jahr 2018 entstand eine Situation, für die die Wasserbewirtschafter und der LCW schon lange im Voraus geübt hatten. Im Allgemeinen hat die Vorbereitung gut funktioniert. Trotzdem stieg die Salzkonzentration im IJsselmeer etwas zu hoch an. Dies hat zu ausführlichen Analysen geführt, die sich auf den Ursprung des Salzes richteten. In diesem Rahmen wird insbesondere auf den Abschlussdeich gewiesen. Dort dringt das Salz über Schiffsschleusen und Siele ein. Normalerweise ist dies kein Problem, weil Rijkswaterstaat bei einer ausreichenden Zufuhr von Rheinwasser das Meer durch vermehrte Ableitung von Wasser am Abschlussdeich regelmäßig durchspülen kann. Daneben stieg auch der Salzgehalt des Rheins immer weiter an. Das Salz stammte daher von zwei Quellen.

Die Versalzung des IJsselmeers hat inzwischen zu konkreten Maßnahmen geführt. Hierzu gehört insbesondere die Anpassung des Mess- und Monitoring-Programms im IJsselmeer. Rijkswaterstaat wird an mehreren Stellen im IJsselmeer Messungen durchführen, und zwar vor allem an den Schleusen. Die zusätzlichen Informationen werden wir allen betroffenen Parteien zukommen lassen."

Erhöhte Gehalte von Stoffen in Flüssen

"Ein anderer wichtiger Punkt ist, dass bei niedrigen Abflussmengen in Flüssen die Gehalte von Stoffen ansteigen können. Solche Situationen kommen öfter vor. Rijkswaterstaat und die Wasserversorgungsunternehmen haben sich darauf eingestellt, aber die Abflussmenge des Rheins war jetzt sehr lange Zeit sehr niedrig. Im Jahr 2018 führte dies zu einem erhöhten Gehalt von 1,4-Dioxan im Rhein. Dies war eineinhalb Monate lang der Fall. Bei dem WMCN ging eine Meldung aus Deutschland ein. Unsere eigenen Messungen an der Grenze bestätigten die Situation: Wir konstatierten einen Anstieg des Gehalts von 1,4-Dioxan. Das Standardverfahren sieht in diesem Fall vor, dass wir die Wasserversorgungsunternehmen und die Wasserverbände informieren.

Ungewöhnlich war dahingegen die Tatsache, dass unsere Computermodelle, die die Verbreitung von Verunreinigungen simulieren, Mühe hatten, dem 1,4-Dioxan zu folgen. Es wurde schwierig vorherzusagen, wann die Spitzenbelastung des Stoffs die Trinkwasserentnahmestellen erreichen würde. Normalerweise kann das Rechenmodell dies ziemlich gut prognostizieren. Da der Wasserabfluss des Rheins aber so niedrig war, und diese Situation so lange andauerte, führte dies zu einer Überschreitung der Bandbreite des Rechenmodells."

Und was passierte dann? "Hydrologen haben manuell Berechnungen der Durchlaufzeiten in den verschiedenen Rheinarmen erstellt. Diese Informationen haben sie in einer Art Netzwerkkarte dargestellt. Daneben haben wir zwei Monate lang eine zusätzliche Messkampagne organisiert. Das heißt: An strategischen Stellen im Netzwerk haben wir einmal pro Woche Messungen durchgeführt um zu überwachen, wie sich der Gehalt entwickelte. So blieben wir auf dem Laufenden und stellte sich heraus, dass der Gehalt die ganze Zeitlang unter den für das Trinkwasserunternehmen wichtigen drei Mikrogramm pro Liter blieb.

Eine der Verbesserungen, die wir jetzt durchführen, besteht darin zu prüfen, wie wir das Computermodell im Hinblick auf Situationen, in denen lange Zeit ein niedriger Wasserabfluss vorliegt, anpassen können.

Schlussbemerkungen

Wie geht es jetzt weiter? "Die Trockenheit des Jahres 2018 wurde ausführlich evaluiert. Aus dieser Evaluierung geht hervor, dass die Krisenstruktur gut funktioniert. Das heißt aber nicht, dass einige Dinge nicht noch verbessert werden können, und daran arbeiten wir jetzt. Mit anderen Worten: Nach dem Jahr 2018 sind wir auf ein eventuell nächstes besonders trockenes Jahr noch

besser vorbereitet. Eine der Entwicklungen sieht die Einbeziehung des Trinkwassersektors vor. Aufgrund der landesweiten Evaluierung hat die Ministerin für Infrastruktur und Wasserwirtschaft beschlossen, dass der Trinkwassersektor fortan an der landesweiten Krisenstruktur beteiligt werden soll. Der Sektor wird an dem LCW teilnehmen."

8 Ministerium für Infrastruktur und Wasserwirtschaft

"Trockenheitsberatungen, um die Wasserversorgung im Griff zu behalten"

Im Jahr 2018 hat das Ministerium für Infrastruktur und Wasserwirtschaft behördliche Trockenheitsberatungen eingerichtet, um Probleme bezüglich der Wassermenge und -qualität schneller in Angriff nehmen zu können.

Landesweite Auswirkungen der Trockenheit

Marjan van Giezen, Abteilungsleiterin/stellvertretende Geschäftsführerin der "Directie Water en Bodem" des Ministeriums für Infrastruktur und Wasserwirtschaft, erläutert die Gründe. "Manchmal kommt es zu einer Krise, die mit normalen Maßnahmen nicht gut oder nicht schnell genug behoben werden kann. In diesem Fall kommt unsere "Directie Crisiscoördinatie" (Krisenkoordination) zum Einsatz. Dies war auch im Jahr 2018 der Fall, als die Trockenheit länger dauerte. Wasserversorgungsunternehmen hatten mit einem niedrigeren Wasserdruck zu kämpfen, Bauern machte die Trockenheit zu schaffen, und die Trockenheit schien längere Zeit zu dauern. Damals wurde das Managementteam Wassermangel (MTW) zusammengerufen. Dabei handelt es sich um eine vorhandene Organisationsstruktur, in der alle betroffenen Parteien vertreten sind. Hierzu gehören: Wasserbewirtschafter, VEWIN, die betroffenen Ministerien (Ministerium für Infrastruktur und Wasserwirtschaft, Ministerium für Landwirtschaft, Natur und Lebensmittelqualität und das Ministerium für Wirtschaft und Klima) sowie die zuständigen Regionalbehörden.

In diesem Sommer traf sich das MTW wöchentlich. Besprochen wurde beispielsweise die Interpretation der gesetzlichen Prioritätenliste, in der festgelegt ist, wie die knappen Wasserressourcen auf die verschiedenen Wirtschaftssektoren verteilt werden. Dieses Thema löste Diskussionen aus. Die Beratung ging auch über die Versalzung und die Chloridproblematik, mit denen die Wasserversorgungsunternehmen zu kämpfen hatten.

Während der Trockenheit haben wir schnell verschiedene Entscheidungen treffen müssen, ohne die langfristigen Auswirkungen genau einschätzen zu können. Ein Beispiel hierfür sind die Folgen der zusätzlichen Entnahme von Grundwasser durch die Wasserversorgungsunternehmen. Was bedeutet dies für den Grundwasserpegel? Führt die zusätzliche Wasserentnahme zu bleibenden Schäden, wie z. B. in bebauten Gebieten und empfindlichen Naturschutzgebieten? Auf diese Art von Fragen wollten wir zuerst eine Antwort finden. Zu diesem Zweck wurde im November 2018 die landesweite Trockenheitsberatung gegründet.

Deren Ziel ist es, inhaltliche Fragen bezüglich der Trockenheit schneller in Angriff zu nehmen. Um Probleme der verschiedenen Regionen zielgerichtet anpacken zu können, nahmen auch ein Vertreter der "Regionale Bestuurlijke Overleggen" (regionalen behördlichen Beratungen) der Wasserrahmenrichtlinie (WRRL) an den landesweiten Politikberatungen teil. Die Trockenheitsberatung bleibt noch bis Ende 2019 operativ. Danach werden die Themen wieder in den normalen Beschlussgremien, wie z. B. dem "Stuurgroep Water" (Lenkungsausschuss Wasser) und der "Bestuurlijk Platform Zoetwater" (Behördenplattform Süßwasser), behandelt.

Wasserqualität im Verhältnis zur Trockenheit

"Trockenheit geht mit Wasserqualitätsproblemen Hand in Hand. Wir haben mit chemischen Stoffen im Oberflächenwasser zu kämpfen, insbesondere mit neu aufkommenden Stoffen. Dabei handelt es sich um Stoffe, für die es noch keine Norm gibt. Wenn der Wasserabfluss sinkt, steigt die Konzentration der chemischen Stoffe. Dieses Problem betrifft insbesondere die Maas, da deren Abfluss wesentlich niedriger ist als der des Rheins. Wir sind froh, dass im Jahr 2018 keine große Einleitung oder ein Vorfall wie im Jahr 2015 mit Pyrazol stattgefunden hat. Sonst wäre möglicherweise ein größeres Problem aufgetreten.

Im Rhein hatten wir im Jahr 2018 mit 1,4-Dioxan zu tun. Dies ist ein Stoff, über den wir dank des Protokolls Monitoring WRRL bereits informiert waren. Und obwohl der Rhein mit Niedrigwasser zu kämpfen hatte, hat 1,4-Dioxan glücklicherweise nicht zu großen Problemen geführt.

Problematisch war vor allem Chlorid. Es herrschte Unklarheit bezüglich der Folgen von erhöhten Chloridkonzentrationen. Die Chloridnorm im Salzvertrag des Rheins beträgt 200 mg pro Liter, während unsere landesweite Trinkwassernorm für Chlorid (auf der Grundlage des Jahresdurchschnitts) 150 mg pro Liter beträgt. Letzten Sommer gab es einen kurzen Zeitraum, in dem Rheinwasser schon mit einer Konzentration von 150 mg/l in das Land strömte. Dies war ein

wichtiges Thema bei der Trockenheitsberatung. Die Frage stellt sich: Wie gehen wir damit um? Wir werden daher Rahmenbedingungen für Chlorid erstellen, in denen wir darlegen, welche Handlungsperspektiven es gibt, wenn das für die Trinkwassergewinnung verwendete Oberflächenwasser erhöhte Chloridkonzentrationen enthält.

Wir haben RIWA und die Internationale Kommission zum Schutz des Rheins (IKSR) um Informationen bezüglich der Chloridquellen im Einzugsgebiet gebeten. Schließlich erlaubt uns ein besserer Überblick, optimaler auf Probleme reagieren zu können. Daneben haben wir das Thema Trockenheit auf die Tagesordnung der Grenzwasserkommission und der Kommission Deltarhein (Ostniederlande) gesetzt. Und wir haben dieses Thema auf die Agenda der Internationalen Flusskommissionen (Rhein und Maas) gesetzt."

Internationale Agenden

"Die Ministerin findet das Thema Trockenheit so wichtig, dass sie es zum Thema der Rheinministerkonferenz im Jahr 2020 ernannt hat. In der Maas wird schon am Thema Trockenheit gearbeitet. Auch in unseren regionalen Beratungen, wie z. B. der Ständigen Deutsch-Niederländischen Grenzgewässerkommission und dem Lenkungsausschuss Deltarhein, besprechen wir mit unseren Partnern das Thema Trockenheit. Dieses Thema steht auch in Europa auf der Tagesordnung. Die WRRL bietet Anknüpfungspunkte, um miteinander über Trockenheit zu diskutieren. Dies ist nötig. Wir müssen Vereinbarungen miteinander treffen, wie und wo wir Wasser speichern. Dies ist nicht nur für die Wasserversorgung in den Niederlanden, sondern auch aus ökologischer Sicht wichtig. Das Ministerium nimmt deshalb auch an den regionalen Beratungen teil. Die Trockenheit des Jahres 2018 hat uns vor allem gelehrt, dass wir komplexe Probleme nur meistern können, wenn wir uns mit allen Parteien an einen Tisch setzen."

Die Aufbereitungsaufgabe bezüglich des Rheins im Verhältnis zu WRRL-Artikel 7.3

Autor: Frau Dr. Dipl.-Ing T.E. Pronk (KWR Watercycle Research Institute)

1. Einleitung

Die Wasserrahmenrichtlinie (WRRL) ist seit ihrer Einführung im Jahr 2000 das umfassendste Instrument der Wasserpolitik der Europäischen Union. Das wichtigste Ziel der WRRL ist der Schutz und die Verbesserung der Süßwassergewässer, wobei die Erzielung eines guten Zustands der EU-Gewässer im Vordergrund steht. Die wichtigsten Instrumente für die Ausführung der Richtlinie sind die Bewirtschaftungspläne für die Einzugsgebiete und die Maßnahmenprogramme, die in Zyklen von sechs Jahren erstellt werden.

Die Europäische Kommission führt derzeit eine Fitness-Check in Bezug auf die Wasserrahmenrichtlinie (2006/EG) und ihre Tochterrichtlinien, die Grundwasserrichtlinie (2006/118/EG) und die Richtlinie prioritäre Stoffe (2008/105/EG), aus. Ziel einer Fitness-Check ist es zu beurteilen, wie wirksam und effizient das Gesetz im Hinblick auf die Verwirklichung der angestrebten Ziele ist. In diesem Rahmen ist dies ein guter Zeitpunkt für einen Rückblick um zu ermitteln, was die Einführung der Wasserrahmenrichtlinie für die Qualität unserer Trinkwasserquellen bedeutet hat. Präambel 24 der WRRL besagt: "Eine gute Wasserqualität sichert die Versorgung der Bevölkerung mit Trinkwasser." Artikel 7.1 der WRRL schreibt vor, dass die Mitgliedstaaten Wasserkörper für die Trinkwassergewinnung anweisen. Artikel 7.2 der WRRL besagt, dass Wasserqualitätsziele bezüglich dieser Wasserkörper verwirklicht werden müssen und dass das Endprodukt den an Trinkwasser gestellten Anforderungen genügen muss, die in der Trinkwasserrichtlinie festgelegt werden. Artikel 7.3 der WRRL ist in Zusammenhang mit der Fitness-Check am interessantesten: "Die Mitgliedstaaten sorgen für den erforderlichen Schutz der ermittelten Wasserkörper, um eine Verschlechterung ihrer Qualität zu verhindern und so den für die Gewinnung von Trinkwasser erforderlichen Umfang der Aufbereitung zu verringern."

Wenn wir auf die Jahre seit der Einführung der WRRL zurückblicken, stellt sich die Frage, ob damit eine Verschlechterung der Qualität verhindert wurde und ob es möglich war, das Aufbereitungsniveau zu senken. Das benötigte Aufbereitungsniveau, die Aufbereitungsbemühungen, hängen selbstverständlich mit den Anforderungen zusammen, die an gutes und gesundes Trinkwasser und die Wasserqualität in den angewiesenen Trinkwasserkörpern gestellt werden. Der Unterschied

zwischen der Wasserqualität der Quelle und den Trinkwasseranforderungen kann als Aufbereitungsaufgabe betrachtet werden. Nachfolgend arbeiten wir diesen Maßstab aus und wenden ihn auf die Wasserqualität des Rheins und unsere Entnahmestellen an. Auf dieser Grundlage beurteilen wir, ob sich die Wasserqualität des Rheins als Quelle unseres Trinkwassers seit Einführung der WRRL und Artikel 7.3 im Jahr 2000 wirklich nicht verschlechtert hat und das erforderliche Aufbereitungsniveau verringert wurde.

2. Aufbereitungsaufgabe-Index

Wir evaluieren die Wasserqualität für die Aufbereitung zu Trinkwasser mithilfe eines Aufbereitungsaufgabe-Index. Aufgangspunkt dieses Index sind die Maximalwerte im niederländische Trinkwasserbeschluss (Drinkwaterbesluit, https://wetten.overheid.nl/BWBR0030111/2018-07-01). Der Aufbereitungsaufgabe-Index geht davon aus, dass Wasser an einer Entnahmestelle so gereinigt werden muss, dass alle vorhandenen Stoffe nach der Aufbereitung den diesbezüglich im Trinkwasserbeschluss niedergelegten Wert unterschreiten. In Tabelle 3.1 werden die Werte aufgeführt, anhand derer eine Prüfung ausgeführt wurde. Wenn im Trinkwasserbeschluss für Summenparameter oder Stoffe aus dieser Gruppe die genauen Stoffe explizit genannt werden, wurde diese Liste gewählt. Für Summenparameter oder Stoffe aus dieser Gruppe, für die im Trinkwasserbeschluss keine expliziten Stoffe genannt werden, wurde die Parameterliste mit Labeln aus der REWAB-Datenbank verwendet.

Tabelle 3.1 Die Werte aus dem Trinkwasserbeschluss anhand derer die Prüfungen erfolgten. Diese bestehen aus Normen, Signalwerten, Richtwerten für alle Parameter aus dem Trinkwasserbeschluss einschließlich betriebstechnischer, organoleptischer, ästhetischer und Signalparameter. Die biologischen Parameter wurden nicht aufgenommen.

Parameter	CAS-Nr.	Höchst- wert	Einheit	Parametertyp
Acrylamid	79-06-1	0,1	μg/l	Chemisch
Antimon	7440-36-0	5	μg/l	Chemisch
Arsen	7440-38-2	10	μg/l	Chemisch
Benzol	71-43-2	1	μg/l	Chemisch
Benzo(a)pyren	50-32-8	0,01	μg/l	Chemisch
Bor	7440-42-8	0,5	mg/l	Chemisch
Bromat	15541-45-4	1	μg/l	Chemisch
Cadmium	7440-43-9	5	μg/l	Chemisch
Chrom	7440-47-3	50	μg/l	Chemisch
1,2-Dichlorethan	107-06-2	3	μg/l	Chemisch
Epichlorhydrin	106-89-8	0,1	μg/l	Chemisch
Fluorid	16984-48-8	1	mg/l	Chemisch
Kupfer	7440-50-8	2	mg/l	Chemisch

Vervolg tabel 3.1

Parameter	CAS-Nr.	Höchst- wert	Einheit	Parametertyp
Quecksilber	7439-97-6	1	μg/l	Chemisch
Blei	7439-92-1	10	μg/l	Chemisch
Nickel	7440-02-0	20	μg/l	Chemisch
Nitrat	14797-55-8	50	mg/l	Chemisch
Nitrit	14797-65-0	0,1	mg/l	Chemisch
n-Nitrosodimethylamin (NDMA)	62-75-9	12	ng/l	Chemisch
2,4,4'-Trichlorbiphenyl	7012-37-5	0,1	μg/l	Chemisch
2,2',5,5'-Tetrachlorbiphenyl	35693-99-3	0,1	μg/l	Chemisch
2,2',4,5,5'-Pentachlorbiphenyl	37680-73-2	0,1	μg/l	Chemisch
2,3',4,4',5-Pentachlorbiphenyl	31508-00-6	0,1	μg/l	Chemisch
2,2',3,4,4',5'-Hexachlorbiphenyl	35065-28-2	0,1	μg/l	Chemisch
2,2',4,4',5,5'-Hexachlorbiphenyl	35065-27-1	0,1	μg/l	Chemisch
2,3,4,5,2',4',5'-Heptachlorbiphenyl	35065-29-3	0,1	μg/l	Chemisch
Aldrin	309-00-2	0,03	μg/l	Chemisch
Dieldrin	60-57-1	0,03	μg/l	Chemisch
Heptachlor	76-44-8	0,03	μg/l	Chemisch
Heptachlorepoxid	1024-57-3	0,03	μg/l	Chemisch
Selen	7782-49-2	10	μg/l	Chemisch
Vinylchlorid	75-01-4	0,1	μg/l	Chemisch
Ammonium	14798-03-9	0,2	mg/l	Indikator, Betrieblich-technisch
Chlorid	16887-00-6	150	mg/l	Indikator, Betrieblich-technisch
Aluminium	7429-90-5	200	μg/l	Indikator, Organoleptisch/ Ästhetisch
Eisen	7439-89-6	200	μg/l	Indikator, organoleptisch/ Ästhetisch
Mangan	7439-96-5	50	μg/l	Indikator, organoleptisch/ Ästhetisch
Natrium	7440-23-5	150	mg/l	Indikator, Organoleptisch/ Ästhetisch
Sulfat	14808-79-8	150	mg/l	Indikator, Organoleptisch/ Ästhetisch
Zink	7440-66-6	3	mg/l	Indikator, Organoleptisch/ Ästhetisch
Diglyme	111-96-6	1	μg/l	Indikator, Signalisierung
Ethyl-tert-butylether (ETBE)	637-92-3	1	μg/l	Indikator, Signalisierung
Methyl-tert-butylether (MTBE)	1634-04-4	1	μg/l	Indikator, Signalisierung
Pyrazol*	288-13-1	3	μg/l	Indikator, Signalisierung
Aromatische Amine	Stoffe aus dieser Gruppe		μg/l	Indikator, Signalisierung
(Chlor-)Phenole	Stoffe aus dieser Gruppe		μg/l	Indikator, Signalisierung
Halogenierte monozyklische Kohlenwasserstoffe	Stoffe aus dieser Gruppe	:1	μg/l	Indikator, Signalisierung
Halogenierte aliphatische	Stoffe aus dieser Gruppe	:1	μg/l	Indikator, Signalisierung
Kohlenwasserstoffe				
Monozyklische Kohlenwasserstoffe /Aromate	e Stoffe aus dieser Gruppe	:1	μg/l	Indikator, Signalisierung
Sonstige anthropogene Stoffe	Stoffe aus dieser Gruppe		μg/l	Indikator, Signalisierung
Pestizide und für den Menschen relevante Metabolite	Stoffe aus dieser Gruppe	0,1	μg/l	Chemisch
Polyzyklische aromatische Kohlenwasserstoffe (PAK)	Summenparameter	0,1	μg/l	Chemisch
Cyanide (insgesamt)	Summenparameter	50	μg/l	Chemisch
PCB	Summenparameter	0,5	μg/l	Chemisch
Pestizide	Summenparameter	0,5	μg/l	Chemisch
Tetra- und Trichlorethen	Summenparameter	10	μg/l	Chemisch
Trihalomethane	Summenparameter	25	μg/l	Chemisch
			1 5,	

^{*} Dieser Richtwert für Pyrazol stammt aus der "Drinkwaterregeling" (https://wetten.overheid.nl/BWBR0030152/2017-10-27)

Der Aufbereitungsaufgabe-Index ist ganz einfach aus zwei Elementen aufgebaut. Zum Ersten besteht er aus der Anzahl Stoffe, die die Werte des Trinkwasserbeschlusses in einem bestimmten Zeitraum überschreiten. Dies hat insbesondere Konsequenzen für die Maßnahmen, die an der Quelle getroffen werden müssen, um die Überschreitung zu beheben. Eine Überschreitung durch mehrere Stoffe lässt sich schwieriger beseitigen als eine Überschreitung durch einen einzelnen Stoff. Zum Zweiten besteht er aus den maximalen (Spitzen-)Prozentsätzen der überschreitenden Stoffe in dem oben genannten Zeitraum, die entfernt werden müssen, um den im Trinkwasserbeschluss aufgeführten Wert wieder zu erzielen. Für den Aufbereitungsaufgabe-Index werden die Aufbereitungsaufgaben bezüglich der Stoffe, bei denen Überschreitungen festgestellt werden, zusammengezählt (siehe Vergleich 1).

Aufbereitungsaufgaben-Index =
$$\sum_{n=1}^{1} \left(\left(1 - \left(\frac{norm_n}{max_n} \right) \right) * 100 \right)$$
 (Vergleich 1)

Hierbei werden mit "Norm" der Trinkwasserbeschluss-Wert für den Parameter (siehe Tabelle 3.1), mit "max" die Spitzenkonzentration in einem bestimmten Zeitraum und mit "n" ein Parameter angedeutet. Maßeinheiten im Trinkwasserbeschluss und die berichteten Werte wurden aufeinander abgestimmt, wenn sie einander nicht entsprachen.

Dieses Verfahren wird in Abbildung 3.1 aufgeführt. Diese Berechnungsart bedeutet, dass je mehr Überschreitungen anfallen und je größer die einzelnen Überschreitungen sind, desto höher der Index ausfällt. Jeder Stoff, für den eine Überschreitung konstatiert wurde, kann maximal 100 Punkte (100%-ige Entfernung erforderlich) zu der Aufbereitungsaufgabe beitragen. Da wir keine Durchschnittswerte der Prozentsätze erstellen, sondern sie addieren, entsteht auch ein Bild der Vielfalt des Problems. Dies hat insbesondere Konsequenzen für die Behebung der Überschreitungen. Für mehrere überschreitende Parameter werden möglicherweise mehrere Maßnahmen benötigt. Je höher der Aufbereitungsaufgabe-Index, desto schlechter die Wasserqualität im Hinblick auf eine Aufbereitung oder eine andere Minderungsmaßnahme. Da der Index aus Prozentsätzen der Aufbereitungsaufgabe-Index einzelner Parameter aufgebaut ist, kann er leicht auf die tatsächliche Entfernungs- oder Aufbereitungseffizienz von Wasseraufbereitungsanlagen übertragen werden. Hierdurch ist der Aufbereitungsaufgabe-Index auch als Grundlage für weitere Berechnungen der Wasserqualität geeignet, in denen die Aufbereitung durch die dafür bestimmten Anlagen auch berücksichtigt wird. Bei einer Aufbereitungsaufgabe, die aus leicht zu reinigenden Parametern besteht, werden die Aufbereitungsbemühungen und damit auch die Kosten und der Energiever-

brauch, relativ gering sein. Umgekehrt bleiben die Aufbereitungsbemühungen hoch (maximal die ursprüngliche Aufbereitungsaufgabe), wenn es um Stoffe geht, deren Aufbereitung schwierig ist. Die Aufbereitungsbemühungen je Parameter sind für die einzelnen Aufbereitungsanlagen unterschiedlich. Dies hängt von den unterschiedlichen Wirkungsgraden der jeweiligen Anlage ab. In diesem Kapitel beschränken wir uns auf die Bestimmung und Evaluierung des Aufbereitungsaufgabe-Index, da dies ein Ausgangspunkt ist, der für alle Aufbereitungsanlagen identisch ist.

Abbildung 3.1 Eine schematische Übersicht über die Berechnung des Aufbereitungsaufgabe-Index je Standort.

3. Standorte und Messungen

Wir betrachten fünf Standorte in Bezug auf den Aufbereitungsaufgabe-Index. Dabei handelt es sich um den Grenzübergang bei Lobith, den Lekkanal bei Nieuwegein, den Amsterdam-Rheinkanal bei Nieuwersluis, das IJsselmeer bei Andijk und das Haringvliet (bis Juni 2017 bei Stellendam, danach bei Middelharnis). Bei den letzten vier Standorten handelt es sich um Entnahmestellen für Trinkwasser. Für alle Standorte ist ein Messprogramm verfügbar. Die Ergebnisse werden in der Datenbank RIWA base gespeichert. Die Daten für die Bestimmung des Aufbereitungsaufgabe-Index für die einzelnen Standorte stammen aus der RIWA basis. Der betrachtete Zeitraum (siehe Abbildung 3.1), in dem ein Stoff den im Trinkwasserbeschluss vorgesehenen Wert überschreiten kann, ist auf ein Jahr festgelegt. Wir schauen uns die Jahre 2000 (Beginn der WRRL) bis das letzte vollständige Berichtsjahr, das Jahr 2018.

Um einen Einblick zu erhalten, wie viele Messungen in diesen Jahren ausgeführt wurden und wie viele dieser gemessenen Parameter den im Trinkwasserbeschluss niedergelegten Wert überschreiten, werden zuerst diese Zahlen aufgeführt. Abbildung 3.2 zeigt die Anzahl gemessener Parameter, die mit einem im Trinkwasserbeschluss festgelegten Wert an den fünf Standorten vorliegen.

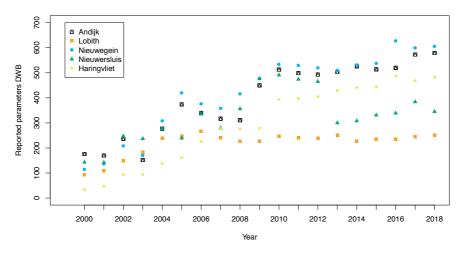


Abbildung 3.2 Die Anzahl gemessener Parameter pro Jahr und Standort, für die ein Wert im Trinkwasserbeschluss aufgeführt wird (siehe Tabelle 3.1)

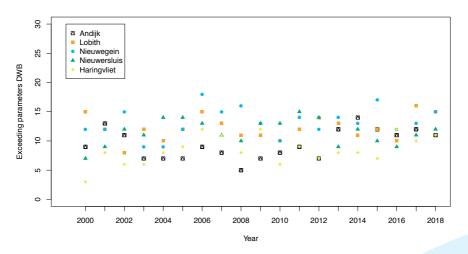


Abbildung 3.3 Die Anzahl Parameter pro Jahr und Standort, die den im Trinkwasserbeschluss aufgeführten Wert überschreiten

Abbildung 3.3 zeigt die Anzahl Parameter, die an den einzelnen Standorten den im Trinkwasserbeschluss aufgeführten Wert überschreiten. Aus Abbildung 3.2 geht hervor, dass in späteren Jahren mehr Parameter gemessen wurden als in früheren Jahren (zwei- bis sechzehnmal soviel, abhängig vom Standort). Die Anzahl überschreitender Stoffe bleibt wesentlich konstanter (Abbildung 3.3) und lässt nur eine leichte Steigung erkennen (ein- bis viermal soviel, abhängig vom Standort).

Manche Stoffe überschritten den Trinkwasserbeschlusswert nur früher, andere wiederum nur vor Kurzem. Der leichte Anstieg kann durch die Tatsache verursacht werden, dass im Vergleich zu früher heutzutage mehr neue Stoffe den Wert überschreiten. Schließlich gibt es einen Trend von aufkommenden (neuen) Stoffen. Ständig werden neue Stoffe auf den Markt gebracht, die auch ins Oberflächenwasser gelangen. Daneben wird beispielsweise die Verwendung mancher Stoffe eingeschränkt, wonach alternative Stoffe eingesetzt werden. Der Aufbereitungsaufgabe-Index beschränkt sich ganz bewusst nicht auf Stoffe, die in der Vergangenheit bereits gemessen wurden, da hiermit das Problem aufkommender Stoffe und die veränderte Anwendung von Stoffen unberücksichtigt bliebe. Es ist schwierig, die Wasserqualität in einem historischen, festen Parametersatz zu beschreiben, da auch neue Stoffe die Wasserqualität verschlechtern. Die neuen Stoffe können beim Aufbereitungsaufgabe-Index berücksichtigt werden, wenn sie unter einen Gruppenoder Summenparameter des Trinkwasserbeschlusses fallen. Wenn ein neuer Stoff berichtet wird, der hierunter fällt, wird er bei den Berechnungen automatisch berücksichtigt.

Dass mehr Überschreitungen festgestellt werden, nur weil mehr Messungen ausgeführt werden, geht aus dem Vergleich dieser Zahlen mit den einzelnen Standorten nicht hervor. Wir haben auch die Messdaten für die drei Standorte entlang der Maas aufgenommen, um diese Schlussfolgerung auf weitere Messpunkte zu stützen. Wir untersuchten das Verhältnis zwischen gemessenen und überschrittenen Parametern an den Standorten im selben Jahr.

Das Verhältnis zwischen die Anzahl der gemessenen Parameter und überschrittenen Parameter an den Standorten ist in manchen Jahren positiv und in anderen negativ. Keine der Zusammenhänge ist statistisch signifikant. Es kann nicht behauptet werden, dass je mehr Parameter an einem Standort gemessen werden, desto mehr Überschreitungen festgestellt werden. Dies impliziert, dass die Anzahl Überschreitungen nicht die Folge der Größe des Messprogramms an sich ist.

Stoffe, die neu berichtet werden und die direkt bei der ersten Berichterstattung Überschreitungen aufweisen, hätten möglicherweise auch schon eher Überschreitungen erkennen lassen. Es wurden 26 Parameter berichtet, die bei der ersten Berichterstattung nach dem Jahr 2000 sofort Überschreitungen aufwiesen. Möglicherweise waren diese Parameter früher auch schon überschreitend, da sie aber nicht berichtet wurden, wurden sie beim Aufbereitungsaufgabe-Index nicht berücksichtigt. Der Aufbereitungsaufgabe-Index wird in diesem Fall möglicherweise in den vorhergegangenen Jahren unterschätzt. Es ist möglich, dass es sich dabei um aufkommende Stoffe handelt, die erst kürzlich in das Oberflächenwasser gelangten. Das Messprogramm wird nach Hinweisen aus anderen Quellen, wie z. B. wissenschaftlicher Literatur, Berichten oder Non-Target-Screening, ständig angepasst. Es kann sein, dass man aufgrund dessen mit der Messung dieser Stoffe begonnen hat. Dies würde bedeuten, dass Stoffe möglicherweise ein oder mehrere Jahre vor der Messung anwesend waren, aber dass die Stoffe trotzdem relativ "neu" sind.

Es hat sich gezeigt, dass ein größeres Messprogramm nicht unbedingt zu einer Zunahme von überschreitenden Stoffen führt. Wir gehen davon aus, dass das Messprogramm immer darauf gerichtet ist, alle potenziell überschreitenden Stoffe zu messen. Bei fortschreitenden Erkenntnissen (aufkommenden Stoffen) kommen neue Parameter hinzu. Es liegt auch in der Natur von Verunreinigungen und den dazugehörigen Maßnahmen, dass sich das Problem im Laufe der Zeit verändert. Wir berücksichtigen daher bei der Berechnung des Aufbereitungsaufgabe-Index alle gemessenen Parameter für die einzelnen Standorte und Zeiträume. Die neuen Stoffe können nämlich auch zu Risiken führen und deswegen auch zur Notwendigkeit einer Reinigung beitragen. Ein zugenommener Aufbereitungsaufgabe-Index ist daher eine Funktion der Wasserqualität und nicht (der Größe) des Messprogramms. Da Problemstoffe für verschiedene Standorte anders eingeschätzt werden und hierdurch die genauen Messprogramme unterschiedlich sein können, empfiehlt es sich, den Aufbereitungsaufgabe-Index für die einzelnen Standorte zu betrachten.

4. Werte des Aufbereitungsaufgabe-Index

In Abbildung 3.4 wird der berechnete Aufbereitungsaufgabe-Index für die fünf Standorte im Zeitraum 2000 - 2018 dargestellt. Die blauen Kreise zeigen die Anzahl gemessener Stoffe, die zum Trinkwasserbeschluss gehören, im betreffenden Jahr an. Die schwarzen Kreise in Inneren weisen auf die Anzahl Stoffe hin, die im betreffenden Jahr die Vorlagen des Trinkwasserbeschlusses überschritten. Die Höhe der blauen Kreise mit schwarzem Kern entspricht dem Umfang des Aufbereitungsaufgabe-Index. Der Wert entspricht der Summe aller Aufbereitungsaufgaben aller einzelnen Stoffe, die den im Trinkwasserbeschluss niedergelegten Wert in diesem Jahr überschritten.

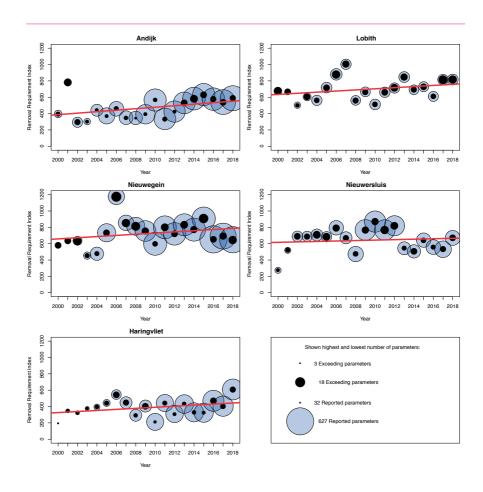


Abbildung 3.4 Der berechnete Aufbereitungsaufgabe-Index pro Jahr an den fünf Messstellen im Rhein im Zeitraum 2000 - 2018. Die rote Linie ist eine Trendlinie, die sich durch die Werte des Aufbereitungsaufgabe-Index zieht.

Im Jahr 2018 sieht die Reihenfolge der Standorte auf der Grundlage des Aufbereitungsaufgabe-Index (von gering, d. h. besser, zu umfangreich, d. h. schlechter) folgendermaßen aus:

Andijk (587) < Haringvliet (608) < Nieuwegein (648) < Nieuwersluis (670) < Lobith (816)

Der Standort Andijk zeichnet sich durch der geringste Aufbereitungsaufgabe-Index im Jahr 2018 aus, mit einem Wert von 587, und weist damit die beste Wasserqualität in Bezug auf diesen Index im Jahr 2018 auf. An keinem einzigen Standort lässt sich im Aufbereitungsaufgabe-Index in den Jahren 2000 - 2018 ein Rückgang erkennen. In diesem Zeitraum lässt sich aber eine Verschlechterung konstatieren, d. h. dass ein Anstieg des Aufbereitungsaufgabe-Index zu verzeichnen ist. In Tabelle 3.2 haben wir die signifikanten Werte (p-Werte) der Trends an den verschiedenen Standorten in Bezug auf der Aufbereitungsaufgabe-Index aufgeführt. Dabei haben wir auch angegeben, ob der Aufbereitungsaufgabe-Index dort abnimmt (grün) oder zunimmt (rot) und ob dieser Trend statistisch signifikant ist (wird fettgedruckt und mit einem * wiedergegeben). Für keinen Standort wird eine signifikante Zunahme des Aufbereitungsaufgabe-Index (Tabelle 3.2) festgestellt. Für die Standorte Andijk, Nieuwegein, Haringvliet und Lobith gibt es einen Trend zur Zunahme des Aufbereitungsaufgabe-Index.

Tabelle 3.2 p-Werte für den Trend im Aufbereitungsaufgabe-Index im Zeitraum 2000 - 2018. Ein rotes Fach weist auf eine Verschlechterung der Qualität und damit einen steigenden Trend hin. An keinem der Standorte ist eine Verbesserung zu erkennen. Zahlen geben die Signifikanz des Trends an. Je niedriger die Zahl, desto signifikanter der Trend. Trends mit einem Wert von p > 0,5 werden nicht farblich gekennzeichnet.

Standort	Andijk	Nieuwegein	Nieuwersluis	Haringvliet	Lobith
2000 -2018	0,10	0,31	0,66	0,13	0,22

In Abbildung 3.4 werden für einige Jahre hohe Werte im Aufbereitungsaufgabe-Index aufgeführt. Dies kann in machen Fällen auf einzelne Parameter zurückzuführen sein. Wir kennzeichnen Parameter als Ausreißer im Laufe einiger Jahre wie folgt: Wenn ein Parameter in einem Jahr eine höhere Überschreitung als der Durchschnittswert des Parameters im Zeitraum 2000 - 2018 aufweist, plus zweimal die Standardabweichung des Parameters in diesem Zeitraum, dann beurteilen wir diesen Parameter als auffallend höher als normal. Alle Male, in denen ein Stoff keine Überschreitung aufweist, setzen wir dabei auf null. Dabei wurde nicht berücksichtigt, ob jedes Jahr tatsächlich Messungen bezüglich des Stoffs ausgeführt wurden. Indem vom Durchschnittswert plus zweimal der Standardabweichung ausgegangen wird, erhalten wir ein Bild der möglichen Zwischenfälle, die die Ausreißer verursachen.

Nieuwegein: Der hohe Wert, der im Jahr 2006 in Nieuwegein ermittelt wurde, ist auf Dodecan, Decan, Hexadecan, Tetradecan und Diglyme (nach dem Jahr 2006 noch einige Jahre überschreitend) zurückzuführen. Dieselkraftstoff besteht aus vier Gruppen von Kohlenwasserstoffen: Die größte Gruppe wird von den Alkanen gebildet. Möglicherweise lag eine (kleine, vorübergehende) Dieselleckage vor. Außerdem war Anfang des Jahres 2006 der Abfluss des Leks niedrig (36 m³/s), wodurch diese Stoffe weniger verdünnt werden konnten.

Andijk: Der hohe Wert im Jahr 2001 in Andijk ist auf die Parameter Dodecan, Decan, Hexadecan, Octadecan und Tetradecan zurückzuführen. Ursache könnte wiederum eine Dieselleckage gewesen sein können. Der hohe Wert, der im Jahr 2010 in Andijk festgestellt wurde, wurde spezifisch von Dibutylphtalat (DBPH), Aldicarbsulfoxid und Nitrit als NO₂ verursacht.

Lobith: In Lobith ist ein Ausreißer im Jahr 2007 erkennbar, der von polyzyklischen aromatischen Kohlenwasserstoffen (PAK), Benzo(a)pyren, Nitrit als $\mathrm{NO_2}$ und Di(2-ethylhexyl)phthalat (DEHP) verursacht wurde. Im Jahr 2013 taucht wieder ein hoher Wert auf, der nicht auf einzelne Stoffe zurückzuführen ist, die in diesem Jahr plötzlich den im Trinkwasserbeschluss festgelegten Wert überschritten, sondern eher auf Trends, die schon im Jahr 2011 entstehen, wie z. B. bezüglich Hexa(methoxymethyl) melamin (HMMM).

Haringvliet: Der Spitzenwert im Jahr 2006 wird u. a. durch polyzyklische aromatische Kohlenwasserstoffe (PAK) verursacht. Die Zunahme im Jahr 2018 ist u. a. auf Trifluoressigsäure (TFA), Melamin und Guanylharnstoff zurückzuführen.

Nieuwersluis: Bei Nieuwersluis ist kein deutlicher Ausreißer erkennbar. Die Zunahme des Aufbereitungsaufgabe-Index in den Jahren 2009 - 2012 wird von einer Kombination von Stoffen verursacht, die in diesem Jahr in höheren Mengen nachgewiesen werden, aber auch in anderen Jahren dieses Niveau gelegentlich erreichen. Dabei handelt es sich vor allem um Pestizide.

Wie in Tabelle 3.1 und in der obigen Erklärung über Parameter, die diesen Grenzwert überschreiten, zu sehen ist, haben nicht nur organische Stoffe einen Standard im Trinkwasserbeschluss, sondern auch anorganische Stoffe. Organische Stoffe können je nach ihrer Struktur giftig sein. Diese Stoffe haben unterschiedliche Ursprünge. Dies können z.B. Arzneimittelrückstände, Pflegemittel, hormonaktive Stoffe, Reinigungsmittel, Industrieprodukte, Pflanzenschutzmittel oder Biozide sein. Sie kommen auch unter Umständen in der Natur vor. Um sich ein Bild von der Ursache

der Überschreitungen zu machen, können diese organischen Stoffe nach ihrer Herkunft klassifiziert werden. Da die gesundheitlichen Auswirkungen nicht aller Stoffe bekannt sind, werden sie vorsorglich gegen einen Signalwert geprüft. Anorganische Verunreinigungen sind in der Regel nicht sehr giftig, können aber dennoch Probleme verursachen. Zum Beispiel, weil sie an chemischen Reaktionen (Blei, Zink, Mangan) teilnehmen, die zu gefährlichen (Neben-)Produkten führen können. Stoffe können sich auch in Organismen ansammeln. Anorganische Stoffe können auch bei der Trinkwassergewinnung (Aluminium, Eisen, Mangan, Natrium, Sulfat, Zink) einfach ästhetische Probleme verursachen. Nicht alle Parameter sind daher für die Reinigung für die menschliche Gesundheit gleichermaßen wichtig. Sie alle sind jedoch wichtig für ein akzeptables Trinkwasser.

5. Beitrag von Stoffgruppen zum Aufbereitungsaufgabe-Index

Um eine Vorstellung davon zu bekommen, aus welcher Art von Substanzen sich der Aufbereitungsaufgabe-Index zusammensetzt, untersuchen wir, welche Art von Parametern pro Jahr und Standort überschritten werden und berechnen die prozentualen Beiträge der Parametergruppen pro Standort und pro Jahr zum Aufbereitungsaufgabe-Index. Wir zerlegen alle darüberhinausgehenden Parameter in Stoffgruppen, was den Beitrag der verschiedenen Gruppen deutlich macht. Die Gruppeneinteilung wird durch den Weg bestimmt, den die Stoffe zu das Oberflächenwasser zurücklegen. Sie werden in vier Hauptkategorien unterteilt: 1. industrielle Stoffe und Konsumgüter, 2. Arzneimittelrückstände und hormonaktive Stoffe, 3. Pflanzenschutzmittel, Biozide und deren Metaboliten sowie 4. allgemeine Parameter und Nährstoffe.

Die Kategorien ergeben sich aus den in der RIWA-Basis verwendeten Labels. Da einige Parameter mehr als ein Label haben, werden einige Parameter in mehr als einer Parametergruppe aufgenommen.

Es ist möglich, dass sich in Zukunft herausstellt, das manche Parameter ein angepasstes Parametergruppen-Label in der RIWA base benötigen. Es wurden noch keine offiziell anerkannten Listen festgelegt, in denen steht, welche Parameter in welche Gruppen fallen. Ein Beispiel: Metabolite von Pestiziden sind in der RIWA base bisher nur in die Gruppe "Pflanzenschutzmittel, Biozide und deren Metabolite" eingeteilt, und es wurde kein Unterschied zwischen für den Menschen relevant (mit der Norm 0,1 µg/l) oder nicht (mit der Norm 1,0 µg/l) gemacht, da dieser Punkt größtenteils noch nicht strukturell untersucht wurde. Vorsorgehalber wurden alle anhand der für den Menschen relevanten Norm geprüft. Die Gruppe "Sonstige anthropogene Stoffe" im Trinkwasserbeschluss, die sehr umfangreich ist, unterliegt auch Änderungen und kann in Zukunft

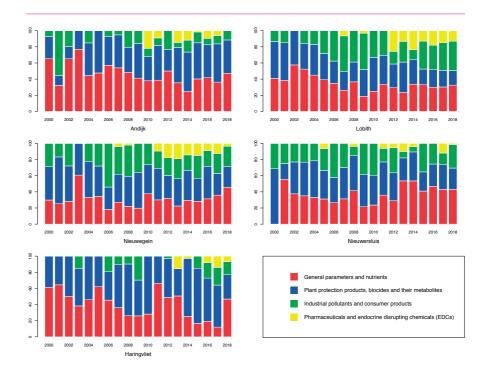


Abbildung 3.5 Beiträge von Parametergruppen zum Aufbereitungsaufgabe-Index (Abbildung 3.4). Für Nieuwersluis wurden im Jahr 2000 keine Parameter in der Parametergruppe "Allgemeine Parameter und Nährstoffe" berichtet.

angepasst oder erweitert werden. Bis dahin stützen wir uns auf die derzeitigen Parametergruppen-Labels der RIWA base.

In Abbildung 3.5 werden für die einzelnen Standorte die prozentualen Beiträge der vier Parametergruppen zum Aufbereitungsaufgabe-Index aufgeführt.

Abbildung 3.5 zeigt, dass überschreitende Parameter mit den Labeln "Allgemeine Parameter und Nährstoffe" und "Pflanzenschutzmittel, Biozide und deren Metabolite" an allen Standorten einen großen Beitrag zum gesamten Aufbereitungsaufgabe-Index darstellen. Bei Lobith, Nieuwegein

und Nieuwersluis leisten die "Industriellen Verunreinigungen und Konsumprodukte" auch größtenteils einen Beitrag, aber in den letzten Jahren ist dies in geringerem Maße der Fall. Die "Arzneimittel und hormonell wirksamen Stoffe (EDC)" leisten an allen Standorten nur einen kleinen Beitrag zum Aufbereitungsaufgabe-Index, und dieser Beitrag ist hauptsächlich in den letzten Jahren erkennbar.

Da aus den prozentualen Beiträgen nicht hervorgeht, ob die Parametergruppen auch in absolutem Sinn zunehmen, werden in Tabelle 3.3 die p-Werte der Trends der absoluten Werte der Parametergruppen im Zeitraum 2000 - 2018 für die einzelnen Standorte aufgeführt.

Tabelle 3.3 Trends des Aufbereitungsaufgabe-Index pro Parametergruppe im Zeitraum 2000 - 2018. Grün weist auf eine Abnahme, rot auf eine Zunahme, ungefärbt auf keinen Trend (p>0,5) an einem Standort hin. Signifikante Trends (p<0,05) werden fettgedruckt und mit einem * angegeben.

	Andijk	Lobith	Nieuwegein	Nieuwersluis	Haringvliet
Pfl./Bioz./Metab.	<0,01*	0,03*	0,45	0,41	0,03*
Ind./Kons.	0,48	0,100	0,902	0,951	0,100
Arzn./EDC	0,08	<0,01*	<0,01*	0,09	<0,01*
Allg./Nährst.	0,91	0,05*	0,01*	0,065	0,41

Der Aufbereitungsaufgabe-Index für "Pflanzenschutzmittel, Biozide und deren Metabolite" nimmt an den Standorten Andijk und Haringvliet signifikant zu. Am Standort Lobith liegt dahingegen ein signifikanter sinkender Trend im Bereich der überschreitenden "Pflanzenschutzmittel, Biozide und deren Metabolite" im Zeitraum 2000 - 2018 vor. Der Aufbereitungsaufgabe-Index für die "Industriellen Verunreinigungen und Konsumprodukte" nimmt an den Standorten weder signifikant ab noch zu. Die Überschreitungen variieren von Jahr zu Jahr. Überschreitungen durch "Arzneimittel und hormonell wirksame Stoffe (EDC)" nehmen an allen Standorten zu. An den Standorten Lobith, Nieuwegein und Haringvliet sind diese Zunahmen auch signifikant. Überschreitungen durch "Allgemeine Parameter und Nährstoffe" nehmen am Standort Nieuwegein signifikant zu. Am Standort Lobith ist eine signifikante Abnahme erkennbar.

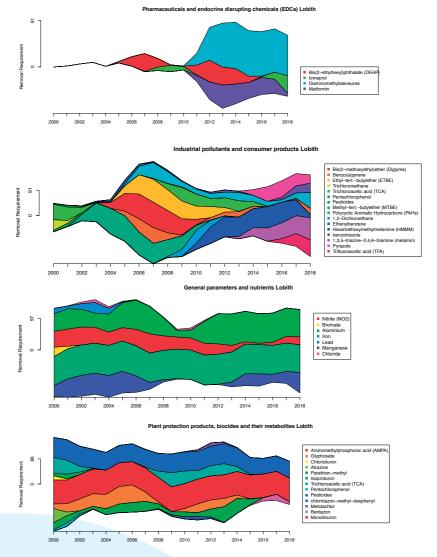


Abbildung 3.6 Der Aufbereitungsaufgabe-Index für einzelne Parameter (in Form farbiger "Bänder" abgebildet) pro Parametergruppe (in den einzelnen Plots) für den Standort Lobith. Durch Verwendung eines "Glättungsfaktors" beim Zeichnen dieser Abbildungen werden die Spitzenwerte pro Parameter optisch etwas über die angrenzenden Jahre verteilt.

Die signifikante Zunahme des Aufbereitungsaufgabe-Index (siehe Abbildung 3.4 und Tabelle 3.2) an den Standorten Andijk und Haringvliet ist auf eine Zunahme der Überschreitungen im Rahmen der Gruppen "Pflanzenschutzmittel, Biozide und deren Metabolite" sowie "Arzneimittel und hormonell wirksame Stoffe (EDC)" zurückzuführen.

Da Lobith von strategischem Interesse ist, weil hier das Rheinwasser in die Niederlande strömt, schauen wir uns diese Messstelle detailliert an. In Abbildung 3.6 werden für die einzelnen Parametergruppen individuelle Überschreitungen (in Form farbiger "Bänder") im Laufe der Messjahre dargestellt.

Abbildung 3.6 kann entnommen werden, dass am Standort Lobith strukturell vor allem "Allgemeine Parameter und Nährstoffe" den Wert aus dem Trinkwasserbeschluss überschreiten. Es handelt sich dabei um Eisen, Nitrit als NO2, Aluminium und Mangan. "Arzneimittel und hormonell wirksame Stoffe (EDC)" lassen schon seit dem Jahr 2007 Überschreitungen erkennen. Es geht dabei um Iomeprol, Di(2-ethylhexyl)phthalat (DEHP), Guanylharnstoff und Metformin. "Industrielle Verunreinigungen und Konsumprodukte" wechseln einander ab, kommen auf und verschwinden wieder. Nur die Summenparameter PAK weisen längere Zeit Überschreitungen auf. "Pflanzenschutzmittel, Biozide und deren Metabolite" lassen im Allgemeinen längere Zeit Überschreitungen erkennen, wobei sie ab und zu unter der Norm bleiben, wie z. B. Isoproturon, Glyphosat und Trichloressigsäure (TCA), und wobei bei Aminomethylphosphonsäure (AMPA) und dem Summenparameter Pestizide strukturelle Überschreitungen (ca. 80% bzw. 60-70%) festgestellt werden.

6. Der Einfluss der Trockenheit auf den Aufbereitungsaufgabe-Index

Der Wasserabfluss der Flüsse kann den Aufbereitungsaufgabe-Index beeinflussen. Möglicherweise steigen aufgrund der jüngsten Zunahmen extremer Trockenheit die gemessenen Konzentrationen von Parametern im Rheinwasser. Grund hierfür ist, dass der Stoff im Wasser weniger verdünnt wird. Andererseits können bestimmte Stoffe durch Abspülen aufgrund von starken Regenfällen oder Schmelzwasser bei hohen Abflüssen ins Wasser gelangen. Oder bei hoher Abfluss können zusätzliche Einleitungen vorgenommen werden. Der Aufbereitungsaufgabe-Index ist daher erwartungsgemäß nicht strukturell abhängig vom Wasserabfluss, aber diese Abhängigkeit beruht auf den spezifischen Stoffen, die der Aufbereitungsaufgabe-Index verursachen. Dies wird in Abbildung 3.7 bestätigt. Dass der Aufbereitungsaufgabe-Index als Ganzes nicht in einem signifikanten Verhältnis zum Wasserabfluss steht, kommt u. a. daher, dass die einzelnen Parameter unterschiedlich auf den Wasserabfluss reagieren. Außerdem ist der Wasserabfluss wie

manche - aber nicht alle Parameter - saisongebunden. Pestizide werden beispielsweise vor allem in bestimmten Saisonen eingesetzt, und die Wasserstände variieren auch je nach Saison. Wenn dies einander entspricht oder nicht entspricht, kann dies die Korrelation beeinflussen. Bei Arzneimitteln oder industriellen Mitteln ist es wahrscheinlich, dass sie das ganze Jahr über verwendet werden. Die Konzentration von Stoffen mit konstanter Emission korreliert negativ mit dem Wasserstand, da bei höheren Abflüssen eine höhere Verdünnung stattfindet.

In Abbildung 3.7 werden die Korrelationskoeffizienten einzelner überschreitender Parameter mit dem durchschnittlichen Wasserabfluss pro Monat für die Standorte Lobith und Nieuwegein aufgeführt. Nicht für jeden Standort sind Wasserabflussdaten verfügbar. Deshalb bezieht sich diese Abbildung nur auf Lobith und Nieuwegein.

Für die negativ korrelierten Parameter (auf der linken Seite jedes Plots in Abbildung 3.7) gilt, dass im Laufe des Jahres, wenn der Wasserabfluss hoch ist, der Aufbereitungsaufgabe-Index für die Parameter gering ist. Möglicherweise spielen Verdünnungseffekte hierbei eine Rolle. Für die positiv korrelierten Parameter (auf der rechten Seite jedes Plots) gilt: je höher der Wasserabfluss, desto größer der Aufbereitungsaufgabe-Index und umgekehrt. Möglicherweise spielt eine erhöhte Abschwemmung oder Einleitung bei einem höheren Abfluss dabei eine Rolle. Die beiden Abbildungen bekräftigen einander: grob gesagt sind Pestizide mit dem Wasserabfluss negativ korreliert (die Summenparameter "Pestizide" und AMPA), und dies gilt ebenso für industrielle Parameter (Melamin, Diglyme, Pyrazol) und ein Arzneimittel (Guanylharnstoff). Positiv korreliert sind Nährstoffe und allgemeine Parameter (Eisen, Aluminium und Ammonium als N).

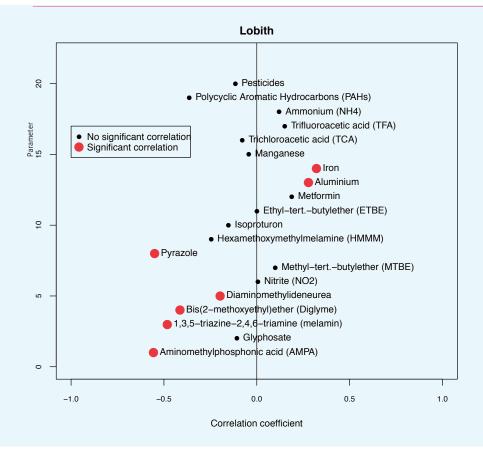
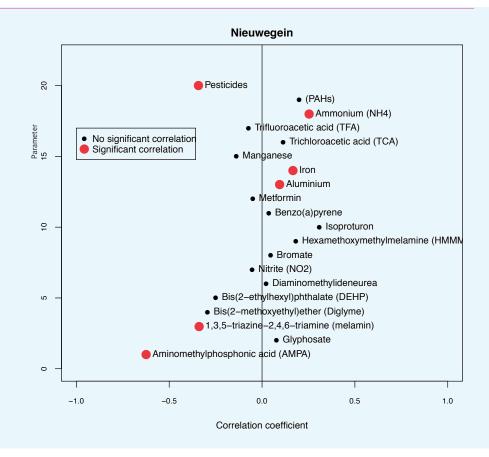



Abbildung 3.7 Pearson-Korrelationen des Aufbereitungsaufgabe-Index von Parametern mit dem Wasserabfluss, beide pro Monat berechnet. Auf der y-Achse wird die Gesamtzahl der Parameter bei der Analyse berücksichtigt.

Dies sind alle Parameter, die im Zeitraum 2000 - 2018 Überschreitungen an diesem Standort erkennen ließen. Parameter, für die mindestens zehn Werte (Überschreitungen in einem Monat im Zeitraum 2000 - 2018) verfügbar waren, werden aufgeführt.

106

Schlussfolgerungen bezüglich der Entwicklungen des Aufbereitungsaufgabe-Index hinsichtlich Rheinwasser

Auf der Grundlage dieser Berechnungen kann nicht gesagt werden, dass die Maßnahmen, die bis jetzt getroffen wurden, um die Zielsetzungen der WRRL zu verwirklichen, zu einer Verbesserung der Aufbereitungsaufgabe, wie im Aufbereitungsaufgabe-Index niedergelegt, geführt haben. Der Aufbereitungsaufgabe-Index hat für die Rheinwasser-Standorte im Zeitraum 2000 - 2018 nicht signifikant abgenommen. Neben den Stoffen, die gelegentlich aufkommen und aufgrund von Maßnahmen auch wieder verschwinden oder aber gleichbleibende Überschreitungen erkennen lassen, machen auch neue Stoffe ihre Aufwartung. Dies wird bei der Berechnung bezüglich des Aufbereitungsaufgabe-Index berücksichtigt, indem alle, auch die neuen gemessenen Parameter, im Aufbereitungsaufgabe-Index einbezogen werden. Insbesondere die Parametergruppen "Pflanzenschutzmittel, Biozide und deren Metabolite" und "Allgemeine Parameter und Nährstoffe" nehmen im Laufe der Jahre einen Großteil des Aufbereitungsaufgabe-Index in Anspruch. "Pflanzenschutzmittel, Biozide und deren Metabolite" stellen im Haringvliet und bei Andijk in zunehmendem Maße ein Problem dar. "Industrielle Verunreinigungen und Konsumprodukte" sind nicht vorhersehbar und sorgen im Laufe der Jahre für Schwankungen im Rahmen des Aufbereitungsaufgabe-Index. "Arzneimittel und hormonell wirksame Stoffe (EDC)" bilden eine kleine Gruppe, aber diese nimmt ausnahmslos an allen Standorten zu und bereitet daher zunehmend Sorgen. Die negative Korrelation einzelner Pestizide und industrieller Mittel mit dem Abfluss ist besorglich, da erwartet wird, dass niedrige Abflussmengen in Zukunft öfter vorkommen werden. Dies führt zu höheren Konzentrationen und daher möglicherweise einen umfangreicheren Aufbereitungsaufgabe-Index. Es muss allerdings näher geprüft werden, inwieweit die Verwendung und Emission dieser Stoffe mit Schwankungen des monatlichen Abflusses korrelieren.

Diese Studie soll die Frage beantworten, ob die WRRL-Maßnahmen wirksam genug sind, um den Aufbereitungsaufgabe-Index zu reduzieren. In jedem Fall steigt die berechnete Aufbereitungsaufgabe an allen Standorten am Rhein, während das Ziel darin besteht, sie gemäß Artikel 7.3 der WRRL zu reduzieren.

Es scheint, dass zusätzliche Anstrengungen im Bereich der Emissionsreduzierung mit Schwerpunkt auf neuen und neu entstehenden Stoffen erforderlich sind, um die Reinigungsaufgabe für die Trinkwasseraufbereitung zu reduzieren. Darauf müssen sich die Messprogramme weiterhin ausrichten, und es ist wichtig, sich mit potenziellen Problemstoffen auseinanderzusetzen, damit sie rechtzeitig überwacht werden können. Und es müssen Maßnahmen ergriffen werden, um die Emissionen dieser Stoffe zu begrenzen, bevor sie tatsächlich Probleme verursachen.

Ausblick des Aufbereitungsaufgabe-Indexes

Das Versprechen einer Reduzierung des erforderlichen Aufbereitungsniveau gemäß Artikel 7 Absatz 3 der Wasserrahmenrichtlinie ist noch nicht erfüllt. Dies soll nicht heißen, dass seit der Einführung der WRRL in den letzten Jahren keine Anstrengungen zur Verbesserung der Wasserqualität des Rheins unternommen wurden. Auch ohne ausdrücklichen Bezug auf Artikel 7.3 wurde bereits viel getan oder ist in Vorbereitung. Die Reduzierung des erforderlichen Aufbereitungsniveau am Rhein ist jedoch noch nicht erreicht.

Im Rheineinzugsgebiet wurden kürzlich neue Initiativen ergriffen, um Kläranlagen mit zusätzlichen Behandlungsschritten, der sogenannten 4. Reinigungsstufe. Ein begrenzter Satz repräsentativer Zielsubstanzen wird verwendet, um die verbesserte Effizienz der Abwasserbehandlung zu bestimmen. Die Zusammensetzung dieses Pakets Zielsubstanzen kann je nach den im zu behandelnden Abwasser enthaltenen Stoffen unterschiedlich sein.

In diesem Zusammenhang kann die hier vorgestellte Berechnungsmethode eine Ergänzung zur Bewertung der Wirksamkeit einer verbesserten Abwasserbehandlung sein, einzeln, regional oder sogar im gesamten Einzugsgebiet. Durch die Berechnung des Index an den Entnahmestellen, dem Grenzübergang Bimmen-Lobith oder an anderen relevanten Stellen im Einzugsgebiet kann man sich schnell ein Bild vom Einfluss auf des gesamten Wassersystems machen. Ungeachtet der ausgewählten Substanzen bietet den Aufbereitungsaufgabe-Index einen unabhängigen Test. Auch unbeabsichtigte Nebenwirkungen können berücksichtigt werden. Angenommen, man wählt als vierten Reinigungsschritt eine zusätzliche Oxidation durch Anwendung von Ozon. In diesem Fall könnten die Zielsubstanzen effektiv bekämpft werden, aber die gebildeten Abbauprodukte könnten dennoch eine Erhöhung der Reinigungsaufgabe bei der Trinkwasseraufbereitung bewirken.

Angesichts der derzeit großen Anstrengungen zur Verbesserung der Abwasserbehandlung im Rheineinzugsgebiet ist es interessant, die Entwicklung der Aufbereitungsaufgabe in den kommenden Jahren weiter zu verfolgen. Werden die getroffenen und geplanten Maßnahmen tatsächlich zu allen Zielen der WRRL beitragen, einschließlich der Reduzierung des erforderlichen Aufbereitungsniveau?

Zum Schluss, für diesen Index haben wir die gesetzlichen Anforderungen der niederländischen Trinkwasserbeschluss herangezogen. Schließlich legt diese Verordnung den rechtlichen Rahmen fest, den das niederländische Trinkwasser einhalten muss. Mit einfachen Anpassungen könnten andere Bezugsrahmen genutzt werden, wie z.B. die europäische Trinkwasserrichtlinie oder andere in den Mitgliedstaaten geltende Verordnungen. Es versteht sich von selbst, dass die niederländische Gesetzgebung für niederländische Trinkwasserunternehmen führend ist.

"Die Reduzierung des erforderlichen Aufbereitungsniveau ist noch nicht erreicht."

Eine weitere Anpassung des Index könnte die Einführung eines Gewichtungsfaktors sein, der der Entfernbarkeit eines Stoffes pro Substanz (oder Stoffgruppe) Gewicht zuweist. So könnten beispielsweise Stoffe, die leicht flüchtig oder biologisch leicht abbaubar sind, weniger Gewicht erhalten. Stoffe, die aufgrund ihrer hohen Wasserlöslichkeit persistent und/oder schwer zu entfernen sind, könnten ein höheres Gewicht erhalten.

Für eine weitere Ausarbeitung des Aufbereitungsaufgabe-Indexes verweisen wir auf den Themenbericht, den RIWA-Rhein im Laufe dieses Jahres veröffentlichen wird.

Empfehlungen und Vorausschau

Im Jahr 2018 wurde den Problemen, die aufgrund einer langen Trockenperiode entstanden, von Medien und Entscheidungsträgern viel Aufmerksamkeit geschenkt. Die Trockenheit führte im Rhein zu niedrigen Wasserständen und einem entsprechend niedrigen Wasserabfluss. RIWA weist schon seit vielen Jahren auf die Folgen, die längere Perioden mit niedrigen Wasserabflüssen auf die Wasserqualität haben. Schließlich geht ein niedriger Abfluss mit einer geringeren Verdünnung gepaart, was bei gleichbleibenden Einleitungen zu höheren Konzentrationen der eingeleiteten Stoffe führt. Um vorübergehende Probleme bei der Entnahme von Oberflächenwasser zu verhindern, kann ein Wasserversorgungsunternehmen eine Befreiung erhalten. Im Jahr 2018 stellte sich heraus, dass diese Befreiung für 1,4-Dioxan noch gerade ausreichend war. Um eine strukturelle Lösung für Probleme mit Stoffen wie 1,4-Dioxan zu finden, ist es erforderlich, spezifische Kriterien bei der Zulassung und Genehmigungserteilung anzuwenden. Auch kann der Schutz von Oberflächenwasser, das zur Trinkwassergewinnung verwendet wird, verbessert werden, wenn Gesetzes- und Rechtsvorschriften besser auf trinkwasserrelevante Stoffe abgestimmt werden. Die Themen Trockenheit, Zulassung, Einleitungsgenehmigung, Befreiung und Wasserrahmenrichtlinie (WRRL) werden im Rahmen des politischen Kontextes in diesem Kapitel aus Sicht der nachhaltigen Trinkwassergewinnung auf der Grundlage natürlicher Aufbereitungsverfahren behandelt.

1. Es war außergewöhnlich aber nicht extrem trocken

Frühling, Sommer und Herbst des Jahres 2018 waren außergewöhnlich trocken: (Quelle: "Rapport eerste fase Beleidstafel Droogte" ["Bericht erste Phase der Trockenheitsberatungen"]). Dies führte zu Schäden in Naturschutzgebieten, in der Landwirtschaft sowie in anderen Wirtschaftssektoren. In bebauten und ländlichen Gebieten kam es zu Wasserqualitätsproblemen und zusatzlicher Bodensenkung durch niedrige Grundwasserstände. Die Schifffahrt sah sich aufgrund von geringen Fahrtiefen und Einschränkungen an den Schleusen mit ernsten Problemen konfrontiert. Infolge dessen entstanden auch Engpässe bei der Versorgung der Baubranche mit Rohstoffen und der Bevorratung von Tankstellen. Die Versalzung war in manchen Gebieten ernster dann erwartet und führte zu Problemen bei der Trinkwasserversorgung, in der Landwirtschaft und der Natur (siehe Kapitel 2).

¹ https://www.rijksoverheid.nl/documenten/rapporten/2019/04/04/rapport-eerste-fase-beleidstafel-droogte

Im Landesdurchschnitt betrug der Höchstwert des potenziellen Niederschlagsmangels 309 Millimeter. Dieser Wert wurde am 8. August 2018 erreicht. Aus einer statistischen Analyse geht hervor, dass ein solcher Niederschlagsmangel eine Wiederholungszeit von circa dreißig Jahren hat. Seit 1901 war der Niederschlagsmangel nur in vier Sommern noch höher. Das Rekordjahr 1976 hatte eine Wiederholungszeit von neunzig Jahren. Im Laufe des letzten Jahrhunderts haben die Zunahme der Sommerniederschläge und die potenzielle Verdampfung durch steigende Temperaturen sowie sonnigere Sommer einander ausgeglichen und wurde kein Trend bezüglich potenziellen Niederschlagsmangels konstatiert. Die Möglichkeit, dass es zu einem trockenen Sommer wie im Jahr 2018 kommt, hat sich daher aufgrund des verstärkten Treibhauseffekts bisher nicht geändert. Die Trockenheit kann dem Treibhauseffekt deshalb nicht (teilweise) zugeschrieben werden (KNMI, 2019). Die Kombination aus einer möglicherweise starken Abnahme der Sommerniederschläge in der Zukunft und einer möglicherweise starken Zunahme der potenziellen Verdampfung durch höhere Temperaturen und eine höhere Sonnenstrahlung führt dahingegen dazu, dass es in Zukunft ein größeres Risiko auf wesentlich trockenere Sommer gibt. In den meisten extremen Klimaszenarien ändert sich die Wiederholungszeit der Trockenheit dieses Jahres von einem Mal in dreißig Jahren zu einem Mal in zehn Jahren.

1.1 Erleichtert aufatmen nach der Trockenheit?

Obwohl es im Laufe der Trockenheit des Jahres 2018 gelungen ist, weiterhin überall qualitativ gutes Trinkwasser in einer ausreichenden Menge zu liefern und so eine Krise zu verhindern, gab es Sorgen. Es stellte sich heraus, dass durch die Abnahme der Oberflächenwassermenge während der Trockenheit, eine Wahl getroffen werden musste, bei der sowohl die Wasserqualität (Versalzung) als auch die Verteilung der Süßwassermenge berücksichtigt wurde. Unterschiedliche Interpretationen und das Vorhandensein mehrerer Chloridnormen, zu denen auch der von den Wasserversorgungsunternehmen verwendete Jahresdurchschnittswert von 150 mg/l gehört, trugen zu der Unklarheit bei. Die Chloridnorm kommt in verschiedenen Gesetzes- und Rechtsvorschriften vor, wird aber in der Praxis auf unterschiedliche Art angewandt: von der harten bis zur flexiblen Norm, von Jahresdurchschnitts- bis zu Momentwerten. Für die Lösung dringender Fragen hinsichtlich zukünftiger Trockenzeiten, wie z. B. bezüglich der Themen Prioritätenliste, Grundwasser, Versalzung, Trinkwasser und Wasserverteilung des Ijsselmeers, wurden die Trockenheitsberatungen ins Leben gerufen. Eine Empfehlung der Trockenheitsberatungen besteht darin, eine Verwaltungsmaßnahme zu erlassen, in der die Interpretation der Chloridnormen aus dem Trinkwasserbeschluss, der Trinkwasserregelung und dem Beschluss Qualitätsanforderungen und Wassermonitoring festgelegt wird. Darin wird auch beschrieben, wie mit einer drohenden Überschreitung

umzugehen ist. Die Verwaltungsmaßnahme muss Klarheit geben, wie Wasserversorgungsunternehmen, Industrie und Wasserbewirtschafter in ähnlichen Situationen handeln können. Im Rahmen der Trockenheitsberatungen wurde empfohlen, diese Organisationen bei der Erstellung der Verwaltungsmaßnahme einzubeziehen. Die Abstimmung operativer Maßnahmen trägt zur benötigten Klarheit bei. Ferner wurde dem Ministerium für Infrastruktur und Wasserwirtschaft empfohlen, in dieser Verwaltungsmaßnahme auch festzulegen, wie bei Normüberschreitungen in Bezug auf Chlorid im Trink- und Oberflächenwasser vorzugehen ist. RIWA stimmt dieser Empfehlung zu. Rijkswaterstaat hat inzwischen mit den anderen Partnern im IJsselmeergebiet einen verbesserten Monitoringplan für Chlorid erstellt. Für den Amsterdam-Rhein-Kanal und die Rhein-Maas-Mündung wird geprüft, ob eine ununterbrochene Chloridmessung machbar ist. RIWA begrüßt diese Bemühungen, weil so ein besseres Bild der möglicherweise auftretenden Versalzung geschaffen wird, wodurch rechtzeitig eine Handlungsperspektive entsteht.

1.2 Sollten Einleitungen weiterhin anhand des maßgebenden Abflusses geprüft oder doch durchflussabhängig gemacht werden?

Bei der Prüfung von Genehmigungen für Einleitungen wird in den Niederlanden von dem maßgebenden niedrigen Abfluss des Oberflächenwassers ausgegangen, der nur in 10 Prozent der Zeit auftritt und daher 90 Prozent der Zeit höher ist (Quelle: "Handboek Immissietoets" ["Handbuch Immissionsprüfung"). Durch die zunehmende Trockenheit nehmen die Durchflussmengen allerdings ab, wodurch eine Überschreitung der Norm für die Oberflächenwasserqualität öfter auftreten kann und die Verfügbarkeit von Süßwasser von ausreichender Qualität abnimmt. Deshalb empfehlen die Trockenheitsberatungen, Rijkswaterstaat in Zusammenarbeit mit dem Ministerium für Infrastruktur und Wasserwirtschaft ein Pilotprojekt ins Leben rufen zu lassen, um die praktische Ausführbarkeit durchflussmengenabhängiger Einleitungen und deren Nutzen für die Oberflächenwasserqualität zu prüfen. Auch muss in diesem Rahmen untersucht werden, ob es möglich ist, das Verfahren, mit dessen Hilfe der maßgebende niedrige Abfluss für die Immissionsprüfung berechnet wird, entsprechend jüngsten oder zukünftigen Abflussmengen anzupassen. RIWA unterstützt diese Empfehlung, da so klar wird, ob der maßgebende Abfluss tatsächlich einen besseren Schutz als durchflussmengenabhängige Einleitungen bietet, wie bisher gedacht.

1.3 Vereinbarungen über Trockenheitsmaßnahmen im Einzugsgebietsrahmen treffen

Das Thema Niedrigwasser wurde von der Internationalen Kommission zum Schutz des Rheins (IKSR) aufgegriffen. Im Jahr 2013 wurde die Expertengruppe Niedrigwasser gegründet. Auf Rheineinzugsgebietsebene wurde eine Bestandsaufnehme der in der Vergangenheit aufgetretenen

Trockenheiten erstellt und evaluiert. Die Schlussfolgerung lautet, dass Niedrigwasser im Rhein heutzutage nicht schlimmer ist als vor hundert Jahren, aber größere Folgen für eine größere Anzahl von Gebrauchsfunktionen hat. RIWA unterstützt die Empfehlungen der Trockenheitsberatungen, um im Rahmen regelmäßiger grenzüberschreitender Beratungen von staatlichen Behörden und regionalen Wasserbewirtschaftern die Auswirkungen von Trockenheit und Trockenheitsmaßnahmen auf das grenzüberschreitende Oberflächenwassersystem auf die Tagesordnung zu setzen. Die IKSR und die internationale Zentralkommission für die Rheinschifffahrt (ZKR) müssen den Zusammenhang zwischen den Interessen verschiedener Gebrauchsfunktionen wie Trinkwasser (Verfügbarkeit von Wasser und Wasserqualität) und Schifffahrt im Blickfeld behalten. Die Nachfrage nach Wasser und die damit verbundenen sozioökonomischen Folgen werden im Rahmen des neuen IKSR-Arbeitsprogramms Rhein 2040 untersucht. Die Rheinministerkonferenz vom 13. Februar 2020 kann genutzt werden, um Vereinbarungen über Trockenheit und Niedrigwasser im Rahmen des Arbeitsprogramms Rhein 2040 zu treffen.

2. Befreiung bezüglich 1,4-Dioxan stellte sich als (gerade noch) zureichend heraus

Während der Trockenheit des Jahres 2018 wurde dem Einfluss der Versalzung auf die Kontinuität der Trinkwassergewinnung, die insbesondere in Nordholland gefährdet war, zu Recht große Aufmerksamkeit geschenkt. Eine wichtige Alternative für Wasser aus dem IJsselmeer war in diesem Zeitraum das Wasser aus dem Lekkanal. Einem Punkt, der zu dieser Zeit weniger Aufmerksamkeit geschenkt wurde, war die steigende Konzentration von 1,4-Dioxan im Wasser des Rheins bei Lobith, die den bei Nieuwegein geltenden Befreiungswert von 3 µg/l weit überschritt. Schließlich näherte sich die Konzentration in Nieuwegein dem Befreiungswert. Wäre der Befreiungswert in Nieuwegein überschritten worden, hätte die Wasserentnahme unterbrochen werden müssen. Dies hätte große Folgen für die Liefersicherheit gehabt. Trinkwasserunternehmen hätten wahrscheinlich auf ihre Grundwasser- und Dünenwasserpuffer zurückgreifen müssen, was zu Schäden an der Natur hätte führen können. In diesem Abschnitt wird näher auf die Vorgeschichte eingegangen.

2.1 Einleitungen von 1,4-Dioxan erschweren die Trinkwassergewinnung in den Niederlanden

Die Konzentrationen von 1,4-Dioxan im Rhein gefährden die Betriebsführung der niederländischen Wasserversorgungsunternehmen. Da die Konzentration von 1,4-Dioxan im Lekkanal bei Nieuwegein lange Zeit 1 µg/l überschritt, beantragte Waternet eine Befreiung, die dem Unternehmen am 20. Dezember 2017 gewährt wurde². Die Befreiung, die drei Jahre gilt, legt verschiedene

² https://zoek.officielebekendmakingen.nl/stcrt-2017-74990.html

Beschränkungen auf, wie z. B. einen Höchstwert für die einzunehmende 1,4-Dioxan-Konzentration in Höhe von 3 µg/l (Befreiungswert). Dieser Wert entspricht dem Trinkwasser-Richtwert in den Niederlanden (RIVM, 2015). Eine Bedingung, die an Waternet in Zusammenhang mit der Befreiung gestellt wurde, lautet, dass die Konzentration von 1,4-Dioxan im Trinkwasser vorsorgehalber möglichst niedrig gehalten werden muss (ALARA-Prinzip), insofern Waternet direkten Einfluss darauf ausüben kann. Wenn der 1,4-Dioxan-Gehalt des entnommenen Wassers an der Wasserentnahmestelle 3 µg/l überschreitet und von Waternet nicht gewährleistet werden kann, dass der Wert im Trinkwasser unter 1 µg/l bleibt, unterbricht Waternet die Entnahme des Wassers und nimmt mit der ILT (niederländischen Inspektion für Umwelt und Transport) Kontakt auf. Im Jahr 2018 wurden hohe Konzentrationen von 1,4-Dioxan im Rhein bei Bimmen und bei Lobith vorgefunden, die den Wert von 3 µg/l weit überschritten (siehe Kapitel 1, Abschnitt 3.2.2). Im Jahr 2019 wandte sich Oasen mit der Frage an ILT, ob eine Befreiung bezüglich 1,4-Dioxan erforderlich sei, da die im Ufergrundwasser nachgewiesenen Konzentrationen den Signalwert von 1 µg/l überschritten.

2.2 Wo wird 1,4-Dioxan in den Rhein eingeleitet?

Bevor der Rhein Nordrhein-Westfalen erreicht, hat er schon eine große Menge 1,4-Dioxan aufgenommen: Rheinland-Pfalz berichtete in den Jahren 2016 und 2017 eine jährliche Fracht von fast 24 Tonnen im Rhein in Höhe von Mainz. Daneben gibt es Produktionsstandorte³ von 1,4-Dioxan im Rheineinzugsgebiet, wie z. B. BASF in Ludwigshafen und Merck in Darmstadt. Die Bildung von 1,4-Dioxan als Nebenprodukt bei der Herstellung von Ethoxylaten gilt als eine der wichtigsten Quellen für das Vorhandensein des Stoffs in der Umwelt. Auch bei der Herstellung von Ethenoxid (IUPAC-Name: Oxiran) kann 1,4-Dioxan freigesetzt werden, wenn der Katalysator seine Wirkung verloren hat. Ethenoxid wird mithilfe der kontrollierten teilweisen Oxidation von Ethen mit Sauerstoff an einem Silberkatalysator in industriellen Mengen produziert. Ethenoxid ist ein wichtiger Grundstoff in der chemischen Industrie und wird an vielen Stellen im Rheineinzugsgebiet hergestellt⁴.

³ https://echa.europa.eu/nl/registration-dossier/-/registered-dossier/15842

⁴ https://echa.europa.eu/nl/registration-dossier/-/registered-dossier/15813

Bei einer Bestandsaufnahme von Einleitungen in Nordrhein-Westfalen und einer Probenahme an verschiedenen Stellen des Rheins durch das Laborschiff Max Prüss und die Wasserpolizei kamen einige wichtige Quellen ans Licht. Hierzu gehören⁵:

- Ein industrieller Einleiter in die Emscher in Essen, der eine große Vielfalt von oberflächenaktiven chemischen Produkten produziert. Bei diesen Produkten handelt es sich um spezielle
 Chemikalien, die u. a. für die Herstellung von Haut- und Haarpflegeprodukten verwendet
 werden, sowie um Detergenzien und Reinigungsmittel. Obwohl 1,4-Dioxan an diesem Standort
 nicht verwendet wird, kann es bei Ethoxylierungsreaktionen entstehen.
- Die Abwasserkläranlage Düsseldorf-Süd, an die vier Fabriken angeschlossen sind, die in wesentlichem Maße zu den 1,4-Dioxan-Konzentrationen beitragen.

Auch ist bekannt, dass 1,4-Dioxan als Verunreinigung in Methanol vorkommen kann, das in Abwasserkläranlagen im Denitrifikationsprozess verwendet wird⁶.

2.3 1,4-Dioxan erfüllt die PMT-Kriterien

Das norwegische Geotekniske Institutt (NGI) führte im März 2018 eine vorläufige Beurteilung gemäß der PMT/vPvM-Kriterien des deutschen Umweltbundesamts (UBA) aus (siehe Abschnitt 3). Die Ergebnisse wurden in dem Bericht "Preliminary assessment of substances registered under REACH that could fulfil the proposed PMT/vPvM criteria" veröffentlicht⁷. Auch das UBA führte im Februar 2018 eine vorläufige Beurteilung aus. Daraus geht hervor, dass 1,4-Dioxan die PMT-Kriterien erfüllt⁸. RIVM hat 1,4-Dioxan bei einer Aktualisierung auf die Liste potenziell besonders besorgniserregender Stoffe (ZZS) gesetzt⁹. Die International Agency for Research on Cancer (IARC) der Weltgesundheitsorganisation (WHO) zieht folgende Schlussfolgerung: "1,4-Dioxan ist möglicherweise krebserregend für Menschen (Gruppe 2B)."¹⁰

⁵ https://www.lanuv.nrw.de/fileadmin/lanuv/analytik/pdf/ECHO_Dioxan_Januar2019.pdf

⁶ https://www.sciencedirect.com/science/article/abs/pii/Soo43135413008014

⁷ https://www.ngi.no/download/file/11567

⁸ https://www.umweltbundesamt.de/en/publikationen/assessment-of-persistence-mobility-toxicity-pmt-of

⁹ https://rvs.rivm.nl/sites/default/files/2018-09/Potentiele-ZZS-lijst-augustus-2018-V1.o-beveiligd.pdf

¹⁰ https://monographs.iarc.fr/wp-content/uploads/2018/06/mon071-25.pdf

3. PMT/vPvM-Kriterien REACH

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) ist eine europäische Verordnung bezüglich der Herstellung und des Handels mit chemischen Stoffen. Sie ist ein wichtiges Mittel, um Informationen bezüglich der Schädlichkeit und der Exposition an Stoffe zu erhalten. Jedes Unternehmen, das einen Stoff in Mengen von mindestens einer Tonne pro Jahr auf den Markt bringen möchte, muss hierfür ein Registrierungsdossier bei der European Chemicals Agency (ECHA) einreichen. Der Umfang der Informationen, der zur Verfügung gestellt werden muss, hängt von der Menge der Stoffe ab, die auf den Markt gebracht wird. Für Stoffe mit einem Volumen von über zehn Tonnen pro Jahr sieht REACH die Verpflichtung vor, um bei der Registrierung des Stoffs eine Beurteilung zu erstellen, ob dessen Freisetzung zu einer relevanten Exposition von Menschen führen kann. Obwohl REACH viele Informationen bezüglich Stoffen liefert, kann in der Praxis nicht jeder spezifischen Bitte um Informationen über einen willkürlichen Stoff entsprochen werden. REACH stellt die Informationen bereit, die erforderlich sind, um einen Stoff auf den Markt bringen zu können, und umfasst eine Beurteilung, ob eine sichere Verwendung möglich ist. Dies erfolgt für die ganze EU auf der Grundlage allgemeiner Modelle. REACH dient nicht dem Ziel, spezifische lokale Einleitungen zu beurteilen.

Das deutsche Umweltbundesamt (UBA) leitete im Jahr 2014 eine Diskussion bezüglich des Schutzes von Trinkwasserquellen vor persistenten, mobilen und toxischen Stoffen (PMT-Stoffe) ein. Im November 2018 veröffentlichte das UBA einen Bericht mit dem Titel "Protecting the sources of our drinking water from mobile chemicals". Dieser umfasste einen Vorschlag bezüglich des Umgangs mit PMT, die im Rahmen der europäischen REACH-Gesetzgebung zugelassen sind. In dem Bericht wurden verschiedene Fragen gestellt, die das UBA verschiedenen Betroffenen zur Beantwortung vorlegte. RIWA reagierte am 4. Dezember 2018 auf diesen Bericht und beantwortete die Fragen des UBA. Anschließend fand im März 2018 in Berlin ein Workshop statt, in dem das UBA, die European Chemicals Agency (ECHA), Wissenschaftler, Entscheider und Interessenvertreter der chemischen Industrie und des Trinkwassersektors den Vorschlag des UBA diskutierten. Vor diesem Workshop führten das UBA und das norwegische Geotekniske Institutt (NGI) Probebeurteilungen aus, bei denen Kriterien aus diesem Vorschlag angewandt wurden.

Die Niederlande setzen sich weiterhin in der EU für eine Verbesserung der Chemikaliengesetze ein - auch im Hinblick auf den Schutz der Trinkwasserquellen. PMT-Stoffe wurden bis vor Kurzem in nationalen und internationalen Untersuchungen sowie in Messprogrammen und Gesetzen nicht ausreichend berücksichtigt. Die Niederlande unterstützen die Initiative des UBA. Deutschland hat

an einem Dossier gearbeitet, um den ersten Stoff PFHxH aufgrund von PMT-Eigenschaften als SVHC anzumerken, hat dieses Dossier aber inzwischen wieder zurückgezogen. Die Niederlande haben kürzlich ein Dossier erstellt, um GenX aufgrund von PMT-Eigenschaften als SVHC anzumerken. Daneben setzen die Niederlande sich aufgrund der REACH-Evaluierung dafür ein, im Rahmen des Rats für Umweltfragen konkrete Maßnahmen für die Bekräftigung des Prinzips zu befürworten, dass die Beweislast bezüglich der (Un-)Schädlichkeit bei Unternehmen liegt und dass Verfahren beschleunigt werden, um Maßnahmen für spezifische Stoffe zu ergreifen. RIWA unterstützt diese Bemühungen.

4. Fitness-Check bezüglich der WRRL und die European River Memorandum Koalition

Die Europäische Kommission führt im Jahr 2019 eine Fitness-Check in Bezug auf die Wasserrahmenrichtlinie (2006/60/EG) und ihre Tochterrichtlinien, die Grundwasserrichtlinie (2006/118/EG) und die Richtlinie prioritäre Stoffe (2008/105/EG), aus. Ferner wird auch die Hochwasserrichtlinie (2007/60/EG) bei dieser Fitness-Check berücksichtigt. Eine Fitness-Check ist ein Instrument der Kommission, um die Gesetzgebung im Rahmen eines bestimmten Politikbereichs zu evaluieren. Dies steht im Gegensatz zu einer Evaluierung, die nur auf eine spezifische Richtlinie oder Verordnung gerichtet ist. Ziel einer Fitness-Check ist es zu beurteilen, wie wirksam und effizient das Gesetz im Hinblick auf die Verwirklichung der angestrebten politischen Ziele ist. Dabei werden u. a. die Kosten und Erträge, Überschneidungen der Gesetzgebung, Ineffizienz und Synergien unter die Lupe genommen. Ferner werden die Möglichkeiten geprüft, gesetzliche Bestimmungen zu vereinfachen und den Verwaltungsaufwand zu erleichtern (Quelle: Europa dezentral).

Sowohl RIWA als auch IAWR haben zu der Konsultationsrunde der WRRL-Fitness-Check einen direkten Beitrag geleistet, und IAWR hat auch eine Stellungnahme¹¹ angefertigt. In dieser Stellungnahme plädiert IAWR dafür, dass der Schutz der Trinkwasserquellen eine höhere Priorität bekommen soll und dass der Schwerpunkt stärker auf Stoffe gelegt wird, die für die Trinkwassergewinnung wichtig sind. IAWR schließt sich der Initiative des UBA an, um PMT/vPvM-Kriterien eine Rolle im Rahmen von REACH spielen zu lassen. Die Stellungnahme von IAWR dient auch als Grundlage für eine Stellungnahme der European River Memorandum Koalition.

¹¹ https://www.iawr.org/timm/download.php?file=data/docs/publikationen_positionen/190307_eu_wfd_position_iawr.pdf

RIWA plädiert dafür, um bei der Ergreifung von Maßnahmen im Hinblick auf die WRRL, auch die Zielsetzungen von Artikel 7 der WRRL zu berücksichtigen, die den Schutz der Trinkwasserquellen beinhalten. Drei Beispiele zur Veranschaulichung:

- 1. Um Abwässer weitgehend von organischen Mikroverunreinigungen zu reinigen, um so die chemische Wasserqualität oder den ökologischen Zustand des Gewässers zu verbessern, dem die Abwässer zugeführt werden, kann der Einsatz von avancierter Oxidation gewählt werden. Wenn dies allerdings zu schädlichen Abbauprodukten führt, könnten die erforderlichen Aufbereitungsbemühungen eines stromabwärts gelegenen Trinkwasserproduktionsstandorts zu- anstelle von abnehmen, wie in Artikel 7 Absatz 3 der WRRL angestrebt.
- 2. Um den prioritären Stoff Quecksilber im Wasserökosystem zu vermindern, ist es möglich, Steinkohle mit Bromid zu behandeln. Wenn dies in großem Umfang erfolgt, führt dies zu einem Anstieg der Bromidkonzentrationen, wodurch die erforderlichen Aufbereitungsbemühungen eines stromabwärts gelegenen Trinkwasserproduktionsstandorts zu- anstelle von abnehmen, wie in Artikel 7 Absatz 3 der WRRL angestrebt.
- 3. Zur Verbesserung der Ökologie können Ingenieurbauten wie Stauwehre oder Schleusen mit Fischtreppen versehen werden, die die Migration verschiedener Arten von Fischen in einem Einzugsgebiet wieder ermöglichen. Die Hinzufügung einer Fischtreppe oder die Anpassung des Stauregimes kann allerdings dazu führen, dass die Mündung eines Süßwasserflusses zu sehr versalzt, wodurch die erforderlichen Aufbereitungsbemühungen eines benachbarten Trinkwasser-produktionsstandorts zu- anstelle von abnehmen könnten, wie in Artikel 7 Absatz 3 der WRRL angestrebt.

5. Vorausschau

RIWA kommentiert die verschiedenen Themen und äußert sich über verschiedene Kanäle zu den ausgeführten und neu zu erstellenden Maßnahmen. Dies tun wir in Zusammenarbeit mit der IAWR und in breiterem Rahmen auch mit den vereinigten Wasserversorgungsunternehmen von Donau, Elbe, Ruhr und Maas.

Für den Entwurf des IKSR-Arbeitsprogramms Rhein 2040 legt RIWA Vorschläge für neue Stoffe vor, die der Rheinstoffliste hinzugefügt werden sollten. Auf der Rheinministerkonferenz im Jahr 2020 werden wir die Aufmerksamkeit auf Themen lenken, die uns Sorge bereiten. Daneben werden wir auch den Aufbereitungsaufgaben-Index des Rheins, wie in Kapitel 3 beschrieben, vorstellen. Dieser neue Index ermöglicht es, die Wirksamkeit von (vorhandenen und neuen) Maßnahmen bezüglich der Entwicklung der Wasserqualität zu verfolgen.

Bei der Beratung hinsichtlich der WRRL-Fitness-Check hat RIWA seine Position erläutert. Diese wird jetzt zusammen mit den Positionen anderer Flussverbände in einem gemeinsamen Dokument verarbeitet, das im Herbst der Europäischen Kommission vorgelegt wird.

Und wir haben hohe Erwartungen, was die vom deutschen Umweltbundesamt vorgeschlagene Implementation von PMT/vPvM-Kriterien in REACH-Dossiers betrifft. Der Handlungsansatz in Bezug auf Wasserverschmutzung beginnt an der Quelle und vorzugsweise noch vor deren Entstehung.

Insgesamt geschieht derzeit viel im Rheineinzugsgebiet und in Europa, das Auswirkungen auf die Wasserqualität des Rheins hat bzw. haben kann. Alle diese Themen erfordern unsere Aufmerksamkeit. Die Trockenheit hat die Schwächen des Wassersystems zutage treten lassen. Sauberes Süßwasser, das für die Trinkwassergewinnung geeignet ist, ist keine Selbstverständlichkeit, und wenn die Aufmerksamkeit nachlässt, werden die konstatierten Probleme nur noch größer.

Laufende Forschungsprojekte

Forschungsthemen der Mitgliedsbetriebe werden vorzugsweise im Rahmen einer branchenspezifischen Untersuchung (BTO) von KWR Water Research behandelt. Die öffentlichen Berichte finden sich auf library.kwrwater.nl/. Spezifische Themen, die nicht in den Rahmen dieser branchenspezifischen Untersuchung fallen, da sie z. B. politikunterstützend sein, werden im Auftrag von RIWA-Rhein untersucht. Die Berichte dieser Untersuchungen können auf unserer Website https://www.riwa-rijn.org/publicaties/ heruntergeladen werden.

Die beiden Forschungsprojekte, die schon seit einigen Jahren von RIWA-Rhein mitfinanziert wurden, wurden im Jahr 2018 fortgesetzt. Dabei handelt es sich um ein Projekt der Stichting voor de Technische Wetenschappen (STW) und ein Projekt der Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Daneben wurde die Entwicklung eines Index für die Aufbereitungsbemühungen im Rahmen des Projekts "Outfitting the Factory of the Future with ON-line analysis" (OFF/ON) ("Ausstattung der Fabrik der Zukunft mit einer ON-line-Analyse") in Zusammenarbeit mit KWR fortgesetzt.

"Technologies for the Risk Assessment of MicroPlastics (TRAMP)"

Das STW-Projekt "Technologies for the Risk Assessment of MicroPlastics" (TRAMP) ("Technologien für die Risikobewertung von Mikroplastik") der Universität Wageningen und der Universität Utrecht richtet sich auf (a) die Entwicklung von Technologien für die Erfassung von Nano- und Mikroplastik in Umweltproben, (b) die Entwicklung von Technologien für die Verweildauer, die Gefahren und die Folgen von Plastik in Süßwasser, einschließlich der Evaluierung möglicher Reduzierungsoptionen und (c) die Erstellung einer Prognose bezüglich der heutigen und zukünftigen Risiken von Plastik in den niederländischen Gewässern. Die neuen Analyseverfahren und Transportmodelle werden für Monitoring verwendet. Sie werden auch eingesetzt werden, um die Herkunftsquellen von Plastik zu ermitteln und um die Emissionsreduktionspolitik zu optimieren. Die Beurteilung der Verbreitung, der Folgen und der Risiken soll zu einer nachhaltigen Herstellung und Nutzung von Kunststoffen beitragen. Ferner sollen auch Entscheidungsträger und Öffentlichkeit bezüglich der Dringlichkeit des Problems informiert werden.

Im Jahr 2018 erschienen im Rahmen von TRAMP verschiedene (wissenschaftliche) Publikationen. Die Forscher machen Fortschritte bei der Entwicklung von Messverfahren für Mikro- und Nanoplastik in der Umwelt in Bezug auf die Anzahl Teilchen, die Teilchengröße und die Materialart. Für Mikroplastik ist diese Entwicklung schon weiter fortgeschritten als für Nanoplastik. Bei Effektstudien in Bezug auf Nanoplastik und/oder Mikroplastik im Sediment wurden Auswirkungen auf Pflanzen und wirbellose Tiere, die in oder auf dem Gewässerboden leben, nachgewiesen. Diese Auswirkungen traten allerdings meistens bei höheren Konzentrationen auf als solchen, die derzeit in der Umwelt ermittelt werden. Eine Risikobeurteilung von Nano- und Mikroplastik anhand der weltweit verfügbaren Daten suggeriert, dass die derzeit empfindlichsten Sorten in manchen Küstengebieten gefährdet sind. Erwartet wird allerdings, dass die Konzentrationen in der Umwelt zunehmen werden, wodurch Auswirkungen an mehr Orten sichtbar werden. Daneben werden Untersuchungen bezüglich der Entfernung von Mikro- und Nanoplastik in den verschiedenen Verfahrensschritten der Trinkwasseraufbereitung ausgeführt. Neben eigenen Publikationen leisteten die Forscher auch einen Beitrag zu dem NRC-Artikel "Filters met minuscule gaatjes voor plastic deeltjes kleiner dan een zandkorrel" ("Filter mit winzigen Löchern für Plastikteilchen, die kleiner als ein Sandkorn sind") vom 20. Juni 2018 und dem NRC-Artikel "Wat weten we over al dat plastic in zee?" ("Was wissen wir über das ganze Plastik im Meer?") vom 18. Januar 2019.

Weitere Informationen finden Sie auf der Website von TRAMP: www.stwtramp.nl

"Outfitting the Factory of the Future with ON-line analysis" (OFF/ON)

In dem NWO-Projekt "Outfitting the Factory of the Future with ON-line analysis" (OFF/ON) ("Ausstattung der Fabrik der Zukunft mit einer ON-line-Analyse") arbeiten die Radboud Universität Nijmegen und die Technische Universität Eindhoven mit verschiedenen Partnern (aus der Industrie) zusammen. Der Grund für OFF/ON ist, dass industrielle chemische Prozesse immer komplizierter werden, zum Beispiel durch variable, natürliche Rohstoffe. Deshalb müssen die vielen Prozessmessungen in interpretierbare Informationen umgewandelt werden, mit deren Hilfe die Qualität des Endprodukts gewährleistet werden kann. Zu diesem Zweck möchte OFF/ON die Datenverarbeitungsverfahren aus den "Omics" verwenden. Ziel ist es, innovative und generische chemometrische und statistische Verfahren zur Prozessüberwachung mithilfe aller verfügbaren Daten zu entwickeln. Die Messdaten aus der RIWA-base werden in diesem Projekt mithilfe dieser neuen Techniken analysiert. Es wurde u. a. ein Wasserqualitätsindex im Hinblick auf die Aufbereitungsbemühungen entwickelt. Der erste Artikel zu diesem Thema wird in Kürze zur Veröffentlichung eingeschickt. Nachstehend finden Sie unter der Überschrift "Aufbereitungsaufga-

be-Index" weitere Informationen. Auch Rijkswaterstaat nimmt als Partner an diesem Projekt teil und stellt u. a. hochfrequente Messdaten der Grenzmessstationen zur Verfügung. Auf der Grundlage einer multivariaten Analyse dieser Daten wurde ein Wasserqualitätsalarm entwickelt, der eine frühzeitige Warnung erteilen kann, wenn sich eine mögliche Verunreinigung nähert.

Aufbereitungsaufgabe-Index

In Artikel 7.3 der Europäischen Wasserrahmenrichtlinie (WRRL) steht, dass die Mitgliedstaaten Maßnahmen ergreifen um zu gewährleisten, dass sich die Wasserqualität nicht verschlechtert. Das Ziel ist eine Abnahme der erforderlichen Aufbereitungsbemühungen von Wasserversorgungsunternehmen. Es wurde allerdings nicht spezifiziert, wie die Aufbereitungsbemühungen bestimmt werden müssen. Um einen Überblick zu erhalten, inwieweit das Ziel des WRRL-Artikels 7.3 erreicht wird, hat RIWA-Rhein im Rahmen des oben genannten OFF/ON-Projekts einen Aufbereitungsbemühungs-Index entwickeln lassen und danach von KWR einen AufbereitungsaufgabenIndex erarbeiten lassen. Aus den Untersuchungen von KWR geht hervor, dass die Aufbereitungsaufgabe seit Einführung der WRRL im Jahr 2000 nicht geringer geworden ist. In Kapitel 3 des vorliegenden Jahresberichts wird der Aufbereitungsaufgabe-Index beschrieben und wird näher auf die Untersuchungsergebnisse eingegangen. Ein selbstständiger Bericht wird im Herbst 2019 erscheinen. Das Rechenverfahren für die Berechnung dieses Aufbereitungsaufgabe-Index wird der RIWA-base hinzugefügt, sodass dieser Index auch in Zukunft bestimmt werden kann.

Anlage 1

Wasserqualitätsdaten 2018

Dieser Anhang umfasst die Messergebnisse des Jahres 2018 der Meldepunkte Lobith, Nieuwegein, Nieuwersluis, Andijk und Haringvliet. Die Monatsmittel werden zusammen mit anderer Kennzahlen und Fünf-Jahres-Trends präsentiert. Um die Suche nach Parametern zu erleichtern, wurden die CAS-Nummern mit den Parametern aufgelistet.

In diesem Anhang werden die Parameter aufgeführt, die den allgemeinen Zustand der Probenahmestelle beschreiben. Daneben werden nur die Parameter aufgeführt, die an einer oder mehreren Standorten den Zielwert des European River Memorandum (ERM) überschritten haben, einen Wert von 80 - 100% des ERM-Zielwerts aufweisen oder einen interessanten Trend erkennen lassen. Trends und Überschreitungen werden mithilfe des sogenannten RIWA-Piktogramms wiedergegeben. Eine Erklärung bezüglich der in den RIWA-Piktogrammen verwendeten Farben und Symbole findet sich auf Seite 131. In manchen Fällen weist der wiedergegebene Trend nicht auf eine Veränderung der Wasserqualität hin, sondern ist auf eine Änderung der unteren Analysegrenze zurückzuführen. Dies kann nicht dem Piktogramm entnommen werden, wird aber im Text der betreffenden Parametergruppe in Kapitel 1 beschrieben.

Auf der folgenden Seite finden Sie eine Erklärung der Tabelle, einschließlich einer Erläuterung der Abkürzungen und Symbole.

Anhang 1 der digitalen Fassung dieses Jahresberichts umfasst eine vollständige Übersicht über alle verfügbaren Daten aller analysierten Parameter. Diese Fassung finden Sie auf unserer Website (www.riwa-rijn.org).

Erklärung der Tabelle

Verwendete Abkürzungen und Symbole

u.b.g. untere Bestimmungsgrenze

n Zahl der Analysedaten im Berichtsjahr

Min Minimum

p10, p50, p90 Perzentilwert

Mw. Mittelwert

Max Maximum

Daten sind zur Berechnung des Werts unzureichend

Haringvliet

Der Trend in Haringvliet wird anhand der Daten von Stellendam (Januar 2014 bis Mai 2017) und Middelharnis (Juni 2017 bis Dezember 2018) bestimmt.

Werten Monatsspalten

Bei den Werten in den Monatsspalten kann es sich - abhängig von der Häufigkeit der Messungen - sowohl um einzelne Werte, als auch um Durchschnittswerte handeln. Für die Berechnung statistischer Kennzahlen werden die einzelnen Messwerte verwendet. Die kompletten Messreihen können bei uns angefordert werden.

RIWA-Piktogramme

Visualisierung der Ergebnisse

Die in diesem Jahresbericht verwendeten Piktogramme erteilen Informationen über die Anzahl der Messungen, die Lage der höchsten gemessenen Konzentrationen im Verhältnis zum ERM-Zielwert* und den Fünf-Jahres-Trend eines Parameters. Hierdurch kann man auf einen Blick Informationen bezüglich des betreffenden Parameters sehen.

Die Farbe gibt an, wie hoch die maximale Konzentration im Vergleich zum ERM-Zielwert ist:

- o 79 % des Zielwerts (blau)
- 80 99 % des Zielwerts (orange)
- 100 % des Zielwerts oder mehr (rot)
- Kein ERM-Zielwert für diesen Parameter (keine Farbe, dafür aber ein Symbol)

Das Symbol zeigt an, ob es einen signifikanten Fünf-Jahres-Trend gibt und in welche Richtung er weist.

Trends wurden zweiseitig mit einer Zuverlässigkeit von 95% geprüft.

- Mit einem Strich wird angezeigt, dass trotz ausreichender Messdaten kein Trend nachgewiesen werden konnte.
- Mit einem Pfeil wird angezeigt, dass ein signifikanter Trend nachgewiesen wurde.

 Der Pfeil zeigt die Richtung des Trends an (steigend oder sinkend).

Die Farbfüllung zeigt an, wie viele Messungen für den Parameter ausgeführt wurden:

- 20 Messungen oder mehr, das Symbol ist weiß und der Hintergrund farbig
- 10 19 Messungen, das Symbol ist farbig und der Hintergrund weiß
- 410 Messungen, kein Symbol erscheint, und der Hintergrund ist weiß. Es werden keine Informationen bezüglich der Lage im Verhältnis zum ERM-Zielwert oder zu Trends angezeigt.

^{*} Zielwerte aus dem European River Memorandum

Allgemeine Parameter	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Abfluß Wassertemperatur Sauerstoff Sauerstoffsättigung Schwebstoffgehalt Sichttiefe (Secchi) pH-Wert Elektrische Leitfähigkeit Glührückstand, 600 °C Prozentsatz Glührest, 600 °C Gesamthärte Nieuwenein	7782-44-7	m³/s °C mg/l % mg/l m pH mS/m mg/l % S/m	5	5410 7.03 12.3 101 32 0.4 7.98 47.6 28.3 88.7 1.98	3330 3.98 14 106 16 0.7 8.06 52.5 13 82.5 2.19	2180 7.96 12.4 103 9.5 1.05 8.03 60 7.95 83 2.34	2190 14.8 10.7 97.5 13.5 0.9 8.09 56.3 11 82 2.31	1910 18.5 11.4 106 17.5 0.65 8.22 52.9 14 78.5 2.17	2020 21.9 8.83 80.8 28.5 0.55 7.82 53 24 84 1.95	1190 23.8 11.2 100 31 0.5 8.24 60.9 26.5 84.5 2.07	915 23.1 8.34 75 41 0.5 7.93 74.3 33.3 81.3 2.24	958 19.1 8.83 81.8 22 0.8 7.74 68 18 79.5 2.16	813 15.3 9.29 85.8 11.5 0.8 8.01 76.2 10.2 74 2.43	806 8.65 8.51 71.7 10.1 0.8 8.19 79.5 9.55 74.5 2.65	1820 7.5 8.3 68.4 29.1 0.7 8.23 71 15 70 2.19	359 26 26 26 103 25 26 26 26 26	732 2.92 7.73 67.5 < 0.4 7.68 39.7 7.1 69 1.76	818 5.99 8.16 69.1 8.4 0.46 7.75 49.2 8.17 69.7 1.98	1720 15.3 9.81 91.4 13 0.7 8.04 59.6 15 82 2.2	1950 14.3 10.3 89.6 19 0.688 8.04 62.5 18.6 80.6 2.21	3740 23.6 13.2 107 36.2 1 8.28 81.1 31.5 90 2.51	7430
Abfluß Wassertemperatur Sauerstoff Sauerstoffsättigung Trübungsgrad Schwebstoffgehalt Sichttiefe (Secchi) pH-Wert Elektrische Leitfähigkeit Glührückstand, 600 °C Prozentsatz Glührest, 600 °C Gesamthärte	7782-44-7	m³/s °C mg/l % FTE mg/l m pH mS/m mg/l % DS mmol/l		995 7.65 9.9 82 25 26.9 0.425 8.12 49.9 24 92	622 3.4 12.4 93 36 35.5 0.3 8.18 56.1 32 85 2.34	265 6.5 11.8 95.3 25 39.1 0.45 8.21 58 29 85 2.37	261 16.9 9.1 84.8 25 30 0.35 8.12 55.5 28 87 2.18	115 19.4 8.6 80.1 15 18.7 0.25 8.15 56.1 17 79 2.1	183 21.5 7.5 68.9 17 18 0.4 8.03 55.6 19 82 2.1	6.8 23.3 7.9 71.1 12 11.9 0.6 8.11 51.8 10 78	29.9 22.3 7.5 68.3 38 76.1 0.2 8.06 59 30 90 2.04	21.7 20.3 7.9 73.2 23 39.5 0.5 8.01 70.4 26 89 2.21	4.06 15 9.1 84 23 38 0.15 8.04 67.7 31 84 2.24	8.73 11.4 9.7 86 6.1 11.4 0.9 8.12 70.1 11 70 2.3	136 6.8 10.6 86.2 100 55.6 0.25 8.18 74.1 53 84 2.42	360 13 13 13 13 13 13 13 13 13 13	0.0118 3.4 7.5 68.3 6.1 11.4 0.15 8.01 44 10 70 1.82	2.4 4.64 7.5 68.6 8.46 11.6 0.17 8.02 47.1 10.4 73.2 1.87	40 15 9.1 84 23 30.5 0.35 8.12 56.1 28 85 2.18	219 14 9.38 81.1 28.5 32.9 0.4 8.11 59.6 25.7 84.4 2.17	718 22.9 12.2 94.4 75.2 67.9 0.78 8.2 72.6 44.6 93 2.4	1380
Nieuwersluis Wassertemperatur Sauerstoff Sauerstoffsättigung Trübungsgrad Schwebstoffgehalt Sichttiefe (Secchi) pH-Wert Elektrische Leitfähigkeit Gesamthärte	7782-44-7	°C mg/l % FTE mg/l m pH mS/m		6.8 10.4 84.6 15.5 16.1 0.55 7.93 53 2.05	2.9 12.3 91.1 14 16.2 0.7 8.05 52.4 2.19	7.1 11.4 93.3 6.7 9.4 1.1 8.11 63.5 2.46	15.9 9 83.5 7.6 10.9 1.2 8.1 58.9 2.25	18.9 8.5 79.3 8.2 13.9 1.1 8.1 57 2.16	21 8.2 75.6 12 17.9 0.7 8.12 58.3 2.15	23.6 8.3 74.4 9.8 15.7 0.9 8.18 53.3 2	23.3 7.9 71.1 9.3 11.5 0.9 7.99 62.6 1.94	18.8 8.2 76.5 9.2 14.6 0.9 7.93 66.4 2.09	12.4 9.7 87.2 8 15.6 0.6 8.11 67.8 2.28	11.3 10.1 89.4 9.7 11.1 0.7 8.07 73.1 2.5	7.7 11 91.2 12 17.4 0.7 8.1 77.7 2.48	13 13 13 13 13 13 13 13	2.9 7.9 71.1 6.7 9.1 0.5 7.83 51.8 1.94	4.3 8.02 72.4 7.06 9.22 0.54 7.87 52 1.96	12.4 9.7 83.5 9.7 14.6 0.7 8.1 58.9 2.16	13.6 9.65 83.2 10.6 14.3 0.815 8.05 61.3 2.2	23.5 11.9 92.5 18.2 21 1.16 8.16 75.9 2.49	23.6 2 12.3 9 93.3 9 21 9 23 9 1.2 9 8.18 9 77.7 9 2.5 9
Andijk Wassertemperatur Sauerstoff Sauerstoffsättigung Trübungsgrad Schwebstoffgehalt Sichttiefe (Secchi) pH-Wert Sättigungsindex Elektrische Leitfähigkeit Gesamthärte	7782-44-7	°C mg/l % FTE mg/l m pH SI mS/m		3.74 11.9 92.6 18.7 21.2 0.65 8.29 0.566 59.8 2.27	2.8 13.4 91.8 35 65.7 1.5 8.3 0.558 54.2 2.2	2.53 13.1 100 5.1 4.8 1.2 8.36 0.658 58.3 2.31	11.3 9 83.4 1.1 1.5 2 8.47 0.848 58.4 2.15	17.8 9 84 4.3 7.7 1 8.4 0.865 60 2.19	20.1 8.3 77.2 2.2 4.7 1.2 8.57 1 63.2 2.12	22.5 8.2 74.9 8.1 17.6 0.9 8.58 0.694 59.6 1.64	21.2 7.2 66.3 14 24 0.5 8.51 0.625 83.2 1.92	17.4 8.8 82.1 7.6 18.6 0.6 8.69 0.813 81.3 1.94	13.3 9.9 90.5 12 28.8 0.5 8.52 0.672 88.1 2.13	8.08 10.9 96 10 22.1 0.7 8.3 0.538 84.3 2.31	5.38 11.5 92.5 120 24.3 0.4 8.24 0.434 91.2 2.41	53 13 13 13 13 13 53 53 53 53	0 7.2 66.3 1.1 1.5 0.4 8.13 0.24 51.9	2.76 7.6 69.8 1.54 2.78 0.4 8.22 0.412 55.1 1.71	12.8 9.9 90.5 8.1 18.6 0.9 8.36 0.68 62.3 2.15	12.1 10.2 86.5 19.8 20.2 0.908 8.43 0.685 70.3 2.13	22 13.3 98.4 86 52.2 1.8 8.74 1 91.8 2.47	24.9
Haringvliet Wassertemperatur Sauerstoff Sauerstoffsättigung Trübungsgrad Schwebstoffgehalt pH-Wert	7782-44-7	°C mg/l % FTE mg/l pH	2	8.28 11.4 95.1 25.3 16.9 8.02	5.13 11.8 92.6 10.5 12.7 8.13	4.6 12.6 96.9 3.06 2.85 8.32	12.1 10.4 92.2 4.02 5.43 8.15	18.1 9.28 85.8 4.53 5.36 8.24	21.1 7.95 73.3 4.27 4.03 7.98	23.3 8.36 75.2 3.93 3.28 8.07	23.8 6.6 58.7 1.95 2.4 7.89	18.6 8.37 77.9 4.52 3.97 7.99	14.4 8.58 78.3 3.17 12.7 8	8.78 10.8 91.2 1.66 5.7 8.27	7.25 11.2 91.9 3.24 4.35 8.3	47 47 47 47 47 47 46	1.7 5.7 51.8 0.62 < 7.7	5.1 7.5 68.6 1.51 < 7.84	14.1 10.1 90.5 3.4 3.6 8.17	13.6 9.89 85.2 6.29 6.86 8.13	22.6 12 96.6 14.8 18.4 8.35	25.1

Allgemeine Parameter Haringvliet (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Elektrische Leitfähigkeit Glührückstand, 600°C Prozentsatz Glührest, 600°C Gesamthärte Gesamthärte (nach Filtr. 0.45 µM)		mS/m mg/l % DS mmol/l mmol/l	5	42.4 36 91.5 1.77	43.7	55.8 < 2.06	53.8 < 2.02	54 <	53.8 < 2 2.06	52 < 1.82	58.5 < 1.83 1.82	67.3 < 2.01	72.3 < 2.15	77 < 2.26 2.29	77.8 < 2.05	47 13 2 12 3	38 < * 1.73 *	42.4 < * 1.75 *	55 < * 2.02 *	58.6 7.65 * 1.98	77 38 * 2.22 *	82 46 2 2.26 2 2.26 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Radioaktivität																						
Lobith																						
Gesamt beta Aktivität Gesamt alpha Aktivität		Bq/I Bq/I		0.133 0.054	0.13 0.046	0.145 0.059	0.132 0.019	0.13 0.039	0.122 0.044	0.166 0.063	0.206 0.072	0.174 0.055	0.185 0.07	0.177 0.048	0.205 0.067	13 13	0.122 0.019	0.122 0.027	0.145 0.055	0.157 0.0531	0.206 0.0712	0.206 = 0.072 =
beta Aktivität (Gesamt -K40)		Bq/I		0.0455	0.031	0.037	0.024	0.028	0.029	0.039	0.05	0.027	0.032	0.002	0.027	13	0.002	0.0108	0.031	0.0321	0.0484	0.05
Tritium Aktivität	10028-17-8			3.59	1.72	4.24	1.73	10.2	5.92	3.89	2.11	1.76	6.34	2.97	3.96	13	1.59	1.64	3.89	4	8.66	10.2
Strontium-90	10098-97-2	- 12	0.001	<	<		<		<		0.00235		<		<	7	<	*	*	<		0.00235
polonium-210	7440-08-6	100	0.0001	0.00051	<		0.0588		<		0.0537		0.00099		<	7	<	*	*	0.0163	*	0.0588
Radium-226	13982-63-3	Bq/I		0.0026	0.00571		0.00241		0.00223		0.00464		0.00329		0.0142	7	0.00223	*		0.00501	*	0.0142
Radium-228	7440-14-4	Bq/l	0.0001	<	0.0005		0.00036		<		0.00122		0.00035		0.001	7	<	*	* (0.000504	*	0.00122
Nieuwegein																						
Gesamt beta Aktivität		Bq/I	0.2	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< □
Gesamt alpha Aktivität		Bq/I	0.05		<			<			0.06			<		4	<	*	*	<	*	0.06
beta Aktivität (Gesamt -K40)		Bq/I	0.2	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< □
Tritium Aktivität	10028-17-8	Bq/I	2		6.2			4.1			4.8			<		4	<	*	*	4.02	*	6.2
Andijk																						
Gesamt beta Aktivität		Bq/I	0.2	<	<	<	<	<	<	<	0.2	0.2	0.2	0.2	0.2	13	<	<	<	<	0.2	0.2
Gesamt alpha Aktivität		Bq/I	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< □
beta Aktivität (Gesamt -K40)		Bq/I	0.2	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< □
Tritium Aktivität	10028-17-8	Bq/l	2	<	2	<	3.4	2.3	2.4	2.2	<	3.1	<	<	2.6	13	<	<	2.2	<	3.28	3.4
Haringvliet																						
Gesamt beta Aktivität		Bq/I		0.13			0.16		0.14		0.15		0.19			5	0.13	*	*	0.154	*	0.19
Gesamt alpha Aktivität		Bq/I	0.04	<			<		<		<		<			5	<	*	*	<	*	<
beta Aktivität (Gesamt -K40)		Bq/I		0.026			0.027		0.026		0.027		0.029			5	0.026	*	*	0.027	*	0.029
Tritium Aktivität	10028-17-8	Bq/I	3	<		4.1	4.7		5.4	4.7	4.5	4.7	3.8	3.3	3.9	12	<	<	4.3	4.11	5.75	6.2
Anorganische Stoffe																						
Lobith																						
Hydrogencarbonat	71-52-3	mg/l		155	190	180	190	180	160	170	180	170	180	190	180	13	150	154	180	175	190	190 🖃
Chlorid	16887-00-6	0.		63.6	62.8	80.1	68.2	71.3	65	88.4	124	103	131	130	115	26	41.5	60	83.2	92	139	143
Chlorid (Fracht)		kg/s		277	153	172	141	142	136	104	116	103	105	104	136	25	100	102	127	145	229	371 🖃
Sulfat	14808-79-8	-		39.7	51	60.7	56.1	56.6	51.4	62.7	76.3	71.9	78.8	83.9	71	26	33.7	42.8	60.6	62.9	82.5	89 🗀
Silikat (Si)	7631-86-9	0.		3.52	3.42	2.89	1.59	1.35	2.22	0.663	1.02	1.92	2.18	2.58	2.78	26	0.574	0.85	2.21	2.18	3.51	3.67
Bromid	24959-67-9	mg/l	0.01	0.09	0.1	0.14	0.15	0.14	0.1	0.21	0.58	<	0.19	0.32	0.3	13	<	0.031	0.14	0.186	0.476	0.58
Bromid (Fracht)		kg/s		0.436	0.214	0.282	0.285	0.277	0.209	0.233	0.553	0.00496	0.169	0.27	0.308	13	0.00496	0.0706	0.277	0.283	0.527	0.553
Fluorid	16984-48-8			0.129	0.13	0.132	0.135	0.127	0.151	0.176	0.157	0.154	0.184	0.181	0.187	13	0.122	0.124	0.151	0.152	0.186	0.187
Fluorid (Fracht)		kg/s		0.633	0.278	0.266	0.256	0.251	0.315	0.195	0.15	0.153	0.164	0.153	0.192	13	0.15	0.151	0.251	0.28	0.64	0.667
Cyanid-CN, Gesamt	57-12-5	-	2	<	<	2.4	<	3	<	<	<	76	2.3	2.1	<	13	<	<	<	7.25	46.8	76
Bromat	15541-45-4		1					<	<	<	<	<	<	<	<	8	<	*	*	<	*	<
Nieuwegein		1 3/																				
Kohlendioxyd	124-38-9	mg/l		2.6	2.9	2.3	2.4	2	2.4	2	2.2	2.5	2.7	2.5	2.6	13	2	2	2.5	2.44	2.82	2.9
Hydrogencarbonat	71-52-3	0.		167	196	179	189	175	162	165	159	162	170	175	194	13	159	160	172	174	195	196
Carbonat	16518-46-0	3,	5	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ☑
Chlorid	16887-00-6	0.	·	59.5	67	72	67	71	76	65	89	114	109	120	117	25	44	66.2	109	98.1	120	124
Chlorid (Fracht)		kg/s		50.7	28.8	18.5	7.03	14	26.5	0.65	3.49	2.35	1.09	1.2	2.36	25	0.65	1.09	1.2	9.13	35.8	55.1
Sulfat	14808-79-8			41.7	52	57	54	55	56	53	62	71	69	73	75	13	37.5	40.9	56	58.5	74.2	75
		y, 1		11.7	02	0,	01	- 00	- 00		V.		- 00	, 0	, ,	10	37.0	10.0	- 00	50.0	, 1.2	

Anorganische Stoffe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein (Fortsetzung) Silikat (Si)	7631-86-9	mg/l		3.2	3.04	2.62	1.54	0.561	1.92	1.68	1.12	0.234	1.68	2.38	2.38	13	0.234	0.365	1.92	1.97	3.21	3.23
Bromid	24959-67-9	mg/l		0.0995	0.15	0.16	0.16	0.24	0.18	0.2	0.32	0.3	0.4	0.43	0.38	13	0.079	0.0954	0.2	0.24	0.418	0.43
Bromid (Fracht)		kg/s		0.0865	0.0645	0.0411	0.0168	0.0472	0.0628	0.002	0.0125	0.00612	0.004	0.0043	0.0038	13	0.002	0.00272	0.0168	0.0337	0.089	0.0989
Fluorid	16984-48-8	mg/l		0.125	0.13	0.12	0.13	0.12	0.13	0.13	0.14	0.16	0.15	0.15	0.15	13	0.12	0.12	0.13	0.135	0.156	0.16
Fluorid (Fracht)		kg/s		0.118	0.0559	0.0308	0.0136	0.0236	0.0453	0.0013	0.00549	0.00326	0.0015	0.0015	0.0015	13	0.0013	0.00138	0.0136	0.0324	0.127	0.163
Cyanid-CN, Gesamt	57-12-5		2	<	<	<	<	<	<			<	<	<	<	13	<	<	<	<	<	<
Bromat	15541-45-4	μg/l	0.5	<	0.525	0.6	0.65	0.55	<	<	0.85	1.05	0.95	1.3	1.7	26	<	<	0.65	0.719	1.7	1.7
Nieuwersluis		13,																				
Hydrogencarbonat	71-52-3	mg/l		185	190	200	190	190	180	170	160	160	180	190	200	13	160	160	190	183	200	200 🖃
Chlorid	16887-00-6	0.		64	53	81	73	70	75	68	99	118	108	111	125	13	53	55.8	75	85.3	122	125
Sulfat	14808-79-8	mg/l		43	51	61	56	53	54			67	66	71	80	13	42.6	42.9	56	58.8	76.4	80
Bromid	24959-67-9			0.11	0.12	0.2	0.16	0.2	0.25			0.32	0.41	0.44	0.4	13	0.1	0.108	0.22	0.258	0.428	0.44
Fluorid	16984-48-8	0.		0.127	0.123	0.12	0.131	0.131	0.161			0.166	0.18	0.245	0.174	13	0.116	0.117	0.135	0.151	0.219	0.245
Cyanid-CN, Gesamt	57-12-5	0.	1	<	<	<	<	<	<			<	<		*****	11	<	<	<	<	<	1 🖻
Andijk		F 3/ ·	-	•																		
Kohlendioxyd	124-38-9	mg/l		1.98	2.08	1.95	1.28	1.18	0.75	0.54	0.65	0.5	0.76	1.7	2.02	53	0.1	0.3	1.3	1.28	2.2	2.3
Hydrogencarbonat	71-52-3			173	177	191	177	171	157			117	132	164	165	53	87	106	164	153	187	223
Carbonat	16518-46-0	mg/l	5	<	<	<	<	<	5.37			<	<	<	<	53	<	<	<	100	6	10
Chlorid	16887-00-6		3	87	70.3	73.5	75.4	82.8	103			179	199	170	192	53	59	71.8	107	129	199	265
Sulfat	14808-79-8	0.		53.2	47.4	56	59	57	59			148	68	73	70	13	47.3	47.3	59	67.1	118	148
Silikat (Si)	7631-86-9	mg/l	0.234	3.16	3.51	3.51	2.8	2.43	1.4			0.514	0.467	0.28	0.841	13	+1.5 <	41.5	1.4	1.76	3.53	3.55
Bromid	24959-67-9	-	0.234	0.10	0.13	0.01	2.0	0.2	1.4	`	0.740	0.514	0.407	0.20	0.041	10	0.13	*	*	0.323	3.33 *	0.49
Fluorid	16984-48-8	mg/l		0.125	0.13	0.12	0.12	0.12	0.13	0.13		0.15	0.16	0.47	0.14	13	0.13	0.12	0.13	0.323	0.156	0.45
Cyanid-CN, Gesamt	57-12-5	mg/l	2			0.12							0.10			13			0.13			<
Cyanid-GN, Gesanit Bromat		10.	0.5	<	<	<	<	<	<	(<	<	<	<	13	<	< *	< *	<	< *	
	15541-45-4	μg/l			6.3			<			<			<		4	<	*	*	<	*	6.3
Chlorat Haringvliet	7790-93-4	μg/l	5		0.3			<			<			<		4	<		-	<		0.3
· ·	71 50 0	m = /I		150		100	100		100	15/	150	150	100	170	100	10	150	150	100	100	107	190 🖃
Hydrogencarbonat	71-52-3	mg/l	5	150		180	180		165			150	160	170	190	12	150	150	160	163	187	*
Carbonat Chlorid	16518-46-0	mg/l	3	40.0	42.2	0.00	CO 2	71.0	70.5	70 /		100	120	105	100	47	25	AE C	74	00.0		150
	16887-00-6	0.		48.8	43.3	68.8	69.3	71.8	73.5			120	128	135	128		35	45.6	74	86.6	130	
Sulfat	14808-79-8	0.		35		52	48		55.5			68	73	71	80	12	31	33.4	55.5	57.2	77.9	80 -
Silikat (Si)	7631-86-9	mg/l		3.35		2.7	1.3		1.5			2.1	2.4	2.7	2.8	12	1.2	1.2	2.3	2.26	3.37	
Fluorid	16984-48-8	0.		0.118		0.14	0.17		0.13			0.15	0.18	0.15	0.16	12	0.096	0.096	0.145	0.141	0.177	
Cyanid-CN, Gesamt	57-12-5	10.	I	<		<	<		<			<	<	<	<	12	<	<	<	<	<	
Sulfid	18496-25-8	μg/l	20	37		<	<		<		,	<	<	34	<	12	<	<	<	<	43.8	48
Bromat	15541-45-4	μg/l	0.2	<			0.46		0.68		0.62		0.98			5	<	*	*	0.568	*	0.98
Chlorat	7790-93-4	μg/l	50					<	<	•		<	<	<	<	12	<	<	<	<	<	<
Chlorit	14998-27-7	μg/l	40										<	<	<	6	<	*	*	<	*	<
Phosphor (nach destruktion)	12185-10-3	μg/l		110		58		32							67	4	32	*	*	66.8	*	110
Nährataffa																						
Nährstoffe Lobith																						
		r 11	0.0100	0.110	0.10	0.000	0.0017		0.0004	0.000	0.0514	0.040	0.0710	0.100	0.224	00			0.00	0.0000	0.000	0.261
Stickstoff, Ammonium-NH4		mg/l	0.0129	0.116	0.12	0.093	0.0217	<	0.0334			0.048	0.0712	0.139	0.234	26	<	<	0.06	0.0802	0.209	2.6
Stickstoff nach Kjeldahl	44707.05.0	mg/l	0.2	0.867	0.3	1.25	0.6	1.7	1.6			0.9	0.6	0.75	1.25	26	<	<	0.65	0.885	2.13	2.6
Nitrit (NO2)	14797-65-0	0.	0.0328	0.0916	0.101	0.101	<	< 7.00	<			<	<	<	0.103	26	< .	<	<	0.0455	0.115	0.127
Nitrat (NO3)	14797-55-8	mg/l	0.0000	14.2	13.1	14	11.5	7.99	8.81	5.69		8.01	9.56	10.6	12.4	26	5.18	5.57	9.94	10.1	14.2	
Ortho-Phosphat (PO4)		mg/l	0.00307	0.154	0.126	0.0978	0.059	0.037	0.183			0.192	0.157	0.183	0.208	26	<	0.00538	0.14	0.117	0.195	0.231
Gesamtphosphat (PO4)		mg/l		0.268	0.208	0.172	0.136	0.107	0.285	0.11	0.178	0.313	0.256	0.282	0.322	26	0.0859	0.117	0.233	0.22	0.316	0.368
Nieuwegein																						
Stickstoff, Ammonium-NH4		mg/l		0.1	0.11	0.1	0.09	0.12	0.07	0.08		0.15	0.15	0.17	0.28	13	0.07	0.074	0.11	0.123	0.236	0.28
Stickstoff nach Kjeldahl		mg/l	1	1.85	<	4.6	3.2	<	<			<	<	<	1.3	13	<	<	<	1.35	4.04	4.6
Stickstoff org. Gebunden (N)	7727-37-9	mg/l	1	1.75	<	4.5	3.1	<	<	<	1.1	<	<	<	1	13	<	<	<	1.28	3.94	4.5

Nährstoffe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein (Fortsetzung) Nitrit (NO2) Gesamtstickstoff (N) Nitrat (NO3) Ortho-Phosphat (PO4) Gesamtphosphat (PO4) Nieuwersluis	14797-65-0 14797-55-8	mg/l mg/l mg/l mg/l mg/l		0.105 4.82 13 0.205 0.33	0.094 2.72 11.9 0.13 0.31	0.08 7.54 12.9 0.12 0.23	0.06 5.85 11.7 0.22 0.23	0.071 1.74 7.62 0.09 0.19	0.055 2.07 9.11 0.23 0.29	0.064 1.24 5.42 0.18 0.21	0.048 2 3.64 0.24 0.44	0.14 1.3 5.69 0.12 0.28	0.151 1.5 6.44 0.27 0.36	0.125 1.8 7.8 0.22 0.3	0.087 3.4 9.03 0.26 0.6	13 13 13 13 13	0.048 1.24 3.64 0.09 0.19	0.0508 1.26 4.35 0.102 0.198	0.087 2.07 9.03 0.22 0.3	0.0912 3.14 9.01 0.192 0.315	0.147 6.86 13 0.266 0.536	0.151
Stickstoff, Ammonium-NH4 Stickstoff nach Kjeldahl Stickstoff org. Gebunden (N) Nitrit (NO2) Nitrat (NO3) Ortho-Phosphat (PO4) Gesamtphosphat (PO4) Andijk	7727-37-9 14797-65-0 14797-55-8	mg/l mg/l mg/l mg/l mg/l mg/l	0.2 1	0.4 0.95 < 0.132 10.5 0.21 0.365	0.26 0.9 < 0.13 11.2 0.17 0.32	0.18 1.5 < 0.087 12.7 0.13 0.23	0.11 1.7 < 0.071 10.7 0.2 0.26	0.11 0.7 < 0.054 7.05 0.22 0.35	0.06 < < 0.054 7.6 0.24 0.385	0.05 0.6 < 0.038 6.76 0.31 0.397	0.17 0.6 < 0.068 4.62 0.27 0.295	0.34 0.9 < 0.182 5.7 0.23 0.33	0.07 0.3 < 0.063 7.15 0.27 0.425	0.18 0.8 < 0.093 8.61 0.23 0.35	0.16 1.2 7.8 0.07 9.3 0.22 0.36	13 13 13 13 13 13 20	0.05 < 0.038 4.62 0.13 0.23	0.054 < < 0.0444 5.05 0.146 0.26	0.17 0.8 < 0.071 8.61 0.23 0.35	0.192 0.862 1.16 0.0902 8.65 0.224 0.347	0.502 1.62 5.28 0.169 12.1 0.294 0.464	0.61
Stickstoff, Ammonium-NH4 Stickstoff nach Kjeldahl Stickstoff org. Gebunden (N) Nitrit (NO2) Nitrat (NO3) Ortho-Phosphat (PO4) Gesamtphosphat (PO4)	7727-37-9 14797-65-0 14797-55-8	mg/l mg/l mg/l mg/l mg/l mg/l	0.02 1 1 0.007 0.89 0.06	0.12 1.63 1.1 0.0825 11.6 0.15 0.26	0.09 < 1.3 0.066 13 0.12 0.5	0.03 1.53 1.8 0.038 11.8 0.06 0.12	0.06 < 0.066 9.58 < 0.06	0.05 3.37 < 0.024 7.6 < 0.14	0.06 < < 0.03 5.27 < 0.08	<	0.09 3.05 9.5 0.018 < < 0.29	0.21 1.2 1.1 < 1.01 0.09 0.22	< c c c c c c c c c c c c c c c c c c c	0.04 < < 0.011 1.58 < 0.15	1.11.50.0172.20.080.18	13 35 13 13 13 13	< < < < < < < < < < < < < 0.06	<	0.06 1.1 1.1 0.024 5.27 < 0.19	0.0692 1.49 1.62 0.0347 5.89 0.0677 0.208	0.186 2.16 6.42 0.0834 13 0.15 0.424	0.21
Haringvliet Stickstoff, Ammonium-NH4 Stickstoff nach Kjeldahl Stickstoff org. Gebunden (N) Nitrit (NO2) Nitrat (NO3) Ortho-Phosphat (PO4) Gesamtphosphat (PO4)	7727-37-9 14797-65-0 14797-55-8	mg/l mg/l mg/l mg/l mg/l mg/l	0.3	0.108 0.58 0.47 0.0845 14 0.172 0.429		0.1 0.53 0.11 13 0.184	0.16 0.77 0.65 0.053 23 0.132	0.53 0.054	0.135 0.42 0.31 0.1 6.8 0.173	0.038 0.72 0.082 3.9 0.0859	0.17 0.55 0.42 0.18 3.8 0.337 0.49	0.13 0.41 0.07 4 0.307 0.37	0.11 0.4 0.31 0.063 5.1 0.291 0.37	0.12 0.6 0.049 5.8 0.307 0.37	0.12 0.6 0.052 8.2 0.236	12 12 5 12 12 12 12	0.038 0.4 0.31 0.049 3.8 0.0859	0.0524 0.403 * 0.0499 3.83 0.0895 *	0.125 0.56 * 0.0695 6.8 0.21	0.12 0.558 0.432 0.0818 9.03 0.214 0.318	0.167 0.755 * 0.159 20.6 0.328	0.17
Gruppenparameter Lobith TOC (gesamter organischer Kohlenstoff) DOC (gelöster organischer Kohlenstoff) CSB (chemischer Sauerstoffbedarf) BSB (biochemischer Sauerstoffbedarf) Färbung 410 NM AOX (ads. org. geb. Chlor) EOX (extr. org. geb. Halogene) Nieuwegein		mg/l mg/l mg/l mg/l 1/m µg/l	1	3.63 2.75 11.5 1.5 17.3	2.65 2.5 6 < 1.73 8.05	2.55 2.25 9 1 1.61 13	2.5 2.8 10 2 1.59 12.9	2.45 2 6 1 1.95 10.7	3.3 2.6 13 1 2.49 9.55	2.75 1.95 12 2 2.91 12.8	2.9 2.17 15 4 3.05 29.3	2.3 2.25 12 1 2.05 16.8	2.35 2.1 11 1 1.72 21	2.95 2.15 10 1	3.1 2.4 8 1	26 25 13 13 17 26 13	2.1 1.9 6 < 1.44 6.4	2.34 2 6 < 1.55 7.33	2.65 2.2 10 1 2.07 13	2.82 2.32 10.4 1.42 2.23 16	3.63 3 14.2 3.2 3.17 29.2	4.1 3.2 15 4 1 3.42 42 42 42 42 4
TOC (gesamter organischer Kohlenstoff) DOC (gelöster organischer Kohlenstoff) CSB (chemischer Sauerstoffbedarf) Spektraler Absorptionskoeffizient bei 254 NM Färbung , Pt/Co Skala Mineralöl (GC-Methode) TAK (ges. anorg. geb. Kohlenstoff Nieuwersluis		mg/l mg/l mg/l 1/m mg/l mg/l mmol/l	5 0.05	3.31 3.17 8.25 9.7 23 <	2.51 2.38 13 6.5 9 <	2.66 2.63 18 6.9 9 <	2.58 2.66 5.5 7 10 <	2.81 2.73 6.8 7.4 10 <	2.44 2.45 12 7.1 12 < 2.7	2.97 2.92 < 7.5 10 < 2.8	3.24 2.9 14 6.9 10 <	2.78 2.55 9.9 6.4 10 <	2.49 2.67 12 6.4 9 <	2.74 2.72 8.3 6.8 9 <	3.16 2.82 12 6.8 10 <	13 13 13 13 13 13 13	2.44 2.38 < 6.4 9 < 2.7	2.46 2.41 < 6.4 9 < 2.7	2.78 2.72 12 6.9 10 <	2.85 2.75 10 7.32 11.8 <	3.38 3.21 16.4 10 24.8 < 3.26	3.48
TOC (gesamter organischer Kohlenstoff) DOC (gelöster organischer Kohlenstoff) CSB (chemischer Sauerstoffbedarf) Spektraler Absorptionskoeffizient bei 254 NM		mg/l mg/l mg/l 1/m	5	5.66 5.55 17.9	3.45 3.53 21 10	3.19 3.18	3.12 3.12 8.2	3.19 3.1 7 8.2	2.78 2.77 7.3	3.05 3.03 7.8	3.33 3.21 10 7.6	3.83 3.74	2.89 2.92 7	2.66 2.78 < 6.8	2.62 2.74 6.6	13 13 4 13	2.62 2.74 < 6.6	2.64 2.75 * 6.68	3.19 3.12 *	3.49 3.48 10.1 9.48	5.87 5.77 * 18.5	6.71 6.66 21 21.3 \(\sigma\)

Gruppenparameter Andiik	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Anionen Kationen Ionenbilanz TOC (gesamter organischer Kohlenstoff) DOC (gelöster organischer Kohlenstoff) CSB (chemischer Sauerstoffbedarf) Spektraler Absorptionskoeffizient bei 254 NM Färbung , Pt/Co Skala Mineralöl (GC-Methode) Haringvliet		meq/I meq/I % mg/I mg/I 1/m mg/I	0.05	7.56 6.69 24.3 20.6 28	6 6.22 3.7 7 6.44 22 18.9 24	5.83 5.47 20.5 16.6 18	5.25 5.32 8.65 13.8 13	6.57 6.52 0.7 5.96 5.4 20.5 15.2	5.29 5.23 20.5 12 11	6.38 5.85 39 12 12	8.38 7.96 5 8.14 6.43 35 11.2	10.4 6.51 25.5 11.4 10	6.66 6.14 41.5 10.5 10	9.05 9.21 1.7 5.61 4.67 27 10 10	7.84 5.33 27.5 9.3 8	4 4 4 13 53 25 13 13	6 6.22 0.7 5.25 4.36 7.3 9.3 8	* * 5.27 4.68 13.6 9.58 8.8 *	* * 6.66 5.74 25 12 12	7.5 7.48 2.78 6.88 5.8 26.5 14 15.2	* 9.5 6.73 43.2 21.8 30.6 *	9.05 9.21 5 10.4 9.03 9.05 9.21
DOC (gelöster organischer Kohlenstoff) CSB (chemischer Sauerstoffbedarf) BSB (biochemischer Sauerstoffbedarf) Färbung , Pt/Co Skala AOX (ads. org. geb. Chlor)		mg/l mg/l mg/l mg/l µg/l	3	3.7 14 15		3.9	4.7 10 15		3.1 10 < 11 12.2	3.9	3 10 < 8 15	2.9	5.6 17	3.6 8 <	3.4	12 3 3 5 12	2.9 * * 5.6 9.3	2.9 * * * * 9.51	3.4 * * * *	3.5 * * 9.72 14.8	4.49 * * * * 18.7	4.7 *
Summenparameter Lobith Wolman-Salze (Summe As, Cr, Cu) Wolman-Salze (Summe As, Cr, Cu) (Fracht) Summe PAK (6 nach Borneff) Summe PAK (10 nach WLB-NL) Nieuwegein		µg/l g/s µg/l µg/l		6.71 33.1 0.0352 0.0617	3.83 8.18 0.0156 0.0323	3.19 6.44 0.0215 0.0344	5.41 10.3 0.0192 0.0362	4.38 8.67 0.0155 0.0287	6.91 14.4 0.0236 0.0412	6.9 8.13 0.0455 0.0933	9.75 9.23 0.142 0.283	7.4 7.38 0.0901 0.202	6.52 5.26 0.0665 0.142	5.95 4.8 0.0683 0.138	5.83 7.11 0.0623 0.128	21 21 13 13	3.19 4.72 0.0155 0.0287	3.94 4.95 0.0156 0.0301	6.38 7.99 0.0361 0.0628	6.59 10.6 0.0493 0.0987	8.84 28.1 0.121 0.251	11.8 = 34.9 = 0.142 = 0.283 =
Wolman-Salze (Summe As, Cr, Cu) Wolman-Salze (Summe As, Cr, Cu) (Fracht) Trihalogenmethane (Summe THM) Summe PAK (6 nach Borneff) Summe PAK (USEPA) Summe PAK (10 nach WLB-NL) Aromate (Summe)		µg/l g/s µg/l µg/l µg/l µg/l	0.03 0.05	0.019 0.072 0.0405	9.13 3.92 < 0.0126 0.0486 0.0275	8.91 2.29 < 0.0202 0.124 0.0663 0.9	8.36 0.877 < 0.0263 0.1 0.0663 0.05	7.77 1.53 < 0.0233 0.0754 0.0496 0.05	6.51 2.27 < 0.015 0.0514 0.0374 0.14	8.68 0.0868 < 0.015 0.0378 0.0283 0.06	11.2 0.439 < 0.0323 0.0775 0.0648 0.08	13.5 0.276 < 0.0175 0.0329 0.0234 0.05	10.9 0.109 < 0.0468 0.104 0.0844	7.3 0.073 < 0.0215 0.0585 0.0436	15.3 0.153 < 0.0384 0.117 0.0829 0.06	13 13 13 13 13 13	4.31 0.073 < 0.0122 0.0329 0.0234	5.19 0.0785 < 0.0123 0.0348 0.025	8.91 0.877 < 0.0215 0.0754 0.0496 0.05	9.41 2.14 < 0.0236 0.0746 0.0504 0.118	14.6 9.48 < 0.0434 0.121 0.0838 0.596	15.3
Nieuwersluis Wolman-Salze (Summe As, Cr, Cu) Trihalogenmethane (Summe THM) Summe PAK (6 nach Borneff) Summe PAK (USEPA) Summe PAK (100 nach WLB-NL) Aromate (Summe) Andiik		µg/l µg/l µg/l µg/l µg/l	0.03	0.0886 0.247 0.198	5.43 < 0.0547 0.119 0.0972 <	5.1 < 0.0567 0.124 0.0994 0.08	4.91 < 0.0167 0.0471 0.0336 0.05	5.48 < 0.0286 0.0666 0.0479 0.08	6.12 < 0.0216 0.0502 0.0352 0.05	6.3 < 0.0224 0.0521 0.0432 0.13	5.97 < 0.0317 0.0587 0.0475 0.08	7.11 < 0.121 0.228 0.206 <	6.7 < 0.0678 0.16 0.138 0.06	6.93 < 0.0364 0.0812 0.0627 <	7.79 < 0.0356 0.104 0.0786 <	13 13 13 13 13 13	4.33 < 0.0167 0.0471 0.0336	4.56 < 0.0187 0.0483 0.0342	6.12 < 0.0356 0.0979 0.0627 0.05	6.09 < 0.0516 0.122 0.0988 0.0542	7.52 < 0.138 0.329 0.291 0.11	7.79
Wolman-Salze (Summe As, Cr, Cu) Trihalogenmethane (Summe THM) Summe PAK (6 nach Borneff) Summe PAK (USEPA) Summe PAK (10 nach WLB-NL) Pestizide (Summe von 35) Aromate (Summe)		µg/l µg/l µg/l µg/l µg/l	0.03 0.1 0.05	0.0183 0.0327	7.45 < 0.0224 0.0652 0.0408 < <	3.26 < 0.00655 0.0151	2.72 < 0.00269 0.01 0.06	3.08 < 0.00384 0.0317 0.0093	2.87 < 0.00233 0.00779		3.24 0.03 0.00383 0.0317 0.00929 <		3.91 < 0.00684 0.0142	4.75 < 0.00866 0.0432 0.0192 < <	4.19 < 0.0062 0.0197	4	2.72 < 0.00233 0.0317 0.00779 *	2.78 < 0.00243 * 0.00789 *	3.7 < 0.0062 * 0.0142 *	4.16 < 0.00819 0.043 0.0176 *	6.87 0.03 0.0269 * 0.046 *	7.45
Haringvliet Wolman-Salze (Summe As, Cr, Cu) Trihalogenmethane (Summe THM) Summe PAK (6 nach Borneff) Summe PAK (10 nach WLB-NL)		µg/l µg/l µg/l	0.1	8.88 < 0.0566 0.1	2.78 0.00397 0.0125	2.62 < 0.00589 0.0138	6.03 < 0.0301 0.0516	3.3 0.00701 0.0152	4.63 < 0.0131 0.0264	4.09 < 0.00645 0.0143	4.92 < 0.0103 0.0188	4.87 0.17 0.0137 0.0255	4 < 0.00769 0.0171	3.68 < 0.00935 0.0212	4.1 < 0.0111 0.0256	13 17 13 13	2.62 < 0.00397 0.0125	2.69 < 0.00474 0.013	4.1 < 0.0103 0.0212	4.83 < 0.0178 0.034	9.16 < 0.0576 0.102	10.3

Biologische Parameter Lobith	CAS-Nr.	. Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Coliforme Bakterien (37 °C, nicht best.) Coliforme Bakterien (37 °C, best.) Thermotol. Bakterien Coligruppe (44 °C nicht best.) Escherichia coli (best.) Enterokokken spp Intestinale Enterokokken Somatische Coliphagen Clostridium perfringens-b koloniebildende Einheiten 20 °C, R2A 7 Tage		n/100 ml n/100 ml n/100 ml n/100 ml n/100 ml n/100 ml n/100 ml n/100 ml	1	10100 19900 3700 2670 750 568 7450 275 26600	470 980 260 152 120 86 3260 36 6500	1100 1050 280 276 47 45 2490 140	14 2420 320 178 3 0 1650 130	480 738 120 107 8 8 680 46	1000 2420 560 140 25 11 1740 200 2500	< 9800 160 50 1 6 820 46 3900	3500 2400 1050 35 51 6500 97 16100	400 10500 280 9 11 16 1450 55 2230	340 727 180 63 84 5 2430 39	510 649 260 78 28 19 5630 29 3200	54000 14000 92700 1500 1400 25200 260 16500	13 10 13 13 13 13 13 13 13	< 649 120 9 1 0 680 29 440	5.9 657 136 25.4 1.8 2 736 31.8 710	510 1730 280 152 35 19 2490 97 3550	6310 4910 2020 7700 259 214 5130 125 8980	39200 18900 10400 56800 1380 1150 18700 314 35100	54000
koloniebildende Einheiten 22°C, 3 Tage GGA Coliforme Bakterien (37°C, nicht best.) Coliforme Bakterien (37°C, best.) Escherichia coli (best.) Enterokokken spp Enterokokken spp (nicht best.) Clostridia, Sporen SO3-Reduz. Clostr. Perfringens (mit Sporen) F-spezifische RNA-Bakteriofagen koloniebildende Einheiten 20°C, R2A 7 Tage		n/ml n/100 ml	10 100 0.01	5150 2750 1110 385 154 154 480 295 0.02	2600 1200 240 < 16 16 320 290 <	1200 460 460 < 9 9 370 130	470 530 420 < 26 26 140 78 <	8600 2200 430 < 9 9 76 49 < 13800	56 320 320 130 24 24 140 43 <	360 55 55 < 6 8 110 30 <	1200 84 50 < 13 13 420 65 0.01 6300	1500 150 120 < 39 39 210 120 < 2170	940 490 < 36 36 150 23 < 380	820 710 710 570 30 30 100 65 <	1800 3400 3400 < 62 62 230 120 0.02 570	13 13 13 13 13 13 13 13 13 12	56 55 < 6 8 76 23 <	178 66.6 23 < 7.2 8.4 85.6 25.8 <	1200 530 420 < 26 26 210 78 <	2300 1160 648 147 44.5 44.6 248 123 < 4940	7320 3580 2640 660 165 165 546 296 0.02	8600
Nieuwersluis koloniebildende Einheiten 22°C, 3 Tage GGA Coliforme Bakterien (37 °C, nicht best.) Coliforme Bakterien (37 °C, best.) Escherichia coli (best.) Enterokokken spp Enterokokken spp (nicht best.) Clostridia, Sporen SO3-Reduz. Clostr. Perfringens (mit Sporen) Campylobacter spp. F-spezifische RNA-Bakteriofagen Campylobacter-b Andiik		n/ml n/100 ml	0.4 0.01 0.4	10000 11500 11500 2600 223 223 460 320 15.2 0.65 15.2	2700 1200 960 240 26 26 450 200	3500 66 66 < 9 9 160 100 8.15 0.02 2.75	250 1200 1200 470 15 15 130 80 2.7	470 150 120 < 2 2 170 55 1.6 < 0.8	600 190 150 38 16 16 500 110 2 <	5600 220 180 < 5 6 490 160 < 0.03	120 470 280 190 31 31 630 250 <	400 640 510 130 11 11 440 330 8.9 <	1100 700 560 140 13 13 720 200 12 0.08	1200 1600 1600 640 30 30 660 130 <	5100 2800 1100 560 94 94 620 230 0.4 0.06	13 13 13 13 13 13 13 13 13 13 12	120 66 66 < 2 2 130 55 < <	172 99.6 87.6 < 3.2 3.6 142 65 <	1200 700 560 140 16 16 490 200 2.7 0.0125 0.4	3160 2480 2290 586 53.6 53.7 453 191 5.76 0.0742 3.62	10400 11800 11800 3380 278 278 696 360 21 0.479 22.7	12000
koloniebildende Einheiten 22°C, 3 Tage GGA Coliforme Bakterien (37°C, nicht best.) Coliforme Bakterien (37°C, best.) Escherichia coli (best.) Enterokokken spp Enterokokken spp (nicht best.) Clostridia, Sporen SO3-Reduz. Clostr. Perfringens (mit Sporen) Campylobacter spp. Somatische Coliphagen koloniebildende Einheiten 20°C, R2A 7 Tage Campylobacter-b Haringvliet		n/ml n/100 ml	0.5 10 0.7	495 1.5 1 0 9 4.5 155 45 5.47 3150 2340 4.13	810 6 4 4 1 1 680 64 2.4 3400 820 2.4	310 5 1 0 0 110 11 3 340	56 6 0 0 12 4 4.5 10 223 7	560 3 3 1 2 2 55 0 < 10 1110	70 8 8 3 3 3 120 11 3 50 1800	330 0 0 86 130 25 1.47 < 1620	10000 22 18 18 34 1000 82 0.95 70 14300	21000 6 6 5 44 44 290 26 0.9 <	880 14 14 11 0 260 38 0.775 60 420 1.3	770 18 18 11 3 3 190 35 7.35 110 300 6.17	320 9 7 2 1 1 460 34 24.4 180 58 24.4	13 13 11 11 9 13 13 25 13 12 23	56 0 0 0 0 0 12 0 < < 58	61.6 0 0.2 0 * 0 29.2 1.6 < 108	560 6 6 3 * 2 190 26 1 70 995 0.7	2780 7.69 7.27 5 10.8 14.1 278 32.3 4.54 811 2270 4.13	16600 20.4 18 16.6 * 69.2 872 80 10.1 4180 11200 10.4	21000
Coliforme Bakterien (37 °C, nicht best.) Coliforme Bakterien (37 °C, best.) Escherichia coli (best.) Enterokokken spp Clostridia, Sporen SO3-Reduz. Intestinale Enterokokken		n/100 ml n/100 ml n/100 ml n/100 ml n/100 ml n/100 ml	1	1400 560 266 59 264 56.5	2	3 1 0 0 13	130 21 17 7 44 4	57	13 2 1.5 0 56	180 7 0 0 22 0	< 0 0 0 0 59	8 0 0 5 42 1	6 0 0 4 48 0	10 2 1 2 20 2	28 5 2 8 39	13 12 12 12 12 12	000130	1.1 0 0 0 0 15.1	13 2.5 0.5 3 43 0.5	249 96.7 46.3 12 77.2 10.1	1460 656 360 71.8 334 70.3	1700

Biologische Parameter Haringvliet (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Clostr. Perfringens (mit Sporen)		n/100 ml		210		10	16		42.5	4	27	40	10	6	6	12	4	4.6	21.5	52	242	290 🖃
Hydrobiologische Parameter																						
Lobith																						
Chlorophyll A		μg/l	2	<	<	5	15.5	38.5	5.8	69	50.5	2.85	<	<	<	25	<	<	4	15.5	68.4	74 🖃
Nieuwegein		р9/1				3	10.0	00.5	3.0	03	30.3	2.03				23			-	10.0	00.т	77 🗀
Chlorophyll A		μg/l	2					4	3.6	3.2	8	4.6	2.4	<	<	8	<	*	*	3.47	*	8
Nieuwersluis		P9/1							0.0	0.2		1.0	2.1							0.17		
Chlorophyll A		μg/l	2					2.1	2.7	4.7	4.7	3.7	2.1	<	<	8	<	*	*	2.75	*	4.7
Andijk		F 3/ ·																				
Xanthophyceae		n/ml		0		0		0		0		0		0		6	0	×	*	0	*	0 🗌
Phytoplankton, Gesamt		n/ml		4000		1400		4700		14000		7200		11000		6	1400	*	*	7050	*	14000
Phytoplankton, verschiedene		n/ml		17		32		0		0		0		0		6	0	*	*	8.17	*	32
Cyanophyceae		n/ml		420		21		240		5600		3600		5900		6	21	*	*	2630	*	5900
Cryptophyceae		n/ml		360		500		2500		820		550		530		6	360	*	*	877	*	2500
Chrysophyceae		n/ml		17		54		0		150		38		0		6	0	*	*	43.2	*	150
Chlorophyceae		n/ml		2400		550		1300		3700		2400		3700		6	550	*	*	2340	*	3700
Bacillariophyceae		n/ml		700		180		700		3800		550		1100		6	180	*	*	1170	*	3800
Euglenophyceae		n/ml		33		0		0		0		0		0		6	0	*	*	5.5	*	33
Dinophyceae		n/ml		0		5		0		150		0		0		6	0	*	*	25.8	*	150
Tierische Organismen, Gesamt		n/l		30		12		170		640		320		90		6	12	*	*	210	*	640
Rhizopoda		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0
Testacea		n/l		5		2		0.5		14		3		10		6	0.5	*	*	5.75	*	14
Tardigrada		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0
Rotatoria		n/l		3		2		24		490		220		30		6	2	*	*	128	*	490
Ciliata		n/l		17		7		140		130		53		26		6	7	*	*	62.2	*	140
Heliozoa		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0
Ostracoda		n/l		0		0.5		0		0		0		0		6	0	*	*	0.0833	*	0.5
Cladocera		n/l		2		0		4		5		13		16		6	0	*	*	6.67	*	16
Naupilus-Larve		n/l		2		0.5		2		0		6		2		6	0	*	*	2.08	*	6
Cyclopoidea		n/l		0		0		0.5		0		8		6		6	0	*	*	2.42	*	8
Calanoidea		n/l		0.5		0		0		0		3		0		6	0	*	*	0.583	*	3
Harpacticoidea		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0
Gastrotricha		n/l		0		0		1		0		0		0		6	0	*	*	0.167	*	1 🗆
Oligochaeta		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0
Nematoda		n/l		0.5		0.5		0		2		0		0		6	0	*	*	0.5	*	2
Turbellaria		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0 🔲
Chironomidae		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0 🔲
Hydrachnellae		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0
Larve von Hydrachnellae		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0 🔲
Bivalvia, larve		n/l		0		0		2		0		4		0		6	0	*	*	1	*	4
Biologie, Diverse		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0 🔲
Protozoa < 30 μM		n/l		0		0		0		0		0		0		6	0	*	*	0	*	0
Dreissena-Larven, ruhend		n/l					0.667	6.4					0.75	0		17	0	0	0	2.18	10.4	20 🖃
Dreissena-Larven, tot		n/l					0	1.2					0	0		17	0	0	0	0.353	2.4	4 🖂
Dreissena-Larven, lebendig		n/l					0	0					0	0		17	0	0	0	0	0	0 🖃
Dreissena-Larven, leere Schalen		n/l					0	0.2					0	0		17	0	0	0	0.0588	0.2	1 🗆
Haringvliet																						
Chlorophyll A		μg/l	1	1.2	<	1.8	2.25	6.2	4.4	11.9	4.5	3.4	<	1.55	<	23	<	<	2.3	3.37	6.36	20 🖃
Phaeophytin		μg/l	1	2.35	<	<	1.6	6.6	2.9	4.85	4.35	1.65	<	1.95	<	23	<	<	2.2	2.43	6.32	10 🖃

Metalle	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai		Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Lobith	7440.00.5	0		0.0	00.5	40	00	07.5		00	40	0.0	F0	70.5	00.5	07.5	00	00	00.7	45.5	51.0	00.4	110
Natrium	7440-23-5	0.		29	32.5	42	38	37.5		33	49	69	58	76.5	89.5	67.5	26	22	30.7	45.5	51.6	83.1	110 - 7.1 -
Kalium	7440-09-7	0.		3.17	3.4	4	3.75	3.7		3.6	4.35	5.47	5.25	5.95	6.65	5.45	26	2.7	3.3	4.2	4.54	6.36	88
Calcium	7440-70-2	0.		64.3	70.5	74	73.5	69.5		62.5	65	70.7	67.5	76	83	69	26	57	62.5	70	70.2	78.6	88
Magnesium	7439-95-4	0.		9.03	10.5	12	11.5	10.5		9.4	11	11.7	11.5	13	14	11.5	26	8.1	9.01	11	11.2	13.3	15
Eisen, Gesamt	7439-89-6	0.		1.09	0.417	0.308	0.32	0.366		0.884	0.59	0.892	0.44	0.344	0.279	0.423	26	0.248	0.303	0.428	0.565	1.2	1.3
Mangan	7439-96-5			58.8	36.1	26.3	31.3	41.1		61.6	56.2	103	50.4	37.9	31.9	38.7	26	25.5	27.1	43.7	50.4	79.6	150
Aluminium, Gesamt	7429-90-5	1 0.		1080	378	260	269	312		785	492	678	326	235	178	303	26	157	209	354	474	1050	1200
Antimon	7440-36-0	1 0		0.324	0.27	0.288		0.264		0.247	0.281	0.34	0.33	0.316	0.319	0.311	22	0.241	0.246	0.308	0.304	0.351	0.354
Arsen	7440-38-2			1.25	0.922	0.731	0.82	0.95		1.57	1.59	2.08	1.81	1.61	1.43	1.27	21	0.731	0.84	1.47	1.46	1.93	2.42
Barium	7440-39-3	1 0		66.1	67.8	78.6	75.2	71.3		67.6	90.8	120	90.8	108	103	102	26	60.4	67.2	80.2	87.1	121	131
Beryllium	7440-41-7	μg/l	0.02	0.0794	0.0311	<	<	0.0259	0.1	.0517	0.0356	0.0497	0.0246	<	<	0.0217	26	<	<	0.0286	0.0348	0.0735	0.0912
Bor	7440-42-8		50	<	<	<	<	<		<	<	74.3	66.4	77.8	81.7	52	25	<	<	<	52.9	83.6	90.4
Cadmium	7440-43-9	μg/l	0.02	0.0419	<	0.0234	0.039	0.0369			0.0549	0.101	0.0637	0.0691	0.0679	0.0833	26	<	0.0234	0.0523	0.0542	0.0869	0.137
Chrom, Gesamt	7440-47-3	1 0		2.17	0.958	0.741	0.832	0.992		1.79	1.69	2.73	1.69	1.42	1.35	1.3	26	0.672	0.82	1.43	1.55	2.35	3.65
Cobalt	7440-48-4	μg/l		0.603	0.292	0.245	0.258	0.299		0.497	0.428	0.661	0.435	0.362	0.315	0.364	26	0.23	0.256	0.379	0.415	0.641	0.841
Kupfer	7440-50-8	μg/l		2.99	1.94	1.88	3.13	2.4		3.55	3.62	4.93	3.91	3.5	3.17	3.27	26	1.79	1.95	3.29	3.25	4.49	5.75
Quecksilber	7439-97-6	μg/l		0.00863	0.0036	0.00546	0.00561	0.00641			0.0233	0.0432	0.0266	0.0272	0.0207	0.0235	25	0.0021	0.00493	0.00991	0.0181	0.0355	0.0673
Blei	7439-92-1	μg/l		2.22	0.972	0.73	1.78	1.2		1.92	2.32	4.29	2.84	2.38	1.86	2.04	26	0.668	0.849	2.1	2.14	3.45	5.89
Lithium	7439-93-2	μg/l		10.4	11.2	14.6	13	14.5		11.6	16.1	22.9	18	22.1	22.5	19.3	26	8.76	10.5	14.8	16.3	23.9	25.3
Molybden	7439-98-7	μg/l		0.87	1.26	1.51	1.3	1.41		1.41	1.82	2.41	2.52	2.37	2.29	1.95	26	0.707	0.995	1.61	1.75	2.45	2.66
Nickel	7440-02-0	μg/l		2.61	1.57	1.48	1.58	1.42		2.05	1.75	2.33	1.69	1.55	1.5	1.72	26	1.37	1.4	1.69	1.82	2.64	2.98
Selen	7782-49-2	μg/l		0.227	0.268	0.233	0.213	0.199	0	0.226	0.273	0.312	0.26	0.28	0.293	0.249	21	0.199	0.207	0.256	0.26	0.305	0.349
Strontium	7440-24-6	μg/l		363	420	491	466	505		469	533	609	557	622	656	524	26	317	388	511	515	639	673
Thallium	7440-28-0	μg/l		0.0272	0.0156	0.0169	0.0247	0.0203	0.0	0256	0.0288	0.0365	0.0264	0.0265	0.0216	0.0197	26	0.0147	0.0163	0.0245	0.0247	0.0329	0.0434
Tellurium	13494-80-9	μg/l	0.02	0.0251	<	0.048				<	<	<	<	<	<	<	21	<	<	<	<	0.0404	0.0552
Zinn	7440-31-5	μg/l		0.165	0.0681	0.056	0.0607	0.0802		0.14	0.146	0.286	0.197	0.165	0.129	0.158	26	0.0523	0.0537	0.139	0.144	0.258	0.336
Titan	7440-32-6	μg/l		17.2	7.7	6.51	6.41	8.62		14.5	11.2	18	8.97	7.95	7.53	9.37	26	6.13	6.45	9.13	10.9	18.5	25.4
Vanadium	7440-62-2	μg/l		2.8	1.48	1.31	1.6	1.52		2.5	2.24	2.83	1.92	1.63	1.57	1.73	26	1.26	1.42	1.74	1.99	2.94	3.56
Silber	7440-22-4	μg/l	0.02	0.0236	<	<	<	<		<	<	0.0276	<	0.0315	<	0.0361	26	<	<	<	<	0.0368	0.0441
Zink	7440-66-6	μg/l		16.8	9.92	9.44	15.4	13.6		12.4	14.3	22.8	16	14.2	13.6	16	26	8.58	9.95	14.1	14.9	20.5	29 🗀
Wolman-Salze (Summe As, Cr, Cu)		μg/l		6.71	3.83	3.19	5.41	4.38		6.91	6.9	9.75	7.4	6.52	5.95	5.83	21	3.19	3.94	6.38	6.59	8.84	11.8
Rubidium	7440-17-7	μg/l		4.85	3.47	4.18	3.96	4.43		5.07	5.42	7.03	5.85	5.93	6.91	5.4	26	3.23	3.72	5.26	5.26	7.1	7.29
Uranium	7440-61-1	μg/l		0.654	0.794	0.777	0.756	0.796	0	0.763	0.84	0.823	0.807	0.835	0.823	0.683	26	0.616	0.661	0.791	0.776	0.839	0.843
Cesium	7440-46-2	μg/l		0.444	0.239	0.232	0.237	0.359	0	0.587	0.46	0.571	0.342	0.335	0.594	0.466	26	0.212	0.235	0.385	0.413	0.677	0.742
Nieuwegein																							
Natrium	7440-23-5	mg/l		30.3	34.9	38.5	36.9	40.7		39.8	37.9	51.1	66	63.4	68.6	68.5	13	25.1	29	39.8	46.7	68.6	68.6
Kalium	7440-09-7	mg/l		3.23	3.64	3.92	3.68	4		4.05	4.22	4.94	5.2	5.5	6.07	6.32	13	3.04	3.19	4.05	4.46	6.22	6.32
Calcium	7440-70-2	mg/l		63.3	74.5	74.4	68.9	66.3		67.2	61.4	62.9	69.1	69.9	72.2	76.4	13	57.7	59.2	69	68.5	75.6	76.4
Magnesium	7439-95-4	mg/l		9.53	11.7	12.5	11.3	10.9		10.2	10.3	11.5	11.8	12	12.1	12.4	13	9.14	9.45	11.5	11.2	12.5	12.5
Eisen, Gesamt	7439-89-6	mg/l		1.28	1.52	1.2	1.08	0.661	0	0.657	0.556	1.36	0.939	1.27	0.41	2.01	13	0.41	0.468	1.08	1.09	1.93	2.01
Mangan	7439-96-5	μg/l		65	74	54	71	46		63	40	75	93	90	67	82	13	40	42.4	67	68.1	91.8	93
Aluminium, Gesamt	7429-90-5			1220	1360	1230	861	762		731	529	896	989	1140	397	1560	13	397	450	896	992	1610	1650
Antimon	7440-36-0			0.438	0.304	0.339				0.314	0.331	0.345	0.494	0.459	0.407	0.381	11	0.233	0.247	0.345	0.386	0.612	0.642
Arsen	7440-38-2	1 0		1.27	1.63	1.71	1.76	1.67		2.21	2.28	2.99	2.94	3.15	2.5	3.59	13	1.11	1.24	2.21	2.23	3.41	3.59
Barium	7440-39-3	1 0.		66.1	75.5	76.3	81.2	75		72.6	67.5	82.2	102	97	86.2	93.5	13	63.9	65.3	76.3	80.1	100	102
Beryllium	7440-41-7	μg/l		0.0803	0.0912	0.0814	0.0616	0.0548			0.0365	0.0651	0.0673	0.0715	0.0289	0.0939	13	0.0289	0.0319	0.0651	0.066	0.0994	0.103
Bor	7440-42-8			24	30	34	36	40	0.0	37	41	55	58	56	64	69	13	21	23.4	40	43.7	67	69
Cadmium	7440-43-9	μg/l	0.05	-1	0.06	0.05	<	<		<	<	0.06	0.07	0.06	<	0.14	13	<	<	0.05	<	0.112	0.14
Chrom, Gesamt	7440-47-3		1	3	3.8	3.4	2.8	2		<	1.7	2.9	5.3	3.2	1.4	5.6	13	<		2.9	2.97	5.48	5.6
Cobalt	7440-47-3	μg/I	'	0.571	0.764	0.689	0.628	0.561	0	0.523	0.378	0.559	0.681	0.748	0.44	0.995	13	0.378	0.403	0.628	0.624	0.903	0.995
Kupfer	7440-50-8		3	3.15	3.7	3.8	3.8	4.1	U	3.8	4.7	5.3	5.3	4.5	3.4	6.1	13	0.570	0.403	4.1	4.22	5.78	6.1
Quecksilber	7439-97-6		0.02	0.13	3. <i>1</i>	0.02	3.0	0.04		<	4.7	0.02	0.03	0.02	J. 4	0.04	13	<	<	7.1	4.22	0.04	0.04
Guerianei	1400-01-0	μg/l	0.02	<	<	0.02	<	0.04				0.02	0.03	0.02		0.04	13	<	<	((0.04	0.04

Metalle	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Ju	ın. Ju	I. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein (Fortsetzung)																						
Blei	7439-92-1	μg/l		2.45	2.5	2.8	2	1	1	1.4 1	4 3.1	3.2	2.5	1.1	4.8	13	1	1.04	2.5	2.36	4.16	4.8
Lithium	7439-93-2	μg/l		10	11.9	13.4	12.7	14.2	11	1.8 10	6 14.7	18	16	14.8	19.5	13	9.72	9.95	13.4	13.7	18.9	19.5
Molybden	7439-98-7	μg/l		0.901	1.24	1.3	1.5	1.56	1.1	65 1.6	2 1.82	2.57	2.29	2.19	2.04	13	0.771	0.875	1.62	1.66	2.46	2.57
Nickel	7440-02-0	μg/l	2	2.55	3.1	2.9	2.6	2.1		2	< 3.1	4	2.7	<	4.3	13	<	<	2.7	2.61	4.18	4.3
Selen	7782-49-2	μg/l		0.209	0.269	0.26	0.237	0.226	0.2	18 0.22	7 0.247	0.314	0.273	0.262	0.28	13	0.199	0.207	0.247	0.249	0.3	0.314
Strontium	7440-24-6			362	447	467	445	476	47	77 45	2 475	542	500	499	539	13	329	355	475	465	541	542
Thallium	7440-28-0			0.029	0.0337	0.0388	0.0329	0.0303	0.02	81 0.025	4 0.0365	0.0361	0.0359	0.0214	0.0513	13	0.0214	0.0226	0.0334	0.0329	0.0463	0.0513
Tellurium	13494-80-9	1 0.	0.02	<	0.0264	0.0537					< <	<	<	<	<	10	<	<	<	<	0.051	0.0537
Zinn	7440-31-5		0.03	0.154	0.125	0.15	0.0764	0.101	0.080	06	< 0.149	0.151	0.163	0.0852	0.285	13	<	0.0396	0.149	0.13	0.236	0.285
Titan	7440-32-6	10.		18	21.8	19.1	14.5	11.4).2 7.7		16.5	18	7.8	27.7	13	7.78	7.79	14.8	15.8	25.3	27.7
Vanadium	7440-62-2	1 0.		2.89	3.34	3.18	3.1	2.77		72 2.6		3.62	4.07	2.7	3.87	13	2.19	2.37	3.18	3.16	3.99	4.07
Silber	7440-22-4	10.	0.02	0.0236	<	<	<	<		<	< <	<		<	0.0481	13	<	<	<	<	0.0437	0.0481
Zink	7440-66-6	1 3	0.02	14.8	15.8	15.9	10.8	9.16	9.			13.3	14.1	7.91	26.5	13	6.22	6.9	13.3	13.1	22.3	26.5
Wolman-Salze (Summe As, Cr, Cu)	7110 00 0	μg/l		7.42	9.13	8.91	8.36	7.77	6.			13.5	10.9	7.3	15.3	13	4.31	5.19	8.91	9.41	14.6	15.3
Rubidium	7440-17-7			4.86	5.26	5.32	4.55	4.89		69 4.4		6.53	6.23	5.21	7.3	13	4.44	4.46	5.21	5.39	6.99	7.3
Uranium	7440-61-1	10.		0.74	0.929	0.898	1.04	1.02		0.9 0.88		1.18	1.1	0.92	0.975	13	0.739	0.74	0.92	0.934	1.15	1.18
Cesium	7440-46-2	1 0.		0.459	0.323	0.438	0.315	0.281		0.3		0.39	0.422	0.32	0.553	13	0.733	0.195	0.372	0.376	0.555	0.557
Nieuwersluis	7440-40-2	μy/i		0.433	0.437	0.430	0.313	0.201	0	1.3 0.2	0.372	0.33	0.422	0.101	0.000	13	0.101	0.133	0.372	0.370	0.000	0.337
Natrium	7440-23-5	mq/l		33.6	31.8	44.7	39	40.7	12	3.3 39	4 54.2	62.4	61.1	66.6	71.5	13	31.5	31.6	43.3	47.8	69.5	71.5 🖃
Calcium	7440-23-3	0.		67.1	70.4	78.7	71.5	69		3.2 63		65.1	72.4	79.6	78.6	13	60	61.3	69.4	70.1	79.2	79.6
	7439-95-4	0		9.15	10.5	12.1		10.7).8 10		11.2	11.5	12.5	12.6		8.96	9.11	10.8	11	12.6	12.6
Magnesium		3,					11.4									13						1.25
Eisen, Gesamt	7439-89-6	·		0.985	0.852	0.605	0.451	0.518	0.60			0.597	0.638	0.652	0.784	13	0.424	0.435	0.638	0.668	1.09	
Mangan	7439-96-5	1 0.		142	98	87	71	82			4 69	71	92	87	87	13	69	69.8	87	93.4	142	145
Aluminium, Gesamt	7429-90-5	10.		697	534	419	297	264		34 4		207	343	323	598	13	207	229	416	422	825	977
Antimon	7440-36-0	1 3,		0.333	0.432				0.29			0.349	0.342	0.32	0.346	10	0.285	0.286	0.331	0.336	0.427	0.432
Arsen	7440-38-2			1.15	1	1.2	1.1	1		1.3 1		1.9	2	1.8	2.4	13	1	1	1.3	1.48	2.24	2.4
Barium	7440-39-3	10.		65.4	66.3	79.1	73.4	72.5	79			77.5	80.8	82	95.4	13	62.2	63.8	76.5	75.8	90	95.4
Beryllium	7440-41-7	1 0.	0.02	0.0467	0.035	0.0287	<	<	0.03			<	0.0208	0.0269	0.0377	13	<	<	0.0279	0.0272	0.0516	0.0608
Bor	7440-42-8	1 0.		28.5	28	43	38	41		44 4	2 62	58	57	65	70	13	27	27.4	43	46.5	68	70 🗵
Cadmium	7440-43-9	μg/l	0.05	<	<	<	<	<		`	< <	<	<	0.05	<	13	<	<	<	<	<	0.05
Chrom, Gesamt	7440-47-3	μg/l	1	1.5	1.9	1.3	1.3	1.5	1	1.5 1	3 1	2.2	1.5	1.9	2.1	13	<	<	1.5	1.58	2.38	2.5
Cobalt	7440-48-4	μg/l		0.476	0.383	0.356	0.283	0.282	0.33	33 0.32	6 0.26	0.26	0.358	0.347	0.536	13	0.26	0.26	0.347	0.36	0.547	0.554
Kupfer	7440-50-8	μg/l		3.05	2.53	2.6	2.51	2.98	3.3	32 3	5 3.17	3.01	3.2	3.23	3.29	13	2.51	2.52	3.17	3.03	3.43	3.5
Quecksilber	7439-97-6	μg/l	0.02	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	< □
Blei	7439-92-1	μg/l	1	1.75	1.4	1.1	<	1	1	1.5 1		1.3	1.5	1.4	1.9	13	<	<	1.4	1.38	1.96	2
Lithium	7439-93-2	μg/l		7.57	8.48	12.6	10.8	12.2	11	1.7 10	2 14.4	14.6	14	14.6	19.8	13	6.25	7.14	12.2	12.2	17.7	19.8
Molybden	7439-98-7	μg/l		0.884	0.852	1.39	1.18	1.34	1.9	58 1.4	6 1.94	2.01	2.05	2.1	2.12	13	0.852	0.864	1.46	1.52	2.11	2.12
Nickel	7440-02-0	μg/l	2	2.35	2	<	<	<		<	< <	2.5	2.7	2.2	2.5	13	<	<	2	<	2.62	2.7
Selen	7782-49-2			0.192	0.208	0.219	0.199	0.182	0.20	03 0.19	9 0.21	0.206	0.208	0.253	0.254	13	0.171	0.175	0.208	0.21	0.254	0.254
Strontium	7440-24-6			348	367	462	448	461	41	84 44	6 486	478	488	533	545	13	340	346	462	453	540	545
Thallium	7440-28-0			0.0193	0.0166	0.018	0.018	0.0197	0.023	33 0.022	9 0.0233	0.0203	0.0206	0.0212	0.0246	13	0.0147	0.0155	0.0206	0.0205	0.0243	0.0246
Tellurium	13494-80-9		0.02	<	<					<	< <	<	<	<	<	10	<	<	<	<	<	< □
Zinn	7440-31-5	1 0.		0.101	0.104	0.0985	0.0591	0.0456	0.1	14 0.068	4 0.0683	0.0618	0.128	0.108	0.138	13	0.0456	0.051	0.0985	0.092	0.134	0.138
Titan	7440-32-6	1 0.		10.7	9.02	7.01	5.21	4.45		28 6.9		3.65	6.12	6.83	10.7	13	3.65	3.97	6.92	7.16	12.9	14.4
Vanadium	7440-62-2			2	1.61	1.44	1.41	1.33		1.9 1.9		1.33	1.72	1.76	2.22	13	1.33	1.33	1.66	1.72	2.34	2.42
Silber	7440-22-4	1 0.	0.02	<	<	<	<	<			< <	<	<	<	<	13	<	<	<	<	0.0237	0.0288
Zink	7440-66-6		0.02	13.1	10.1	9.6	7.69	6.75	9.			6.94	9.92	9.91	13.3	13	6.75	6.83	9.77	9.71	14	14.4
Wolman-Salze (Summe As, Cr, Cu)		μg/l		5.69	5.43	5.1	4.91	5.48		12 6		7.11	6.7	6.93	7.79	13	4.33	4.56	6.12	6.09	7.52	7.79
Rubidium	7440-17-7			4.29	3.72	4.42	4.07	4.46	4.9			6	5.6	6.08	6.06	13	3.72	3.86	4.82	4.95	6.07	6.08
Uranium	7440-17-7	10.		0.65	0.663	0.784	0.75	0.73	0.7			0.692	0.754	0.79	0.908	13	0.621	0.638	0.73	0.733	0.861	0.908
Cesium	7440-01-1	1 3,		0.03	0.003	0.704	0.73	0.73	0.23			0.032	0.754	0.73	0.355	13	0.021	0.030	0.73	0.733	0.357	0.358
Georgia	7440-40-2	μg/l		0.27	0.233	0.204	0.142	0.130	0.23	0.2	2 0.203	0.173	0.203	0.213	0.000	13	0.130	0.14	0.203	0.22	0.337	0.550

Metalle	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	. Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Andijk																						-
Natrium	7440-23-5	mg/l		45.1	34.7	40.2	45.2	49.3	47.	61	94.5	110	113	106	111	13	34.7	36.6	50.9	69.4	112	113
Kalium	7440-09-7	mg/l		5.91	5.17	5.49	5.44	5.83	5.5	6.25	7.48	7.83	8.07	7.76	7.79	13	5.17	5.28	6.25	6.5	7.97	8.07
Calcium	7440-70-2	mg/l		73.1	70.9	74.2	68.3	68	64.			49.5	55.3	65.6	67.3	53	41	43.9	65.4	62.2	72.9	87.7
Magnesium	7439-95-4	mg/l		10.9	10.4	11.3	11	11.9	12.3	13.4	18.4	17.2	18.3	16.4	17.8	53	9.67	10.5	12.7	14.1	18.7	24.4
Eisen, Gesamt	7439-89-6	mg/l		0.732	1.82	0.239	0.056	0.13	0.056	0.137	0.261	0.201	0.382	0.33	0.413	13	0.056	0.0562	0.261	0.422	1.55	1.82
Mangan	7439-96-5	μg/l	10	73.5	122	<	<	12	1	77	130	89	82	48	109	13	<	<	77	64.6	127	130
Aluminium, Gesamt	7429-90-5	μg/l		403	1180	122	21.2	70.8	24.	48.7	105	85	198	186	303	13	21.2	22.6	122	242	956	1180 🖃
Antimon	7440-36-0	μg/l		0.394	0.309	0.305			0.229	0.188	0.223	0.241	0.254	0.24	0.237	11	0.188	0.195	0.241	0.274	0.487	0.531
Arsen	7440-38-2	μg/l		1.2	1.3	0.9	0.8	0.7	0.	1.7	1.4	1.8	1.9	1.5	1.9	13	0.7	0.7	1.4	1.31	1.9	1.9
Barium	7440-39-3	μg/l		59.5	64.9	56.6	58.2	55.5	59	44.8	56.2	57.2	63.8	61.5	68.8	13	44.8	49.1	58.2	58.9	67.2	68.8
Beryllium	7440-41-7	μg/l	0.02	0.0284	0.0825	<	<	<		<	<	<	<	<	0.0211	13	<	<	<	<	0.0683	0.0825
Bor	7440-42-8	μg/l		43	34	38	42	46	4	56	70	72	73	74	82	13	34	34.8	50	55.2	78.8	82
Cadmium	7440-43-9	μg/l	0.02	0.0268	0.043	<	<	<		<	<	<	<	<	<	13	<	<	<	<	0.039	0.043
Chrom, Gesamt	7440-47-3	μg/l		1.27	2.88	0.439	0.193	0.409	0.21	0.196	0.343	1.3	0.465	1.58	0.724	13	0.193	0.194	0.465	0.867	2.39	2.88
Cobalt	7440-48-4	μg/l		0.32	0.716	0.155	0.141	0.14	0.1	0.172	0.225	0.207	0.25	0.236	0.241	13	0.14	0.14	0.207	0.252	0.606	0.716
Kupfer	7440-50-8	μg/l		2.39	3.27	1.92	1.73	1.97	1.9	1.51	1.5	2.4	1.54	1.67	1.57	13	1.5	1.5	1.82	1.98	3.14	3.27
Quecksilber	7439-97-6	μg/l		0.00675	0.0155	0.00272	0.00107	0.00165	0.000	0.0016	0.00316	0.00271	0.00372	0.00292	0.00287	13	0.0009	0.000968	0.00287	0.00402	0.0135	0.0155
Blei	7439-92-1	μg/l		1.24	2.74	0.352	0.129	0.219	0.18	0.246	0.585	0.582	0.896	0.682	0.714	13	0.129	0.153	0.583	0.755	2.4	2.74
Lithium	7439-93-2	μg/l		9.17	8.24	8.47	9.54	9.28	9.5	9.46	11.7	11.9	12.4	12.6	15.4	13	8.24	8.33	9.54	10.5	14.3	15.4
Molybden	7439-98-7	μg/l		0.954	0.801	0.96	1.13	1.14	1.2	1.32	1.37	1.43	1.47	1.63	1.55	13	0.801	0.82	1.25	1.23	1.6	1.63
Nickel	7440-02-0	μg/l	2	<	3.2	<	<	<		<	<	2.4	<	<	2.3	13	<	<	<	<	2.88	3.2
Selen	7782-49-2	μg/l		0.2	0.247	0.196	0.176	0.165	0.16	0.162	0.176	0.18	0.157	0.143	0.161	13	0.143	0.149	0.176	0.179	0.237	0.247
Strontium	7440-24-6	μg/l		363	376	368	402	390	41:	384	442	474	473	470	448	13	343	353	402	413	474	474
Thallium	7440-28-0	μg/l		0.0182	0.0334	0.0136	0.0193	0.02	0.01	0.0112	0.0082	0.0067	0.0078	0.0104	0.0129	13	0.0067	0.00714	0.0136	0.0151	0.0291	0.0334
Tellurium	13494-80-9	μg/l	0.02	<	<	0.0411				<	<	<	<	<	<	11	<	<	<	<	0.0349	0.0411
Zinn	7440-31-5	μg/l	0.03	0.0598	0.114	<	<	<		<	<	0.17	0.0344	0.0492	<	13	<	<	<	0.0455	0.148	0.17
Titan	7440-32-6	μg/l	0.5	7.06	20.3	2.07	<	1.31		0.713	1.85	1.63	3.47	3.79	5.28	13	<	<	2.07	4.25	16.4	20.3
Vanadium	7440-62-2	μg/l		1.85	3.68	1.09	0.815	1.23	0.81	0.988	1.27	1.25	1.34	1.26	1.39	13	0.814	0.814	1.25	1.45	3.21	3.68
Silber	7440-22-4	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	0.0243
Zink	7440-66-6	μg/l		7	14.8	3.87	3.39	4.4	1.83	2.59	4.12	11.7	4.18	5.28	2.96	13	1.88	2.16	4.12	5.63	13.6	14.8
Wolman-Salze (Summe As, Cr, Cu)		μg/l		4.85	7.45	3.26	2.72	3.08	2.8	3.41	3.24	5.5	3.91	4.75	4.19	13	2.72	2.78	3.7	4.16	6.87	7.45
Rubidium	7440-17-7	μg/l		4.42	5.53	3.22	3.4	3.77	3.8	4.16	5.05	5.29	5.38	5.18	5.16	13	3.22	3.29	4.47	4.52	5.47	5.53
Uranium	7440-61-1	μg/l		0.549	0.646	0.646	0.715	0.687	0.70	0.656	0.674	0.65	0.695	0.654	0.674	13	0.531	0.545	0.656	0.654	0.712	0.715
Cesium	7440-46-2	μg/l		0.17	0.439	0.0597	0.0325	0.0475	0.049	0.0473	0.0782	0.0681	0.092	0.0993	0.119	13	0.0325	0.0384	0.0782	0.113	0.358	0.439
Haringvliet																						
Natrium	7440-23-5	mg/l		22.6	22.3	38	33.8	36.4	35.	38.7	49.4	63.8	70.1	76	69.5	47	19	21.6	37	45.5	73.4	86.3
Kalium	7440-09-7	mg/l		4		4.1	4.7		4.1	3.93	4.49	5.18	5.58	6.07	6.2	13	3.8	3.8	4.4	4.66	6.15	6.2
Calcium	7440-70-2	mg/l		59		66	63		63.3	56.9	55.5	61.2	66.6	69.2	64	12	55.5	55.9	62.8	62.2	68.4	69.2
Magnesium	7439-95-4	mg/l		7.35		10	11		10.	9.69	10.9	11.7	11.8	12.9	11	12	6.8	7.13	11	10.3	12.6	12.9
Eisen, Gesamt	7439-89-6	mg/l		1.7	0.042	0.084	0.205	0.069	0.20	0.0649	0.143	0.21	0.0717	0.0552	0.0881	13	0.042	0.0473	0.0881	0.356	1.76	2.03
Mangan	7439-96-5	μg/l		98.8	18.5	42.9	64.7	36.6	68	33.2	51.6	74.9	37.9	42.5	35.4	13	18.5	24.4	42.9	54.2	112	136
Aluminium, Gesamt	7429-90-5	μg/l		1400	25.6	53	133	54.6	16	57.4	117	171	55.5	41.5	80.5	13	25.6	32	80.5	288	1430	1560
Antimon	7440-36-0	μg/l		0.302	0.297				0.29	0.281	0.3	0.332	0.349	0.317	0.319	10	0.281	0.282	0.307	0.31	0.347	0.349
Arsen	7440-38-2	μg/l		1.53	0.734	0.613	0.93	0.903	1.6	1.77	2.27	2.04	1.8	1.67	1.52	13	0.613	0.661	1.62	1.46	2.18	2.27
Barium	7440-39-3	μg/l		52.4	43.9	49.7	49.2	54.9	55.	52.4	59.2	66	65.5	64.5	69.4	13	43.9	44.8	55.9	56.6	68	69.4
Beryllium	7440-41-7	μg/l	0.02	0.0957	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	0.0219	0.099	0.112
Bor	7440-42-8	μg/l	50	<	<	<	53.7	53.3		<	<	60.1	56.3	60.7	74.2	13	<	<	<	<	68.8	74.2
Cadmium	7440-43-9	μg/l	0.02	0.113	<	0.0329	0.0367	0.0288	0.021	3 <	<	<	<	<	0.0237	13	<	<	0.0213	0.034	0.121	0.154
Chrom, Gesamt	7440-47-3	μg/l		3.4	0.396	0.281	0.687	0.313	0.61	0.217	0.4	0.553	0.281	0.264	0.325	13	0.217	0.236	0.396	0.856	3.55	4.14
Cobalt	7440-48-4	μg/l		0.955	0.205	0.292	0.337	0.247	0.26	0.2	0.205	0.286	0.229	0.203	0.286	13	0.2	0.201	0.269	0.359	1	1.19
Kupfer	7440-50-8	μg/l		3.95	1.65	1.73	4.41	2.08	2.3	2.1	2.25	2.28	1.92	1.75	2.25	13	1.65	1.68	2.25	2.52	4.46	4.49
Quecksilber	7439-97-6	μg/l		0.0258	0.00122	0.00151	0.0103	0.00174	0.0036	0.00127	0.00272	0.00286	0.00126	0.00129	0.00186	13	0.00122	0.00124	0.00186	0.00624	0.0278	0.0359

Metalle	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Haringvliet (Fortsetzung) Blei	7420 02 1	/1		4 50	0.15	0.204	2	0.323	0.607	0.217	0.414	0.000	0.225	0.2	0.210	10	0.15	0.17	0.222	1 10	4.04	5.92
Lithium	7439-92-1	μg/l		4.58	0.15	0.284	2		0.607		0.414	0.606	0.235	0.2	0.319	13	0.15		0.323	1.12	4.84	17.3
	7439-93-2	10.		8.03	7.31	8.77	8.46	11	9.18		11.8	14.4	13.7	13.3	17.3	13	7.14	7.21	9.59	10.8	16.1	2.16
Molybden	7439-98-7	μg/l		0.839	0.981	1.27	1.24 1.79	1.33	1.67	1.62	1.67	2.1	2.16	2.08	2.16	13	0.716	0.814	1.62	1.54	2.16	
Nickel Solon	7440-02-0	μg/l		3.62	1.51	1.79		1.5	1.62	1.21	1.42	1.63 0.254	1.56	1.34	1.88	13	1.21	1.26	1.62 0.213	1.88	3.7	
Selen	7782-49-2	10.		0.23	0.21	0.185	0.197	0.183 404	0.228		0.207		0.245	0.25	0.25 482	13	0.183			0.222	0.262 495	
Strontium	7440-24-6	μg/l		273	305	345	348		408		450	495	478	495		13	247	267	408	398		495 🖃 0.0438 🖃
Thallium Tellurium	7440-28-0 13494-80-9	μg/l	0.00	0.0384 0.0915	0.01	0.0158	0.0171	0.0208	0.0201	0.0155	0.017	0.0161	0.0138	0.0129	0.0152	13 10	0.01	0.0112	0.0161	0.0193	0.0395	0.0438
		μg/l	0.02		0.0927		0.0000		0.051	<	0.0426	0.000	<	0.020	<	13	<	<	0.020	0.0346	0.165	0.173
Zinn Titan	7440-31-5 7440-32-6		0.03	0.311	0.546	1 02	0.0833	1.01	0.051 2.79	0.700	0.0426	0.062 2.93	1.03	0.038	1.31	13	0.546	0.045	0.038	0.0768	0.328	27.3
Vanadium		μg/l		3.44	0.546	1.02	2.49 1.31				2.02	1.87	1.03				0.546	0.645	1.31 1.51	4.7 1.69	3.51	
Silber	7440-62-2	10.	0.00		0.761	0.822		1.03	1.65		1.78			1.42	1.32	13	0.761	0.785		1.09		3.81 -
Zink	7440-22-4	μg/l	0.02	0.0358	2 22	4.75	0.50	3.27	4.25	1.0	2 17	4.10	2 61	2 22	4.04	13 13	1.0	1.07	4.04	7 01	0.0365	32.8
Wolman-Salze (Summe As. Cr. Cu)	7440-66-6	10		25.3 8.88	3.23 2.78	4.75 2.62	9.56 6.03	3.27	4.35 4.63	1.8 4.09	3.17 4.92	4.18 4.87	2.61	2.22 3.68	4.04 4.1	13	1.8 2.62	1.97 2.69	4.04 4.1	7.21 4.83	26.8 9.16	10.3
Rubidium	7440-17-7	μg/l		5.46	2.76	3.32	3.83	3.3 4.31	4.03		4.85	5.52	4.88	5.34	4.1 6	13	2.02	2.82	4.58	4.63	6.2	6.33
Uranium Uranium		μg/l													ŭ							0.798
Cesium	7440-61-1 7440-46-2	μg/l		0.53 0.564	0.606 0.0408	0.606 0.0739	0.661 0.0876	0.71 0.0879	0.679 0.196		0.71 0.16	0.757 0.162	0.782 0.0993	0.771	0.798 0.104	13 13	0.512 0.0408	0.526 0.054	0.71 0.104	0.683	0.792 0.593	0.798
Cesiuiii	7440-40-2	μg/l		0.304	0.0400	0.0733	0.0070	0.0073	0.190	0.113	0.10	0.102	0.0333	0.0765	0.104	13	0.0400	0.034	0.104	0.175	0.055	0.711
Metalle nach Filtration																						
Lobith																						
Eisen (nach Filtr. 0.45 μM)		mg/l		0.011	0.019	0.0065	0.0055	0.004	0.0032	0.00235	0.0029	0.0035	0.0044	0.0065	0.0091	26	0.002	0.00217	0.0052	0.00653	0.0113	0.032
Mangan (nach Filtr. 0,45 μM)		μg/l		5.83	19.8	11.1	2.63	0.318	1.2		0.372	3.06	11.7	12.3	7.77	26	0.162		4.44	6.1	16.3	20.8
Bor (nach Filtr. 0.45 µM)		μg/l	50	<	10.0	<	<	<	<	0.201	66.6	61.3	76.2	78.8	53.7	25	0.102	0.200		50.6	83.9	89.2
Aluminium (nach Filtr. 0.45 μM)		μg/l	8	10.5	16.6	8.83			`		00.0	01.0	9.33	70.0	30.7 <	26			_	30.0	10.8	29.2
Antimon (nach Filtr. 0.45 µM)		μg/l	Ů	0.245	0.278	0.259	`	0.338	0.22	0.249	0.289	0.285	0.279	0.286	0.282	22	0.204	0.219	0.272	0.271	0.327	0.338
Arsen (nach Filtr. 0.45 µM)		μg/l		0.665	0.703	0.592	0.624	0.76	1.12		1.28	1.4	1.25	1.13	0.953	21	0.592		1.11	1.03	1.35	1.49
Barium (nach Filtr. 0,45 μM)		μg/l		56.7	66.1	76.2	72.4	66	57.5		92.8	78.2	96.9	94.8	96.2	26	50.7	57.7	74.2	77.4	100	123
Beryllium (nach Filtr. 0,45 µM)		μg/l	0.01	<	<	70.2	/2.1	<	<	· · · · · ·	<	/ 0.2	<	<	<	26	<	<	/ 12	· · · · · ·	<	< ∑
Cadmium (nach Filtr. 0.45 uM)		μg/l	0.02	<							<	<		0.0208	0.0284	26		<	<	<	0.0224	0.0349
Chrom (nach Filtr. 0.45 µM)		μg/l	0.02	0.195	0.225	0.212	0.223	0.165	0.153		0.21	0.174	0.194	0.227	0.228	26	0.141	0.16	0.197	0.2	0.252	0.262
Kobalt (nach Filtr. 0.45 µM)		μg/l		0.0812	0.124	0.109	0.0879	0.088	0.0633		0.15	0.148	0.174	0.167	0.136	26	0.061	0.0691	0.118	0.119	0.17	0.181
Kupfer (nach Filtr. 0.45 μM)		μg/l		1.29	1.24	1.35	1.63	1.42	1.79		1.99	1.93	2.04	2.04	1.92	26	1.23		1.83	1.69	2.06	2.16
Quecksilber (nach Filtr. 0.45 µM)		μg/l		0.000953	0.000815	0.00065	0.000625	0.00039	0.000645		0.00046	0.00056	0.0006	0.000735	0.00082	26	0.00033		0.000625		0.000927	0.00108
Blei (nach Filtr. 0.45 μM)		μg/l	0.03	<	0.0573	<	0.0511	<	<	<	0.0319	0.0458	0.06	0.0646	0.0578	26	<	<	0.0311	0.0373	0.0772	0.0996
Lithium (nach Filtr. 0.45 μM)		μg/l		8.67	11.3	14.1	12.3	14	9.85	14.8	20.8	17.4	21.1	21.9	19.5	26	6.32	9.4	14.1	15.4	23.2	24.9
Molybden (nach Filtr. 0.45 µM)		μg/l		0.839	1.27	1.52	1.29	1.41	1.35		2.32	2.39	2.3	2.2	1.98	26	0.686	0.953	1.59	1.71	2.41	2.45
Nickel (nach Filtr. 0.45 µM)		μg/l		0.989	1.01	1.01	1.09	0.79	0.824	0.9	1.06	1.05	1.06	1.18	1.2	26	0.771	0.803	1.02	1.01	1.27	1.36
Zinn (nach Filtr. 0.45 µM)		μg/l	0.03	<	<	<	<	<	<	<	<	<	<	0.0309	<	26	<	<	<	<	0.0331	0.0471
Titan (nach Filtr. 0.45 μM)		μg/l		0.264	0.473	0.15	0.139	0.11	0.123	0.108	0.146	0.121	0.176	0.322	0.333	26	0.0673	0.103	0.15	0.205	0.353	0.739
Vanadium (nach Filtr. 0.45 μM)		μg/l		0.789	0.771	0.76	0.994	0.81	1.05		1.17	1.2	1.08	1.16	1.12	26	0.715		1.02	0.999	1.25	1.3
Silber (nach Filtr. 0.45 μM)		μg/l	0.009	<	<	<	<	<	<	<	<	<	<	<	<	26	<	<	<	<	<	0.0147
Zink (nach Filtr. 0.45 µM)		μg/l	2	3.5	4.77	4.96	6.29	<	2.01	<	2.43	4.14	4.57	5.66	6.36	26	<	<	3.75	3.87	6.58	10.1
Rubidium (nach Filtr. 0.45 μM)		μg/l		2.56	3.06	3.79	3.52	3.67	3.23	4.11	5.25	4.95	5.47	6.13	5.09	26	2.02	2.82	4.02	4.21	5.92	6.39
Uranium (nach Filtr. 0.45 µM)		μg/l		0.638	0.81	0.795	0.775	0.815	0.715	0.825	0.758	0.749	0.803	0.807	0.692	26	0.596	0.658	0.775	0.76	0.826	0.835
Selenium (nach Filtr. 0.45 μM)		μg/l		0.195	0.26	0.215	0.184	0.178	0.19	0.219	0.247	0.233	0.246	0.264	0.239	21	0.178	0.18	0.224	0.226	0.268	0.279
Strontium (nach Filtr. 0.45 μM)		μg/l		344	425	488	470	506	451	506	577	532	608	635	542	26	294	371	506	503	618	654
Thallium (nach Filtr. 0.45 µM)		μg/l	0.01	<	<	0.013	0.0166	0.0141	0.0117	0.0158	0.0191	0.0172	0.0179	0.0156	0.0144	26	<	<	0.0152	0.0139	0.0193	0.0194
Tellurium (nach Filtr. 0.45 μM)		μg/l	0.08	<	<	<			<	<	<	<	<	<	<	20	<	<	<	<	<	< ∑
Cesium (nach Filtr. 0.45 µM)		μg/l		0.0448	0.0748	0.12	0.11	0.184	0.15	0.173	0.183	0.152	0.194	0.469	0.316	26	0.0262	0.0554	0.163	0.176	0.424	0.524
Nieuwegein																						
Eisen (nach Filtr. 0.45 μM)		mg/l		0.0085	0.003	0.003	0.002	0.002	0.0016	0.0013	0.0012	0.0009	0.0014	0.0018	0.0035	13	0.0009	0.00102	0.002	0.00298	0.0088	0.01
Mangan (nach Filtr. 0,45 μM)		μg/l		17.3	33	26.5	24	3.34	12	1.44	7.51	8.63	36	47.5	23.2	13	1.44	2.2	20.6	19.8	42.9	47.5

Metalle nach Filtration	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein (Fortsetzung)		//	Ε0.					F1.7				00.7				11					F0.0	60.7
Bor (nach Filtr. 0.45 µM)		μg/l	50	<	<		<	51.7	<			60.7		<	<	11	<	<	<	< 0.04	58.9	
Aluminium (nach Filtr. 0.45 μM)		μg/l	- 1	4.4	2.3	4	2.7	1.8	1.4			6	<	5.6	2.9	13	<	<	2.7	2.91	5.84	6 🖾
Antimon (nach Filtr. 0.45 μM)		μg/l		0.333	0.29	0.277			0.301			0.449	0.419	0.387	0.314	11	0.226	0.236	0.314	0.339	0.447	0.449
Arsen (nach Filtr. 0.45 μM)		μg/l		0.76	0.817	0.939	1.15	1.16	1.77			2.16	2.31	2.12	1.9	13	0.687	0.739	1.77	1.55	2.34	2.36
Barium (nach Filtr. 0,45 μM)		μg/l		58	68.7	67.9	77.5	76.9	69.2	66.1	71.3	92.6	87.9	82.3	77	13	51.5	56.7	71.3	73.3	90.7	92.6
Beryllium (nach Filtr. 0,45 μM)		μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ∑
Cadmium (nach Filtr. 0.45 μM)		μg/l	0.02	<	<	0.0205	<	0.0202	<	<		<	<	<	<	13	<	<	<	<	0.0204	0.0205
Chrom (nach Filtr. 0.45 μM)		μg/l	0.09	0.173	0.168	0.184	0.17	0.1	0.137	0.156	0.256	0.122	<	0.0994	0.166	13	<	<	0.166	0.15	0.227	0.256
Kobalt (nach Filtr. 0.45 μM)		μg/l		0.0895	0.129	0.169	0.175	0.156	0.136	0.114	0.112	0.167	0.224	0.226	0.208	13	0.0873	0.089	0.156	0.153	0.225	0.226
Kupfer (nach Filtr. 0.45 μM)		μg/l		1.6	1.39	1.55	1.85	1.88	2.06			2.13	1.88	1.98	1.8	13	1.39	1.45	1.88	1.87	2.33	2.39
Quecksilber (nach Filtr. 0.45 μM)		μg/l		0.00078	0.00035	0.00045	0.00032	0.00025	0.00032	0.00023	0.00023	0.00019	0.00016	0.00025	0.00028	13	0.00016	0.000172	0.00028	0.000353	0.000794	0.00085
Blei (nach Filtr. 0.45 μM)		μg/l	0.03	<	<	0.0496	0.0386	<	<	<	<	0.0397	0.0425	0.0412	0.0644	13	<	<	<	0.0305	0.0585	0.0644
Lithium (nach Filtr. 0.45 μM)		μg/l		8.32	9.81	11.5	11.2	13.1	10.5	9.25	11.5	15.8	14.4	14.1	15.8	13	6.73	7.74	11.5	11.8	15.8	15.8
Molybden (nach Filtr. 0.45 μM)		μg/l		0.904	1.18	1.27	1.49	1.58	1.57	1.47	1.71	2.46	2.29	2.09	1.89	13	0.777	0.878	1.57	1.6	2.39	2.46
Nickel (nach Filtr. 0.45 μM)		μg/l		0.973	0.984	1.03	1.06	1.11	1.01	1.02	1.06	1.26	1.22	1.22	1.25	13	0.971	0.973	1.06	1.09	1.26	1.26
Zinn (nach Filtr. 0.45 μM)		μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ፟፟፟፟፟፟
Titan (nach Filtr. 0.45 μM)		μg/l	0.06	0.171	0.0734	0.155	0.0765	<	0.135	0.107	0.151	0.0957	0.171	0.154	0.132	13	<	<	0.135	0.125	0.18	0.186
Vanadium (nach Filtr. 0.45 μM)		μg/l		0.748	0.93	1.03	1.46	1.34	1.57	1.72	1.82	1.79	2.25	1.92	1.28	13	0.738	0.746	1.46	1.43	2.12	2.25
Silber (nach Filtr. 0.45 μM)		μg/l	0.009	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.00966	0.0131
Zink (nach Filtr. 0.45 μM)		μg/l	2	3.07	2.54	4.51	2.22	<	2.34	<	<	2.38	2.22	2.41	2.99	13	<	<	2.36	2.44	4.21	4.51
Rubidium (nach Filtr. 0.45 μM)		μg/l		2.43	2.65	2.87	2.81	3.27	3.12	3.26	3.83	4.33	4	4.33	4.38	13	2.04	2.28	3.26	3.36	4.36	4.38
Uranium (nach Filtr. 0.45 µM)		μg/l		0.73	0.948	0.891	1.06	1.04	0.838	0.819	0.761	1.13	1.02	0.892	0.852	13	0.725	0.729	0.891	0.901	1.1	1.13
Selenium (nach Filtr. 0.45 µM)		μg/l		0.194	0.198	0.194	0.207	0.191	0.2	0.184	0.21	0.27	0.248	0.247	0.205	13	0.184	0.186	0.2	0.211	0.261	0.27
Strontium (nach Filtr. 0.45 µM)		μg/l		344	429	453	434	471	459	429	455	516	490	489	477	13	302	335	455	445	506	516
Thallium (nach Filtr. 0.45 uM)		μg/l	0.01	<	0.0101	0.0145	0.0181	0.0173	0.0154	0.0162	0.0162	0.0173	0.014	0.0125	0.0141	13	<	<	0.0145	0.0139	0.0178	0.0181
Tellurium (nach Filtr. 0.45 μM)		μg/l	0.08	<	<	<			<	<	<	<	<	<	<	10	<	<	<	<	<	< □
Cesium (nach Filtr. 0.45 µM)		μg/l		0.033	0.0199	0.0236	0.0172	0.0185	0.0254	0.022	0.037	0.0273	0.0185	0.0251	0.0305	13	0.0172	0.0177	0.0236	0.0255	0.0412	0.044
Nieuwersluis		10-																				
Eisen (nach Filtr. 0.45 μM)		mg/l		0.0295	0.008	0.009	0.005	0.006	0.0022	0.0017	0.003	0.0055	0.0028	0.004	0.0047	13	0.0017	0.0019	0.005	0.00853	0.032	0.042
Mangan (nach Filtr. 0,45 μM)		μg/l		100	58.4	53.4	29.7	13.8	2.79	1.75	0.382	0.77	1.3	17.1	37	13	0.382	0.537	17.1	32	103	114 🖃
Bor (nach Filtr. 0.45 μM)		μg/l	50	<	<	<	<	51.6	<	<	53.8	<	<	62.6	58.8	13	<	<	<	<	61.1	62.6
Aluminium (nach Filtr. 0.45 μM)		μg/l	8	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ∑
Antimon (nach Filtr. 0.45 µM)		μg/l		0.349	0.264				0.264	0.266	0.306	0.327	0.3	0.292	0.283	10	0.26	0.26	0.288	0.3	0.427	0.438
Arsen (nach Filtr. 0.45 µM)		μg/l		0.595	0.534	0.562	0.633	0.721	1.28	1.43	1.66	1.37	1.42	1.52	1.37	13	0.534	0.545	1.28	1.05	1.6	1.66
Barium (nach Filtr. 0,45 µM)		μg/l		57.4	60	73.4	71.8	68.3	70.3	62.7	71.1	71.7	73.5	75.4	77.2	13	55.9	57.1	71.1	68.5	76.5	77.2
Beryllium (nach Filtr. 0,45 µM)		μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ∑
Cadmium (nach Filtr. 0.45 µM)		μg/l	0.02	<	<	0.022	<	0.0261	<	<	<	<	0.023	0.0211	<	13	<	<	<	<	0.0262	0.0262
Chrom (nach Filtr. 0.45 µM)		μg/l	0.09	0.231	0.159	0.225	0.121	0.118	0.11	<	0.159	0.146	0.102	0.149	0.116	13	<	<	0.146	0.147	0.234	0.24
Kobalt (nach Filtr. 0.45 μM)		μg/l		0.195	0.125	0.142	0.12	0.139	0.094			0.11	0.117	0.142	0.226	13	0.094	0.0941	0.125	0.138	0.227	0.228
Kupfer (nach Filtr. 0.45 µM)		μg/l		1.82	1.61	1.61	1.93	2.03	2.15		2.17	2.4	2.26	1.89	1.83	13	1.61	1.61	1.93	1.99	2.38	2.4
Quecksilber (nach Filtr. 0.45 µM)		μg/l		0.00108	0.00086	0.00053	0.00042	0.00044	0.00039	0.0004	0.00037	0.00047	0.00036	0.00037	0.00042	13	0.00036	0.000364	0.00042	0.000553	0.00115	0.00134
Blei (nach Filtr. 0.45 µM)		μg/l	0.03	0.0564	<	<	<	<	<		<	<	<	<	0.0368	13	<	<	<	<	0.0624	0.0794
Lithium (nach Filtr. 0.45 μM)		μg/l		6.44	8.5	11.4	9.94	12.1	11	9.61	13.1	14.1	13.7	15.2	17	13	6.35	6.42	11.4	11.4	16.3	17 🖂
Molybden (nach Filtr. 0.45 μM)		μg/l		0.898	0.867	1.34	1.07	1.37	1.5	1.4	1.89	1.91	2.03	2.02	1.9	13	0.867	0.869	1.4	1.47	2.03	2.03
Nickel (nach Filtr. 0.45 μM)		μg/l		1.55	1.16	1.14	1.12	1.03	1.01	0.988		1.38	1.26	1.17	1.27	13	0.988	0.997	1.17	1.22	1.59	1.73
Zinn (nach Filtr. 0.45 µM)		μg/l	0.03	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	< ☑
Titan (nach Filtr. 0.45 µM)		μg/l	0.06	0.229	0.0811	<	<	<	0.0867	0.0845	0.0721	0.0928	0.0979	0.092	0.11	13	<	<	0.0867	0.0972	0.235	0.262
Vanadium (nach Filtr. 0.45 µM)		μg/l		0.628	0.543	0.574	0.741	0.733	1.05		1.1	0.942	1.05	1.04	1.09	13	0.543	0.555	0.942	0.871	1.17	1.21
Silber (nach Filtr. 0.45 μM)		μg/l	0.009	0.00985	<	<	<	<	<	<		<	<	<	<	13	<	<	<	<	0.0109	0.0152
Zink (nach Filtr. 0.45 µM)		μg/l		4.49	2.94	2.24	2.71	2.52	1.97	1.63	1.99	2.92	2.97	3.16	4	13	1.63	1.77	2.92	2.93	4.92	5.54
Rubidium (nach Filtr. 0.45 µM)		μg/l		2.93	2.84	3.63	3.64	3.93	3.95			5.46	4.83	4.98	4.71	13	2.68	2.74	3.95	4.06	5.28	5.46
Uranium (nach Filtr. 0.45 µM)		μg/l		0.647	0.688	0.802	0.772	0.757	0.743			0.664	0.736	0.786	0.787	13	0.614	0.634	0.736	0.722	0.796	0.802
		L9/.			2.000				0.710	0.071	3.000							2.007	2.700			

Metalle nach Filtration Nieuwersluis (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Ju	un.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Selenium (nach Filtr. 0.45 µM)		μg/l		0.166	0.192	0.214	0.171	0.164	0.17	17/1	0.188	0.188	0.193	0.195	0.215	0.207	13	0.153	0.157	0.188	0.187	0.215	0.215
Strontium (nach Filtr. 0.45 µM)		μg/I		333	363	447	453	455	47		432	467	470	483	511	495	13	331	332	455	440	505	511
Thallium (nach Filtr. 0.45 µM)		μg/I	0.01	<	<	0.011	0.0153	0.015	0.015		0.0151	0.0187	0.0164	0.0147	0.015	0.0141	13	<	332	0.015	0.0128	0.0178	0.0187
Tellurium (nach Filtr. 0.45 µM)			0.01	<	<	0.011	0.0133	0.013	0.013	<	J.0131 <	0.0107	0.0104	0.0147	0.013	0.0141	9	<	*	0.013 *	0.0120	0.0170 *	<
Cesium (nach Filtr. 0.45 µM)		μg/l	0.00	0.033	0.0258	0.035	0.0307	0.0399	0.044		0.0426	0.0878	0.0776	0.0514	0.0558	0.092	13	0.0258	0.0277	0.0426	0.0499	0.0903	0.092
Andiik		μg/l		0.033	0.0230	0.033	0.0307	0.0333	0.044	40 0.	0.0420	0.0070	0.0770	0.0314	0.0000	0.032	10	0.0230	0.0277	0.0420	0.0433	0.0303	0.032
Eisen (nach Filtr. 0.45 µM)		mg/l		0.0215	0.013	0.006	0.005	0.014	0.004	M5 0	0.0033	0.0009	0.0029	0.0017	0.001	0.0034	13	0.0009	0.00094	0.0045	0.00759	0.0248	0.032
Mangan (nach Filtr. 0.45 μM)		· · ·		0.404	0.53	1.51	1.22	0.553	0.71		0.302	0.0003	0.0023	0.183	0.339	0.0034	13	0.0003	0.206	0.0043	0.557	1.39	1.51
Bor (nach Filtr. 0.45 µM)		μg/l μg/l	50		0.55	1.31	<	56.7		<	0.302	66.2	76.2	76.6	50.7	85.4	12	0.100	0.200	53.7	54.7	82.8	85.4
Aluminium (nach Filtr. 0.45 μM)		μg/I	30	3.35	3.2	2.1	2.2	2.5		1.5	1.4	2.4	3.7	2.9	30.7	2.3	13	1.4	1.44	2.3	2.53	4.42	4.9
Antimon (nach Filtr. 0.45 μM)		μg/I		0.322	0.279	0.257	2.2	2.3	0.20		0.164	0.2	0.21	0.23	0.228	0.204	11	0.164	0.171	0.228	0.238	0.374	0.398
Arsen (nach Filtr. 0.45 µM)		μg/I		0.647	0.684	0.562	0.504	0.658	0.95		1.45	1.33	1.57	1.14	1.18	0.204	13	0.504	0.527	0.953	0.230	1.52	1.57
Barium (nach Filtr. 0.45 µM)		μg/I μg/I		52.2	50	53.8	57.8	53.9		4.1	41.2	48.6	47.3	57.3	58.2	59.8	13	41.2	43.6	53.9	52.8	59.2	59.8
Beryllium (nach Filtr. 0,45 µM)		μg/I	0.01	JZ.Z <	JU <	33.0	37.0	30.3		<	+1.2 <	70.0	41.5 <	37.3 <	30.2	33.0	13	41.2	40.0	JJ.J <	32.0	JJ.2 <	< ∑
Cadmium (nach Filtr. 0.45 µM)		μg/I	0.01	<		<		<		<	<	<	<	<	<	<	13	<	<	<	<	<	⟨ ∑
Chrom (nach Filtr. 0.45 µM)			0.02		0.222	0.178	0.163	0.125			0.122	<	0.104	<		<	13	<		0.125	0.125	0.222	0.222
Kobalt (nach Filtr. 0.45 μM)		μg/l	0.03	0.0964	0.222	0.170	0.103	0.123	0.12		0.122	0.0797	0.104	0.105	0.0988	0.0928	13	0.0797	0.0849	0.123	0.123	0.124	0.125
Kupfer (nach Filtr. 0.45 µM)		μg/l		1.62	1.91	1.63	1.57	1.58		.58	1.21	0.0737	1.63	2.57	1.12	1.05	13	0.0737	0.0043	1.58	1.54	2.31	2.57
Quecksilber (nach Filtr. 0.45 µM)		μg/l		0.00091	0.00103	0.00055	0.00042	0.00044	0.0003			0.00025	0.00033	0.0002		0.00017		0.00017	0.000182			0.00105	0.00107
Blei (nach Filtr. 0.45 µM)		μg/l	0.03	0.00031	0.00103	0.00033	0.00042	0.00044			00023	0.00023	0.00033	0.0002	0.00024	0.00017	13	0.00017	0.000102	0.00034	0.000403	0.0657	0.00
Lithium (nach Filtr. 0.45 µM)		μg/l	0.03	8.81	6.9	8.4	8.86	9.31		.93	9.33	9.32	11.1	12.4	12.1	13.5	13	6.9	7.23	9.32	9.83	13.1	13.5
Molybden (nach Filtr. 0.45 µM)		μg/l		0.939	0.777	0.983	1.11	1.14	1.1		1.21	1.19	1.36	1.46	1.52	1.42	13	0.777	0.797	1.17	1.17	1.5	1.52
Nickel (nach Filtr. 0.45 µM)		μg/l						1.14									13					1.5	1.52
Zinn (nach Filtr. 0.45 µM)		μg/l	0.00	1.39	1.5	1.41	1.31 0.0332	1.23	1.0	.06	1.02	1.04	1.29	1.11 0.0466	1.16	1.08	13	1.02	1.03	1.23	1.23	0.0412	0.0466
Titan (nach Filtr. 0.45 µM)		μg/l	0.03	0.204	0.156	0.0024		0.125	0.076	()	<	0.0056	0.0573	0.0400	0.0545	0.353		0.0500	0.0523	0.0040	0.121	0.0412	0.353
		μg/l		0.204		0.0924	0.0848		0.070		0.0615	0.0656			0.0545		13	0.0509		0.0848			
Vanadium (nach Filtr. 0.45 µM)		μg/l	0.000	0.719	0.727	0.708	0.709	0.992	0.70		0.637	0.646	0.818	0.597	0.702	0.537	13	0.537	0.561	0.707	0.709	0.922	
Silber (nach Filtr. 0.45 µM)		μg/l	0.009	<	<	2.00	J CC <	< .		<	<	2 00	2 72	715	<	<	13 13	<	<	<	2.20	< E 70	
Zink (nach Filtr. 0.45 µM) Rubidium (nach Filtr. 0.45 uM)		μg/l	2	2 54	2.99	2.08	2.66	2.4 3.52		40	3.88	3.69	3.73	7.15	4 CE	4 22	13	2.99	2.02	3.83	2.26	5.78 4.88	7.15 <u></u> 5.04 <u></u>
		μg/l		3.54		3.08	3.3		3.4			4.06	4.6	5.04	4.65	4.32			3.03		3.85		
Uranium (nach Filtr. 0.45 μM) Selenium (nach Filtr. 0.45 μM)		μg/l		0.547 0.168	0.642 0.179	0.674 0.17	0.716 0.169	0.699 0.149	0.65 0.14		0.653 0.136	0.644 0.132	0.629 0.145	0.666 0.132	0.65 0.125	0.623 0.132	13 13	0.531	0.544 0.128	0.65 0.146	0.642 0.15	0.709 0.175	0.716 - 0.179 -
Strontium (nach Filtr. 0.45 µM)		μg/l			343		376	375				403	443	467		437	13	0.125	329	380	396	471	473
Thallium (nach Filtr. 0.45 µM)		μg/l	0.01	350		374 0.0115	0.022	0.0194	0.015	189	372				473		13	319	329			0.021	0.022
Tellurium (nach Filtr. 0.45 µM)		μg/l	0.01	0.223	<		0.022	0.0134			<	<	<	<	<u> </u>	<	11	<		<	<	0.021	0.406
Cesium (nach Filtr. 0.45 µM)		μg/l	0.08	0.223	0.0203	0.018	0.0289	0.11	0.036	< 0	.0299	0.0477	0.0397	0.0268	0.0212	0.0225	13	0.018	0.0189	0.0289	0.0353	0.333	0.406
Haringvliet		μg/l		0.0207	0.0203	0.010	0.0203	0.11	0.030	001 0.	1.0233	0.0477	0.0337	0.0200	0.0212	0.0223	13	0.010	0.0103	0.0203	0.0333	0.0001	0.11
Kalzium (nach Filtr. 0.45 µM)		ma/l								65		55	_		71		3	*	*	*	*	*	*
Magnesium (nach Filtr. 0.45 μM)		mg/l mg/l								10		11			13		3	*	*	*	*	*	*
Eisen (nach Filtr. 0.45 μM)		mg/l		0.013	0.007	0.008	0.008	0.003	0.00		0.0011	0.0017	0.0013	0.0015	0.0008	0.0019	13	0.0008	0.00092	0.003	0.00487	0.013	0.013
Mangan (nach Filtr. 0,45 µM)		0.		13.6	17.6	37.6	49.8	12.7	30		0.238	18.7	44.5	19.3	34.1	25.6	13	0.238	5.22	19.3	24.4	47.7	49.8
Bor (nach Filtr. 0.45 μM)		μg/l	50		17.0	37.0	43.0	52.8		<	0.230	10.7	44.5	13.3	58.6	61	13	0.230	3.22	13.3	24.4	60	61
Aluminium (nach Filtr. 0.45 μM)		μg/l	0			<		32.0		<			<		30.0	<	13					<	< ∑
Antimon (nach Filtr. 0.45 µM)		μg/l	0	0.299	0.237				0.28		0.267	0.275	0.324	0.329	0.3	0.311	10	0.237	0.24	0.291	0.292	0.329	0.329
Arsen (nach Filtr. 0.45 μM)		μg/l μg/l		0.233	0.624	0.619	0.883	0.877		.49	1.66	2.22	1.92	1.7	1.66	1.42	13	0.237	0.621	1.42	1.27	2.1	2.22
Barium (nach Filtr. 0.45 µM)				39.3	45.2	48	49.2	53.9		51	48.9	57.9	62.3	64	62.2	66.1	13	36.4	38.7	51	52.9	65.3	66.1
Beryllium (nach Filtr. 0,45 µM)		μg/l	0.01	33.3	43.2	40	45.2	33.5		<	40.5	37.3	02.3	04 <	02.2	00.1	13	30.4	30.1	31	32.5	00.5	00.1 <u></u>
Cadmium (nach Filtr. 0.45 µM)		μg/l μg/l	0.01		<	0.0365	0.0305	0.0257		<	<		<			<	13		<	<	<	0.0341	0.0365
Chrom (nach Filtr. 0.45 µM)			0.02	0.243	0.179	0.0303	0.0303	0.0237	0.15		<	<	<	0.0963	<	0.141	13	<		0.156	0.141	0.0341	0.306
Kobalt (nach Filtr. 0.45 μM)		μg/l	0.03	0.243	0.175	0.130	0.231	0.107	0.16		0.14	0.133	0.185	0.0903	0.193	0.141	13	0.133	0.136	0.130	0.141	0.278	0.300
Kupfer (nach Filtr. 0.45 µM)		μg/l		1.45	1.67	1.5	3.38	1.94		.78	1.77	2.01	1.82	1.8	1.4	1.93	13	1.4	1.130	1.78	1.84	2.83	3.38
Quecksilber (nach Filtr. 0.45 µM)		μg/l		0.000765	0.0008	0.00067	0.00044	0.00046	0.0003			0.00026		0.00018		0.00029			0.000174			.000796	0.0008
Blei (nach Filtr. 0.45 µM)		μg/l	0.03		0.0405		0.00044	0.00046			00022	0.00020		0.00010		0.00029	13	0.00017	0.000174	0.00030	0.0448	0.15	0.212
Diet (Hacil Filli, 0.43 µW)		μg/I	0.03	0.001	0.0403	<	0.212	0.0431		<	<	<	<	<	<	0.0417	13	<	<	<	0.0440	0.10	0.212

Metalle nach Filtration Haringvliet (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Lithing (nach Filtr. 0.45 µM) Molybden (nach Filtr. 0.45 µM) Nickel (nach Filtr. 0.45 µM) Zinn (nach Filtr. 0.45 µM) Titan (nach Filtr. 0.45 µM) Vanadium (nach Filtr. 0.45 µM) Silber (nach Filtr. 0.45 µM) Zink (nach Filtr. 0.45 µM) Rubidium (nach Filtr. 0.45 µM) Uranium (nach Filtr. 0.45 µM) Selenium (nach Filtr. 0.45 µM) Strontium (nach Filtr. 0.45 µM) Thallium (nach Filtr. 0.45 µM) Tellurium (nach Filtr. 0.45 µM)		µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.06 0.009	5.92 0.809 1.4 < 0.19 0.761 0.0092 2.63 2.48 0.509 0.185 251 0.0129 0.0455	8.45 1.05 1.52 < 0.0964 0.716 < 3.03 2.78 0.634 0.19 308 < 0.0306	8.75 1.25 1.62 < 0.103 0.685 < 2.62 3.44 0.617 0.212 340 0.0155	7.89 1.26 1.58 < < 0.987 < 5.06 3.73 0.688 0.189 351 0.0179 0.0418	11 1.34 1.38 < < 0.91 < 2.16 4.23 0.729 0.173 403 0.0209	8.74 1.59 1.32 < 0.105 1.34 < 1.64 4 0.657 0.208 393 0.0166 < 0.11	9.23 1.52 1.07 < 0.116 1.42 < 0.757 3.65 0.698 0.185 399 0.0137 < 0.0853	11.9 1.74 1.25 < 0.0996 1.53 < 1.23 4.46 0.707 0.205 440 0.0148 <	13.9 2.04 1.77 < 0.106 1.56 < 1.49 4.88 0.734 0.235 480 0.0134 < 0.0854	13.8 2.11 1.44 < 0.0952 1.38 < 1.76 5.02 0.764 0.216 478 0.0129 < 0.073	13.8 2.07 1.35 < 0.0849 1.35 < 1.52 4.76 0.757 0.224 471 0.0122 < 0.056	16.6 2.12 1.68 0.0403 0.117 1.15 < 2.8 5.59 0.773 0.228 471 0.0141 < 0.0748	13 13 13 13 13 13 13 13 13 13 13 13 13 1	4.94 0.71 1.07 < < 0.685 < 0.757 2.15 0.501 0.17 225 < < 0.0306	5.72 0.789 1.14 < < 0.697 < 0.946 2.4 0.507 0.171 245 < < 0.0333	9.23 1.52 1.41 < 0.103 1.15 < 2.16 4 0.698 0.205 399 0.0137 < 0.0692	10.5 1.52 1.44 < 0.107 1.12 < 2.26 3.96 0.675 0.203 387 0.0141 < 0.0677	15.5 2.12 1.73 0.0352 0.196 1.55 0.0101 4.25 5.36 0.769 0.232 479 0.0197 0.221 0.11	16.6 □ 2.12 □ 1.77 □ 0.0403 □ 0.222 □ 1.56 □ 0.0139 □ 5.06 □ 5.59 □ 0.773 □ 0.235 □ 480 □ 0.0209 □ 0.236 □ 0.11 □
Waschmittelbestandteile und Komplexbildner Lobith																						
Nitrilotriacetat (NTA) Ethylendinitrilotetraacetat (EDTA) Ethylendinitrilotetraacetat (EDTA) (Fracht) Diethylentriaminpentaacetat (DTPA) Methylglycindiessigsäure (alpha-ADA) Nieuwegein	139-13-9 60-00-4 67-43-6 164462-16-2	g/s µg/l	0.2 1 1	2.1 2.45 12 1.35 1.55	2 3 6.41 2.8 1.3	1.8 3.7 7.46 < 1.2	1.7 3.8 7.21 <	1.1 3.1 6.13 <	0.9 2.6 5.42 <	3.5 3.88 <	1.5 4.3 4.1 1.1	1 4.1 4.07 1.2	0.8 4.5 4 <	2.4 6.3 5.32 1 1.1	2.6 8.9 9.13 < 2.7	13 13 13 13 13	2.1 3.88 <	0.38 2.3 3.93 <	1.7 3.7 6.13 <	1.55 4.05 6.7 < 1.03	2.52 7.86 12.1 2.56 2.34	2.6 8.9 12.4 2.8 2.7
Anionaktive Detergentien Nichtionische + Kationische Detergentien Nitrilotriacetat (NTA) Ethylendinitrilotetraacetat (EDTA) Ethylendinitrilotetraacetat (EDTA) (Fracht) Diethylentriaminpentaacetat (DTPA)	139-13-9 60-00-4 67-43-6	μg/l g/s	0.01 0.02 1	< 4 3.52 <	< < < < 4.5 1.93 <	< 5.7 1.46	< 4.9 0.514 <	0.09 < 2.7 0.531	< 4.2 1.47	< 4.7 0.047 <	0.0440.157	< 4.4 0.0898 <	< 4.2 0.042	0.03 < 4.5 0.045	< 7.4 0.074 <	4 4 13 13 13	<	* < 2.94 0.0432 <	* * 4.5 0.514	0.04254.551.03<	* * < 6.72 3.64 <	0.09
Nitrilotriacetat (NTA) Ethylendinitrilotetraacetat (EDTA) Diethylentriaminpentaacetat (DTPA) Andiik	139-13-9 60-00-4 67-43-6	µg/I µg/I µg/I	1	< 9.75 <	< 7 1.5	< 6.8 <	< 7.1 <	< 5.6 <	< 5.3 <	< 5.6 <	< 6.6 <	< 7.4 <	< 5.1 <	< 6.1 <	< 7.9 <	13 13 13	< 5.1 <	< 5.18 <	< 6.8 <	< 6.92 <	< 10.4 1.1	< = 12 = 1.5 = 1.5
Anionaktive Detergentien Nichtionische + Kationische Detergentien Nitrilotriacetat (NTA) Ethylendinitrilotetraacetat (EDTA) Diethylentriaminpentaacetat (DTPA) Haringyliet	139-13-9 60-00-4 67-43-6	μg/I	0.02 1 1 1	< 6.15 <	0.01 < < 5.6 1.3	< 9.3 <	< 7.2 <	0.01 0.03 < 3.6	< 6.7 <	< 11 2.7	0.01 < 6.9 <	3.3 16 <	< < <	0.02 < 4.8 <	< 5 <	4 2 13 13	0.01 * < <	* < 1.74 <	* < 6.2 <	0.0125 * < 6.84 <	2.18 14 2.14	0.02
Anionaktive Detergentien Kationaktive Detergentien Nichtionaktive Detergentien Nitrilotriacetat (NTA) Ethylendinitrilotetraacetat (EDTA) Diethylentriaminpentaacetat (DTPA) Polyzyklische arom. Kohlenwasserstoffe (PAK)	139-13-9 60-00-4 67-43-6	mg/l mg/l mg/l µg/l µg/l	0.1 0.1 0.1 1	< 7.4 <		< 8.1 <	< 6.6 <	< 6.2 1	< < < < < < < < < 5.25 <	< 10 <	<	< 2.9 <	< 3.7 <	<	< 6.5 <	3 3 13 13 13	* * * < 2.9 <	* * * < 3.1 <	* * * < 5.6 <	* * * < 5.92	* * * < 9.68	* * * * * * * * * *
Lobith Anthracen Benz(a)anthracen	120-12-7 56-55-3	µg/I µg/I	0.004	< 0.00421	< 0.00168	< 0.0022	< 0.00167	< 0.00131	< 0.00225	0.00491 0.00556	0.0117 0.0266		0.00848 0.00785	0.00706 0.00689	0.00679 0.00798	13 13	< 0.00131	< 0.00145		0.00499 0.00692	0.0118 0.023	0.0119

Polyzyklische arom. Kohlenwasserstoffe (PAK)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Lobith (Fortsetzung)	005.00.0	"		0.00770	0.00454	0.00505	0.00500	0.00000	0.00504	0.00407	0.0044	0.0110	0.0407	0.0100	0.00005	10	0.00000	0.00000	0.00700	0.0001	0.0000	0.0044
Benz(b)fluoranthen	205-99-2	1 3,		0.00773	0.00451	0.00525		0.00363	0.00534		0.0244	0.0149	0.0127		0.00995		0.00363		0.00763	0.0091	0.0206	0.0244
Benz(k)fluoranthen	207-08-9			0.00251	0.00146		0.00142	0.00115	0.00213		0.00823	0.00488	0.00434		0.00331		0.00115		0.00244	0.00311	0.00689	0.00823
Benz(ghi)perylen	191-24-2	1 0		0.00356	0.0016		0.00201	0.00197	0.0025		0.00965	0.00715	0.00577	0.00621	0.00519	13	0.0016			0.00424		0.00965
Benz(a)pyren	50-32-8	μg/l	0.002	0.00367	<	0.00254	0.00202	<	0.00229		0.0136	0.00728	0.00548		0.00486	13	<	<	0.00346	0.0043	0.0111	0.0136
Chrysen	218-01-9		0.004	<	<	<	<	<	<	0.00515	0.0204	0.012	0.00771	0.00656	0.00708	13	<	<	0.00404	0.00576	0.017	0.0204
Dibenzo(a,h)anthracen	53-70-3	1 0	0.003	<	<	<	<	<	<	<	0.00322	<	<	<	<	13	<	<	<	<	<	0.00322
Phenanthren	85-01-8	1 3		0.00883	0.00554	0.00441	0.0056	0.00467	0.0061		0.0372	0.0349	0.0253	0.024	0.0214	13	0.00441		0.00924	0.0157	0.0363	0.0372
Fluoranthen	206-44-0	1 0		0.0148	0.00588	0.00718	0.00722	0.00621	0.011	0.0312	0.0753	0.0494	0.0335	0.0349	0.035		0.00588		0.0153	0.0251	0.0649	0.0753
Indeno(1,2,3-cd)pyren	193-39-5	10.	0.0002			0.00225	0.00154	0.00159	0.00038		0.0107	0.00645	0.00471	0.00558	0.00399	13	<		0.00261	0.00341	0.009	0.0107
Pyren	129-00-0	10.		0.0122	0.00647	0.00481	0.00776	0.00415	0.00754		0.0592	0.043	0.0312	0.0302	0.0277	13	0.00415	0.00441	0.0127	0.0204	0.0527	0.0592
Naphthalin	91-20-3	μg/l	0.03	<	<	<	<	<	<	0.034	<	<	<	<	<	13	<	<	<	<	<	0.034
Nieuwegein																						
Acenaphthen	83-32-9	μg/l	0.002	0.013	0.005	0.016	0.01	0.01	0.004	<	<	<	<	0.004	0.006	13	<	<	0.005	0.00654	0.0148	0.016
Acenaphthylen	208-96-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< □
Anthracen	120-12-7	μg/l	0.004	<	<	0.00843	0.00407	<	<	<	0.00536	<	0.00514	0.00412	0.0131	13	<	<	<	0.00417	0.0112	0.0131
Benz(a)anthracen	56-55-3	μg/l	0.001	0.00391	0.00358	0.00751	0.00422	0.00267	0.00147	0.00238	0.00542	<	0.00895	0.00352	0.01	13	<	<	0.00358	0.00446	0.00958	0.01
Benz(b)fluoranthen	205-99-2	μg/l	0.004	<	<	<	<	<	<	<	<	0.009	0.01	<	<	13	<	<	<	<	0.0096	0.01
Benz(k)fluoranthen	207-08-9	μg/l	0.004	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ∑
Benz(ghi)perylen	191-24-2	μg/l	0.004	<	<	<	0.004	0.005	<	<	<	<	<	<	<	13	<	<	<	<	0.0046	0.005
Benz(a)pyren	50-32-8	μg/l	0.002	0.00374	0.00314	0.0052	0.00331	0.0023	<	<	0.0043	<	0.0108	0.00349	0.0104	13	<	<	0.00331	0.00411	0.0106	0.0108
Chrysen	218-01-9	μg/l	0.004	<	<	0.0069	<	<	<	<	0.00506	<	0.0133	<	0.0118	13	<	<	<	0.00445	0.0127	0.0133
Dibenzo(a,h)anthracen	53-70-3		0.004	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< □
Phenanthren	85-01-8		0.002	0.0085	0.009	0.027	0.014	0.012	0.006	0.002	<	<	<	0.006	0.01	13	<	<	0.008	0.00815	0.0218	0.027
Fluoranthen	206-44-0	10.	0.003	0.00575	<	0.007	0.013	0.01	0.006		0.02	<	0.02	0.01	0.02	13	<	<	0.01	0.00973	0.02	0.02
Fluoren	86-73-7	μg/l	0.003	0.00475	<	0.017	0.005	0.006	0.003		<	<	<	<	0.005	13	<	<	<	0.00419	0.0134	0.017
Indeno(1,2,3-cd)pyren	193-39-5		0.004	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	0.005
Pyren	129-00-0		0.003	0.0075			0.019	0.01	0.012		0.02	,	0.02	0.01	0.01	13		<	0.01	0.00973	0.02	0.02
Naphthalin	91-20-3	10.	0.003	0.0055	0.007	0.015	0.011	0.003	5.6.1.2		<	,	<	<	0.008	13	`	,		0.00492	0.0134	0.015
Nieuwersluis	0. 20 0	P9/-	0.000	0.0000	0.007	0.010	0.011	0.000		Ì	`	`		`	0.000			`	0.000	0.00.102	0.0.0	0.010
Acenaphthen	83-32-9	μg/l	0.002	0.0205	0.004	0.009	<	<	0.004		<	0.004	0.01	0.004	0.006	13	<	<	0.004	0.00662	0.021	0.023
Acenaphthylen	208-96-8	10.	0.005	<	0.00.	0.000	,		0.00		,	0.00.	٠.٠٠	0.00	<	13	`	,	0.00	······································	<	< □
Anthracen	120-12-7	μg/l	0.002		,	,	_	,		,	,	,	,	,	0.01	13		,	,	,	0.0064	0.01
Benz(a)anthracen	56-55-3		0.002	0.00649	0.00403	0.00362	0.00113	0.00284	0.00157	0.00168	0.00273	0.00664	0.00296	0.00241	0.00273	13	0.00113	0.00131	0.00273	0.00349	0.00902	0.0106
Benz(b)fluoranthen	205-99-2	10.		0.00043	0.00400	0.00002	0.00426	0.0053	0.00525		0.00273	0.0238	0.0132		0.00273	13	0.00314		0.00273	0.00	0.0245	0.0249
Benz(k)fluoranthen	207-08-9	10.		0.00589	0.00376	0.00424	0.00420	0.0033	0.00323			0.00816	0.00434	0.00755	0.00233		0.00314		0.00723	0.00353	0.00914	0.0098
Benz(ghi)perylen	191-24-2	1 0		0.00579	0.00370	0.00533		0.00177	0.00256			0.00016	0.00434		0.00296		0.00156			0.00333	0.0106	0.0030
Benz(a)pyren	50-32-8	1 0	0.002	0.00373	0.00471	0.00533		0.00237	0.00230	0.0023	0.00203	0.0110	0.00470		0.00257	13	0.00130	0.00100	0.00230	0.00431	0.0100	0.0110
		1 3,	0.002		0.0043	0.00513						0.0104	0.0042	0.00201		13		<u> </u>	0.00323	0.00411	0.0110	0.0124
Chrysen	218-01-9			0.0237	0.00030	0.00361	<	0.00207		<	<	0.0121	0.00050	· ·	<	13	ζ.	<	<	0.00713	0.0321	
Dibenzo(a,h)anthracen	53-70-3	1 0	0.003	< 0.0400	0.0100	0.0010		0.00397	0.00447	0.00050	> 0.00000	0.0401	A 0000	0.0101	0.0100		> 0 00000	0.00410	0.0101	0.0010	> 0.000	
Phenanthren	85-01-8	1 3		0.0483	0.0193	0.0218	0.00644	0.00876	0.00447			0.0431	0.0388	0.0121	0.0169	13	0.00399		0.0121	0.0216	0.0698	
Fluoranthen	206-44-0	1 0	0.000	0.0486	0.0263	0.0242	0.00715	0.0134	0.00864		0.0131	0.0557	0.037	0.0173	0.0183	13	0.00715	0.00775	0.0173	0.0256	0.0733	0.085
Fluoren	86-73-7	μg/l	0.003	0.012	> > > >	0.005	> > > > > > > > > > > > > > > > > > > >	0.004	0.003		> 000000	> 0.0111	> 0.00400	0.003	0.005	13	<	<		0.00408	0.0124	
Indeno(1,2,3-cd)pyren	193-39-5	1 0	0.0002	0.00582	0.00447	0.00529	0.00137	0.0023	0.00253		0.000	0.0111	0.00429	0.00311	0.00261	13	<	0.00000		0.00398	0.0103	0.0111
Pyren	129-00-0	1 0		0.0367	0.0163	0.0156	0.00734	0.00794	0.00559		0.00937	0.0332	0.0244	0.0114	0.0139	13	0.00559	0.00629	0.0114	0.0175	0.0522	0.0648
Naphthalin	91-20-3	μg/l	0.003	0.006	0.008	<	0.006	0.004	0.003	<	<	<	0.003	0.005	0.008	13	<	<	0.004	0.00423	0.008	0.008
Andijk																_						
Acenaphthen	83-32-9	1 0	0.002		0.003			<			<			<		4	<	*	*	<	*	0.003
Acenaphthylen	208-96-8	μg/l	0.005		<			<			<			<		4	<	*	*	<	*	<
Anthracen	120-12-7	μg/l	0.004	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Benz(a)anthracen	56-55-3	μg/l	0.001	0.00196	0.00154	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.00267	0.00343
Benz(b)fluoranthen	205-99-2	μg/l		0.00482	0.00535	0.00125	0.00039	0.00073	0.00014	0.00029	0.00076	0.00075	0.00148	0.00159	0.00073	13	0.00014	0.0002	0.00076	0.00178	0.00722	0.00846
Benz(k)fluoranthen	207-08-9	μg/l	0.00007	0.00149	0.00167	0.00042	0.00014	0.00029	<	0.00014	0.00024	0.00021	0.00046	0.00051	0.00024	13	<	0.000077	0.00029	0.000564	0.00221	0.00257

Polyzyklische arom. Kohlenwasserstoffe (PAK)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Benz(ghi)perylen	191-24-2	μg/l	0.0002	0.00182	0.00236	0.00059		0.00041	<	<	0.00046	0.00051	0.00077	0.00085	0.0005	13	<	<	0.00051	n nnn700	0.00272	0.00296
Benz(a)pyren	50-32-8	μg/I μg/I	0.0002	0.00102	0.00230	0.00033	<	0.00041	<	<	0.00040	0.00031	0.00077	0.00003	0.0003	13	<	<	0.00031	0.000730		0.00230
Chrysen	218-01-9		0.002	0.00223			<		<	<	<	<			<	13	<	<				<
Dibenzo(a,h)anthracen	53-70-3	μg/l	0.004		<	<	· ·	`		`	`	· ·	· ·		`	13	`		ζ.	`	,	
		μg/l		> 0.0067	0.00015	0.00402	0.00000	<	<	<	<	0.00220	0.00004	0.0001	< 0.00002		<	<	0.00000	0.00405		
Phenanthren	85-01-8	μg/l	0.002	0.0067	0.00815		0.00288	<	<	<	<	0.00229	0.00284		0.00903	13	<	<	0.00288		0.00888	
Fluoranthen	206-44-0	μg/l	0.002	0.00619		0.00272	<	<	<	<	<	<	0.00243		0.00329	13	<	<	0.00243		0.00969	0.00983
Fluoren	86-73-7	μg/l	0.003		<			<			<			0.003		4	<	*		<		0.003
Indeno(1,2,3-cd)pyren	193-39-5	μg/l	0.0002	0.00177	0.00222	0.00058	<	0.00043	<	<	0.00039	0.00045	0.00071	0.00077	0.00045	13	<	<	0.00045			0.00294
Pyren	129-00-0		0.002	0.004	0.00566	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.00647	0.00701
Naphthalin	91-20-3	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< □
Haringvliet																						
Acenaphthen	83-32-9	μg/l	0.005	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< □
Anthracen	120-12-7	μg/l	0.004	0.00506	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.00507	0.00509
Benz(a)anthracen	56-55-3	μg/l	0.001	0.00615	<	<	0.00192	<	0.0012	<	0.00188	<	<	<	<	13	<	<	<	0.00164	0.00624	0.00663
Benz(b)fluoranthen	205-99-2	μg/l		0.013	0.00038	0.00078	0.00875	0.00134	0.00296	0.00058	0.00209	0.0032	0.00123	0.0014	0.00157	13	0.00038	0.00046	0.00157	0.00387	0.0131	0.0134
Benz(k)fluoranthen	207-08-9	μg/l		0.00424	0.00012	0.00027	0.00286	0.00041	0.00049	0.00027	0.00067	0.00097	0.00042	0.00051	0.00053	13	0.00012	0.00018	0.00051	0.00123	0.00424	0.00424
Benz(ghi)perylen	191-24-2	μg/l	0.0002	0.0062	<	0.00043	0.00348	0.00069	0.00125	0.0004	0.00102	0.0016	0.0007	0.00093	0.00093	13	<	0.00022	0.00093	0.00184	0.00633	0.00688
Benz(a)pyren	50-32-8	μg/l	0.002	0.00592	<	<	0.0031	<	<	<	<	<	<	<	<	13	<		<	<	0.00592	0.00592
Chrysen	218-01-9	μg/l	0.004	0.00642	<	` `	<	<		,	,	,		,	<	13	,	` `		<		0.00678
Dibenzo(a.h)anthracen	53-70-3	μg/l	0.003	0.00012											~	13	<					<
Phenanthren	85-01-8	μg/I	0.002	0.0143	,	0.00339	0.00972	0.00373	0.00487	0.00339		0.00502	0.00394	0.0062	0.00746	13			0.00487	0.00625	,	0.0152
Fluoranthen	206-44-0	μg/l	0.002	0.0143		0.00333	0.00372	0.00373	0.00736	0.00333	0.00464	0.00574	0.00334	0.0002	0.00740	13	0.0023	,	0.00464	0.00023		0.0152
			0.005		0.0023	0.00300		0.00307								12			0.00404	0.00740		
Fluoren	86-73-7	μg/l	0.005	0.00500		> 0 00000	0.00005	0.00051	<	<	> 000000	0.00101	<	< 0.00000	> > > > > > > > > > > > > > > > > > > >		<	<	> 000000	0.00151	0.00570	
Indeno(1,2,3-cd)pyren	193-39-5	μg/l	0.0002	0.00562		0.00036	0.00305	0.00051	<	<	0.0000	0.00121	0.00056	0.00088	0.00066	13	<	<	0.00066	0.00151	0.00578	0.0064
Pyren	129-00-0	μg/l	0.002	0.0178	<	<	0.00902	<	0.00423	<	0.00266	0.00328	0.00202	0.00217	0.00361	13	<	<	0.00266	0.00511	0.0179	0.0185
Naphthalin	91-20-3	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Biozide																						
Lobith																						
Tributylzinn-Kation	36643-28-4	μg/l		0.00005	0.00006	0.00005	0.0001	0.00008	0.00006	0.00013	0.00021	0.00014	0.00017	0.00016	0.00019		0.00005	0.00005	0.0001	0.000112	0.000202	0.00021
Carbendazim	10605-21-7	μg/l	0.01	<	<	<	0.015	0.01	<	0.015	<	0.014	0.012	0.013	0.022	13	<	<	0.01	0.0101	0.0192	0.022
Dichlorvos	62-73-7	μg/l	0.0002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexachlorbenzen (HCB)	118-74-1	μg/l	0.0002	<	<	<	<	<	<	<	0.00023	<	0.0002	0.0002	<	13	<	<	<	<	0.000222	0.00023
Propiconazol	60207-90-1	μg/l	0.003	<	0.00361	<	0.00542	0.00508	0.00491	0.00461	0.00422	0.00416	0.00428	0.00395	0.00806	13	<	<	0.00422	0.00422	0.007	0.00806
Nieuwegein																						
Tributylzinn-Kation	36643-28-4	μg/l		0.000105	0.00023	0.00028	0.00022	0.00016	0.00007	0.0001	0.00047	0.00081	0.00076	0.00076	0.002	13	0.00007	0.000082	0.00023	0.000467	0.00152	0.002
Carbendazim	10605-21-7	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	0.026
N,N-Diethyl-3-Methylbenzamid (DEET)	134-62-3	μg/l	0.02	<	<			<		<	0.0405	0.021	0.0226		<	52	<	<		<		0.06
Dichlofluanid	1085-98-9	μg/l	0.005			,	,	,	,	,	<	0.02.	0.0220	,		13	,	` `	,			<
Dichlorvos	62-73-7	μg/l	0.0002	<	<					0.0002		<		<	<	13	<			<	,	0.0002
Hexachlorbenzen (HCB)	118-74-1	μg/l	0.0002	<	<	0.00023			<	0.0002				<	0.00021	13		<			0.000222	0.0002
Propiconazol	60207-90-1	μg/l	0.0002	<	<	0.00023	0.00437	0.00327	0.00308	<		<		0.00337	0.00021	13	<	<	0.00308		0.000222	0.00023
Propoxur	114-26-1		0.003							`	`	<	`		0.0033	53		<				<
Indoxacarb		μg/l		<	<	<	<	<	<	<	<		<	<		13	<		<	<		
	173584-44-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< □
Nieuwersluis							0.00045		 		0.0004					40			0.00045			0.00044
Tributylzinn-Kation	36643-28-4	μg/l		0.000125	0.00014	0.00014	0.00015	0.00014	0.00015	0.00016	0.0001	0.00015	0.00021	0.0003	0.00044	13		0.000104	0.00015	0.0001/9		
Carbendazim	10605-21-7	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	-	<
N,N-Diethyl-3-Methylbenzamid (DEET)	134-62-3	μg/l	0.02	<	<	<	<	0.024	0.035	0.023	0.068	0.064	0.036	0.021	0.029	13	<	<	0.024	0.0283		0.068
Dichlorvos	62-73-7	μg/l	0.0002	<	<	<	<	<	<	0.00054	<	<	<	<	<	13	<	<	<	<	0.000364	0.00054
Hexachlorbenzen (HCB)	118-74-1	μg/l	0.0002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<		<
Propiconazol	60207-90-1	μg/l	0.003	<	0.00335	0.00452	0.00458	0.00346	<	<	<	0.00373	0.00313	0.00327	0.00387	13	<	<	0.00327	0.00301	0.00456	0.00458
Propoxur	114-26-1	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Biozide Andiik	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jur	1. J	ul. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pil
Tributylzinn-Kation	36643-28-4	μg/l	0.00001	0.00007	0.00011	0.00005	0.00004	0.00002		< 0.000	01 0.00003	0.00004	0.00007	0.00007	0.00004	13	<	<	0.00004	0.0000481	0.000106	0.00011
Carbendazim	10605-21-7	μg/l	0.02	<	<	<	0.00001	<		< 0.000	< < <		<	0.00007	<	13	<	<	<	<	<	<
N,N-Diethyl-3-Methylbenzamid (DEET)	134-62-3	μg/l	0.02			<		<		<	< 0.033		0.028	0.031	0.051	13	<		<	<	0.0438	0.051
Dichlofluanid	1085-98-9	μg/l	0.005			<	_			<	< <		<	0.001 <	<	13	<	<	<	<	<	<
Dichlorvos	62-73-7	μg/l	0.0002			<				< 0.000					<	13	<			<	<	0.00025
Hexachlorbenzen (HCB)	118-74-1	μg/l	0.0002	<		<				< 0.000	< <		<	<	<	13	<	<	<	<	<	<
Propiconazol	60207-90-1	μg/l	0.0002		0.00334	0.00451				<	< <	<	<		<	13			<			0.00451
Propoxur	114-26-1	μg/l	0.003	<		0.00431		<		<	< <		<	<	<	13	<	<	<	<	<	0.00431
Indoxacarb	173584-44-6	μg/I	0.005			<		<		· ·		<		<	<	13				<	<	< [
Haringvliet	173304-44-0	μу/1	0.003													13						\ L
Tributylzinn-Kation	36643-28-4	ua/l		0.00014	0.00023	0.00009	0.00581	0.00002	0.0000	5 0.000	07 0.00004	0.00007	0.00008	0.00009	0.00014	12	0.00002 0	000000	0.00000	0.000536	0.00358	0.00581
Carbendazim		μg/l	0.02		0.00023			0.00002								17		.000020				0.00361 E
	10605-21-7	μg/l	0.02			<	0.022			< 0.0	< < < < 26 0.025		< 0.000	0.021	<		<	<	< 0.000	< 0.0014	< 0.0000	
N,N-Diethyl-3-Methylbenzamid (DEET)	134-62-3	μg/l	0.02			<			0.026						<	17	<	<	0.022	0.0214	0.0302	0.043
Dichlorvos	62-73-7	μg/l	0.0002	<	<	<	<	<		< 0.000			<	<	<	13	<	<	<		0.000496	0.00076
Hexachlorbenzen (HCB)	118-74-1	μg/l	0.02	<		<	<			<	< <		<	<	<	16	<	<	<	<	<	< [
Propiconazol	60207-90-1	μg/l	0.003	0.00393	0.00415	0.0052	0.0036	<	0.0058	7 0.003	48 <	0.00308	<	0.00353	0.00436	13	<	<	0.0036	0.00351	0.0056	0.00587
Propoxur	114-26-1	μg/l	0.02	<		<	<			<	< <	<	<	<	<	17	<	<	<	<	<	<
N,N-Dimethyl-N'-phenylsulfamid (DMSA)	4710-17-2	μg/l	0.05	<		<	<			<	< <	<	<	<	<	12	<	<	<	<	<	<
cis-Propiconazol		μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
trans-Propiconazol		μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	< [< [< [
Fungizide aus der Carbamat-Gruppe																						
Nieuwegein																						
Iprovalicarb	140923-17-7	μg/l	0.005	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	< [
Andijk																						
Iprovalicarb	140923-17-7	μg/l	0.005	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
Fungizide aus der Dithiocarbamat-Gruppe																						
Nieuwegein																						
Benthiavalicarb-isopropyl	177406-68-7	μg/l	0.005	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
Andijk																						
Benthiavalicarb-isopropyl	177406-68-7	μg/l	0.005	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	< [
Fungizide aus der Benzimidazol-Gruppe Lobith																						
Carbendazim	10605-21-7	μg/l	0.01	<	<	(0.015	0.01		< 0.0	15 <	0.014	0.012	0.013	0.022	13	<	<	0.01	0.0101	0.0192	0.022
Nieuwegein	.3000 21 7	Par'	0.01				2.0.3	0.0.		0.0		0.0.1		2.0.0				شروا	5.0.	5.5.0.		
Carbendazim	10605-21-7	μg/l	0.02	<	<	<	<	<		<	< <	<	<	<	<	53	<	<	<	<	<	0.026
Imazalil	35554-44-0	μg/l	0.005			<	<	<		<	< <			<	<	13	<	<	<	<	<	<
Thiabendazol	148-79-8	μg/l	0.01	<		<		<		<	< <				<	13	<	<	<	<	<	
Thiophanat-Methyl	23564-05-8	μg/l	0.5			<		<		<	< <		<	<	<	13	<	<	<	<	<	< <u>-</u>
Triflumizol	99387-89-0		0.005							<			<			13						<
Nieuwersluis	33307-03-0	μg/l	0.003	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	< 0
	10005 01 7	/1	0.00													10						<
Carbendazim	10605-21-7	μg/l	0.02	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	< L
Andijk																						
Carbendazim	10605-21-7	μg/l	0.02		<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	< [
Imazalil	35554-44-0	μg/l	0.005	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
Thiabendazol	148-79-8	μg/l	0.01	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
Thiophanat-Methyl	23564-05-8	μg/l	0.5		<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
Triflumizol	99387-89-0	μg/l	0.005	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Carbendazim	10605-21-7	μg/l	0.02	<		<	<			<	< <	<	<	<	<	17	<	<	<	<	<	< [

Fungizide aus der Conazol-Gruppe Lobith	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	. Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Propiconazol Nieuwegein	60207-90-1	μg/l	0.003	<	0.00361	<	0.00542	0.00508	0.0049	0.00461	0.00422	0.00416	0.00428	0.00395	0.00806	13	<	<	0.00422	0.00422	0.007	0.00806
Bitertanol	55179-31-2	μg/l	0.03	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Diclobutrazol	75736-33-3	μg/l	0.005					<					<	<	<	13	<	2	<	<	<	< ■
Diniconazol	83657-24-3	μg/l	0.005	<		`									<	13	<	<		<	<	<
Etridiazol	2593-15-9	μg/l	0.01	<		<									<	13		<		<	<	<
Flutriafol	76674-21-0	μg/l	0.005	<		<	<	<			<	<	<	<	<	13	<	<	<	<	<	<
Hexaconazol	79983-71-4	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Myclobutanil	88671-89-0	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Penconazol	66246-88-6	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Propiconazol	60207-90-1	μg/l	0.003	<	<	0.00323	0.00437	0.00327	0.0030	3 <	<	<	<	0.00337	0.0039	13	<	<	0.00308	<	0.00418	0.00437
Tebuconazol	107534-96-3	μg/l	0.005	<	<	<	<	<	0.00	i <	<	<	<	<	<	13	<	<	<	<	0.006	0.006
Triadimenol	55219-65-3	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Epoxiconazol	106325-08-0	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Diphenoconazol	119446-68-3	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Azaconazol	60207-31-0		0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Cyproconazol	94361-06-5	μg/l	0.005	<	<	<	<	<		: <	<	<	0.006	0.007	<	13	<	<	<	<	0.0066	0.007
Tricyclazol	41814-78-2	μg/l	0.005	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	
Bromuconazol	116255-48-2	μg/l	0.005	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Fenbuconazol	114369-43-6		0.005	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Fluguinconazol	136426-54-5	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tetraconazol	112281-77-3	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Triticonazol	131983-72-7	μg/l	0.005	<	<	<	<	<		. <	<	<	<	<	<	13	<	<	<	<	<	<
Triadimenol-A	89482-17-7	μg/l	0.05	<		<		<				<		<	<	51	<	<	<	<	<	< □
Triadimenol-B	82200-72-4	μg/l	0.05	<		<	<	<				<		<	<	51	<	<	<	<	<	<
Nieuwersluis	-	F 37 ·		•																	·	
Bitertanol	55179-31-2	μg/l	0.03	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Etridiazol	2593-15-9	μg/l	0.01	<	<	<	<	<			<	<	<	<	<	13	<	<	<	<	<	<
Propiconazol	60207-90-1	μg/l	0.003	<	0.00335	0.00452	0.00458	0.00346		<	<	0.00373	0.00313	0.00327	0.00387	13	<	<	0.00327	0.00301	0.00456	0.00458
Triadimenol	55219-65-3	μg/l	0.1	<			<	<		<	<	<		<	<	12	<	<	<	<	<	<
Triadimenol-A	89482-17-7	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	12	<	<	<	<	<	<
Triadimenol-B	82200-72-4	μg/l	0.05	<		<	<	<		<		<		<	<	12	<	<	<	<	<	< = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < < = < < < = < < < = < < < = < < < < = < < < < < < = < < < < < < < < < < < < < < < < < < < <
Andijk		1 3,																				
Bitertanol	55179-31-2	μg/l	0.01	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Diclobutrazol	75736-33-3	μg/l	0.005	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Diniconazol	83657-24-3	μg/l	0.005	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Etridiazol	2593-15-9	μg/l	0.01	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Flutriafol	76674-21-0	μg/l	0.005	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Hexaconazol	79983-71-4	μg/l	0.005	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Myclobutanil	88671-89-0	μg/l	0.005	<	<	<	<	<			<	<	<	<	<	13	<	<	<	<	<	<
Penconazol	66246-88-6	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Propiconazol	60207-90-1	μg/l	0.003	<	0.00334	0.00451	<	<		: <	<	<	<	<	<	13	<	<	<	<	0.00404	0.00451
Tebuconazol	107534-96-3	μg/l	0.005	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	0.005
Triadimenol	55219-65-3	μg/l	0.005	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	< N
Epoxiconazol	106325-08-0	μg/l	0.005	<	<	<	<	<		: <	<	<	<	<	<	13	<	<	<	<	<	<
Diphenoconazol	119446-68-3	μg/l	0.005	<	<	<	<	<			<	<	<	<	<	13	<	<	<	<	<	<
Azaconazol	60207-31-0	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Cyproconazol	94361-06-5	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Tricyclazol	41814-78-2	μg/l	0.005	<	<	<	<	<			<	<	<	<	<	13	<	<	<	<	<	<
Bromuconazol	116255-48-2	μg/l	0.005	<		<	<	<				<	<	<	<	13	<	<	<	<	<	<
Fenbuconazol	114369-43-6	μg/l	0.005	<		<	<	<				<		<	<	13	<	<	<	<	<	<
Fluquinconazol	136426-54-5		0.005			<	<					<		<	<	13	<	<	<	<	<	<
	.55.25 57 5	P9/1	0.000					,		`	,		`	•	,	10	`	,	`	,	`	

Fungizide aus der Conazol-Gruppe Andijk (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jı	un.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Tetraconazol	112281-77-3	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< = < = < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < < = < < < = < < < = < < < = < < < < = < < < = < < < < = < < < < = < < < < < = < < < < < < < < < < < < < < < < < < < <
Triticonazol	131983-72-7	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triadimenol-A	89482-17-7	μg/l	0.05	<	<	<	<	<			<	<	<	<	<	<	12	<	<	<	<	<	<
Triadimenol-B	82200-72-4	μg/l	0.05	<	<	<	<	<			<	<	<	<	<	<	12	<	<	<	<	<	<
Haringvliet																							
Penconazol	66246-88-6	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	16	<	<	<	<	<	<
Propiconazol	60207-90-1	μg/l	0.003	0.00393	0.00415	0.0052	0.0036	<	0.005	87 0.0	0348	<	0.00308	<	0.00353	0.00436	13	<	<	0.0036	0.00351	0.0056	0.00587
Triadimenol	55219-65-3	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	16	<	<	<	<	<	<
Epoxiconazol	106325-08-0	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	16	<	<	<	<	<	<
cis-Propiconazol		μg/l	0.02	<		<	<			<	<	<	<	<	<	<	16	<	<	<	<	<	<
trans-Propiconazol		μg/l	0.02	<		<	<			<	<	<	<	<	<	<	16	<	<	<	<	<	<
Fungizide mit Amid-Gruppe																							
Lobith	2004.14.2			0.0105	0.004	0.000	0.005	0.000		201	0.00	0.00	0.001	0.001	0.000	0.040	10	0.010	0.0104	0.000	0.0074	0.0070	0.042
N,N-Dimethylsulfamid (DMS)	3984-14-3	μg/l		0.0185	0.024	0.026	0.025	0.026	0.0	JZI	0.03	0.03	0.031	0.031	0.029	0.042	13	0.018	0.0184	0.026	0.0271	0.0376	0.042
Nieuwegein	000111		2.25		0.076						0.000			0.055	0.051	0.055						0.0070	0.076
N,N-Dimethylsulfamid (DMS)	3984-14-3	μg/l	0.05	<	0.072	<	<	<			0.061	<	<	0.055	0.051	0.055	13	<	<	<	<	0.0676	0.072
2,6-Dichlorbenzamid (BAM)	2008-58-4	μg/l	0.01	<	<	<	<	<		<	<	<	0.01	<	<	<	13	<	<	<	<	<	0.01
Mepronil	55814-41-0	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metalaxyl	57837-19-1	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Prochloraz	67747-09-5	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tolylfluanid	731-27-1	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
N,N-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST)	66840-71-9	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phlutolanil	66332-96-5	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>></u>
Zoxamid	156052-68-5	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Boscalid	188425-85-6	μg/l	0.04	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< ▶
Fluopicolid	239110-15-7	μg/l	0.005	<		<				<	<	<	<	<	<	<	13	<		<	<	<	<
Amisulbrom	348635-87-0	μg/l	0.03		,	<	ì	,		<			<	<			13		ì		<		0.013
Fluopyram	658066-35-4	μg/l	0.005	<		<			0.0	013	0.01	0.006	0.005	0.006	0.006	0.005	13	<	<		0.00508	0.0118	0.013
Mandipropamid	374726-62-2	μg/I	0.005	<	<	<		<	0.0	<	0.01	< .000	< .003	< .000	< .000	<	13	<	<	< 0.003	<	<	0.010
Penthiopyrad	183675-82-3		0.005	<				<		<	<		<	<		<	13	<				<	< = < =
Nieuwersluis	103073-02-3	μg/l	0.000	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	\
N,N-Dimethylsulfamid (DMS)	2004 14 2	/1		0.115	0.12	0.11	0.000	0.099	0.0	102	0.079	0.052	0.050	0.11	0.005	0.00	13	0.052	0.0548	0.098	0.0934	0.100	0.13
	3984-14-3	μg/l	0.01	0.115	0.13	0.11	0.098					0.052	0.059	0.11	0.065	0.09		0.052	0.0046			0.126	0.13
2,6-Dichlorbenzamid (BAM)	2008-58-4	μg/l	0.01	<	0.01	<	<	<	U	.01	<	<	0.01	<	<	<	13	<	<	<	<	0.01	0.01
Metalaxyl	57837-19-1	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
N,N-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST)	66840-71-9	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Boscalid	188425-85-6	μg/l	0.04	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Amisulbrom	348635-87-0	μg/l	0.03	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk						_																	
N,N-Dimethylsulfamid (DMS)	3984-14-3	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,6-Dichlorbenzamid (BAM)	2008-58-4	μg/l		0.03	0.02	0.02	0.03	0.02	0.	.02	0.02	0.02	0.02	0.02	0.02	0.02	13	0.02	0.02	0.02	0.0223	0.03	0.03
Mepronil	55814-41-0	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metalaxyl	57837-19-1	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Prochloraz	67747-09-5	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>\</u> < <u>\</u> < <u>\</u> < <u>\</u>
Tolylfluanid	731-27-1	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
N,N-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST)	66840-71-9	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phlutolanil	66332-96-5	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Zoxamid	156052-68-5	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Boscalid	188425-85-6	μg/l	0.04	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fluopicolid	239110-15-7	μg/l	0.005	<	<	<	<			<		<	<	<	<	<	13	<	<		<	<	< ▶
Amisulbrom	348635-87-0	μg/l	0.03	`		ì	`				Ì		Ì	,	,		4	<	*	*		*	
Fluopyram	658066-35-4	μg/I	0.005	0.0065	<	<	<	<	0.0	005	<	0.006	0.007	0.007	0.007	0.01	13	<	<	0.005	0.00519	0.0092	0.01
	000000 00-4	μу/	0.003	0.0000		,	`	,	0.0		,	0.000	0.007	0.007	0.007	0.01	10	`	`	0.000	0.00010	0.0002	0.01

Fungizide mit Amid-Gruppe Andijk (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Mandipropamid Mandipropamid	374726-62-2	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	—
Penthiopyrad	183675-82-3		0.005	<		<	<	<	<	<	<		<	<	<	13	<	<	<	<	<	< =
Haringvliet	100070 02 0	P9/1	0.000		`				`		`		`			10		`	`	`		
N,N-Dimethylsulfamid (DMS)	3984-14-3	μg/l	0.05	<		<	<		<	<	<	<	<	<	0.052	12	<	<		<	<	0.052
2,6-Dichlorbenzamid (BAM)	2008-58-4	1 0	0.02	<		<	<		<	<	<	<		<	<	17	<	<		<	<	0.002
Metalaxyl	57837-19-1	1 0	0.02	<		<	<		<	<	<	<		<	<	16	<	<		<	<	
N,N-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST)	66840-71-9	1 0	0.02	<		<	<			<					<	12		<			<	
N,N-Dilliettiyi-N -(4-Mettiyiphetiyi)Suhalilid (DMS1)	00040-71-3	ру/1	0.03				`			`						12		`			`	` _
Fungizide aus der Pyrimidin-Gruppe																						
Nieuwegein																						
Bupirimat	41483-43-6	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethirimol	5221-53-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ethirimol	23947-60-6		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenarimol	60168-88-9	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nuarimol	63284-71-9		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyriphenox	88283-41-4	1 0	0.005	<					<					<		13	<				<	<
Pyrimethanil	53112-28-0		0.02	<	,			<	<	<		<		<	<	13	<	<		<	<	<
Cyprodinil	121552-61-2		0.02	<	<			<	<	<	<	<		<	<	13	<	<	,	<	<	<
Mepanipyrim	110235-47-7	1 0	0.005	<	<		<	<	<	<	<			<	<	13	<	<		<	<	<
Ametoctradin	865318-97-4		0.005	<	<	<	<	<	<	<	<	<		<	<	13	<	<		<	<	<
Nieuwersluis	003310-37-4	μg/l	0.003													10						
Bupirimat	41483-43-6	μg/l	0.02	<		<	<	<		<	<	<		<	<	13	<	<	<	<	<	
Pyrimethanil									<				<			13						<
,	53112-28-0		0.02	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	< <u>=</u>
Cyprodinil	121552-61-2	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																		v	v		*	
Bupirimat	41483-43-6	1 0	0.02		<			<			<			<		4	<	*	*	<		< <u> </u>
Dimethirimol	5221-53-4	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ethirimol	23947-60-6		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenarimol	60168-88-9	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nuarimol	63284-71-9		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyriphenox	88283-41-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< No. 10 to
Pyrimethanil	53112-28-0	μg/l	0.02		<			<			<			<		4	<	*	*	<	*	<
Cyprodinil	121552-61-2	μg/l	0.02		<			<			<			<		4	<	*	*	<	*	<
Mepanipyrim	110235-47-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ametoctradin	865318-97-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fungizide aus der Strobylurin-Gruppe																						
Nieuwegein																						
Kresoxim-Methyl	143390-89-0	//	0.02													13						
•		1 0		<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	< <u> </u>
Azoxystrobin	131860-33-8	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyraclostrobin	175013-18-0		0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Picoxystrobin	117428-22-5		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>></u>
Trifloxystrobin	141517-21-7	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Dimoxystrobin	149961-52-4	μg/l	0.005	<	<	<	<	<	 <	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis																						
Kresoxim-Methyl Andijk	143390-89-0	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
Kresoxim-Methyl	143390-89-0	μg/l	0.02		<			<			<			<		4	<	*	*	<	*	
•	131860-33-8		0.02													13						
Azoxystrobin				<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	
Pyraclostrobin	175013-18-0	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Picoxystrobin	117428-22-5		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Trifloxystrobin	141517-21-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Fungizide aus der Strobylurin-Gruppe Andijk (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Dimoxystrobin	149961-52-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Kresoxim-Methyl	143390-89-0	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	< <u> </u>
Azoxystrobin	131860-33-8	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Nicht-eingeteilte Fungizide Lobith																						
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dodin	2439-10-3		0.05	<			,	<	<		<	<	<	<	<	26	<	,	<	<		< ☑
Hexachlorbenzen (HCB)	118-74-1	μg/l	0.0002	<	<	<			<	<		<	0.0002	0.0002	<	13	<	<	<		.000222	
Pyrazophos	13457-18-6	μg/l	0.002	<	<	<			<		<	<	<	<	<	13	<	<	<	<	<	<
Tolclophos-Methyl	57018-04-9	μg/l	0.003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u> </u>
Quinoxyfen	124495-18-7	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cybutryn	28159-98-0		0.0007	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = <
Nieuwegein		1 3,																				
Anilazin	101-05-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Carboxin	5234-68-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlortalonil	1897-45-6	μg/l	0.1		<			<			<			<		4	<	*	*	<	*	<
Cymoxanil	57966-95-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ▶
Dichlorophen	97-23-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Diethofencarb	87130-20-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dinocap	39300-45-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dithianon	3347-22-6		0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	52	<	<	<	<	<	<
Dodemorph	1593-77-7	μg/l	0.04	<	<	<	<	<	<	<	<		<	<	<	12	<	<	<	<	<	< >
Phenpropiomorph .	67564-91-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
2-Phenylphenol	90-43-7	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Flusilazol	85509-19-9	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Furalaxyl	57646-30-7	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fumecyclox	60568-05-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexachlorbenzen (HCB)	118-74-1	μg/l	0.0002	<	<	0.00023	<	<	<	<	<	<	<	<	0.00021	13	<	<	<	< 0.	.000222	0.00023
Oxadixyl	77732-09-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Oxycarboxin	5259-88-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ≥
Pencycuron	66063-05-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Procymidon	32809-16-8		0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyracarbolid	24691-76-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	_
Pyrazophos	13457-18-6		0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tolclophos-Methyl	57018-04-9	μg/l	0.003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< No. 10 to
Triadimefon	43121-43-3	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tridemorph	24602-86-6		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triforin	26644-46-2	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Vinclozolin	50471-44-8	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethomorph	110488-70-5	μg/l	0.07	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ▶
Ediphenphos	17109-49-8	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phluazinam	79622-59-6		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< No. of the control
Fenamidon	161326-34-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenhexamid	126833-17-8		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = < = < M
Famoxadon	131807-57-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triazoxid	72459-58-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ≥
Azadirachtin A	11141-17-6		1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Bixafen	581809-46-3	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Carpropamid	104030-54-8		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Nicht-eingeteilte Fungizide	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein (Fortsetzung) Climbazol	38083-17-9	ug/l	0.01	<	<	<		<			<	<	<		<	13	<	<	<	<	<	
Cyazofamid	120116-88-3	μg/l μg/l	0.005	<	<	<	0.011	<	< <	< <	<	<	<	< <	<	13	<		<	<	0.0076	0.011
Cyflufenamid	180409-60-3	μg/l	0.005	<	<	<	0.011	<	<	<		<		<	<	13	<			<	0.0070	0.011
Fenpropidin	67306-00-7	μg/l	0.005	<	<	<			<	<	<			<	<	13	<	,	~	<	<	
Phluaziphop-P-butyl	79241-46-6	μg/l	0.005	<	<	<	~		<	~			~	<	<	13	<	2	~	<	<	< = < = < = < = < = < = < = < = < = < =
Fluotrimazol	31251-03-3	μg/l	0.005	<	<	<	~		<	<			~		<	13	<	2	~	<	<	
Fluxapyroxad	907204-31-3	μg/l	0.03	<		<		<	<	<		<			<	13	<	<	<	<		<
Imibenconazol	86598-92-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Isoprothiolan	50512-35-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Isoparazam	881685-58-1	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metconazol	125116-23-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Proquinazid	189278-12-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Prothioconazol-Desthio	120983-64-4	μg/l	0.005	<	<	<	<	<	0.005	<	<	<	<	<	<	13	<	<	<	<	<	0.005
Quinoxyfen	124495-18-7	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Spiroxamin	118134-30-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cybutryn	28159-98-0	μg/l	0.0007	<	<	<	<	<	<	<	<	0.0007	<	0.00132	0.00094	13	<	<	<	<	0.00117	0.00132
Valifenalat	283159-90-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Dimethomorph	113210-97-2	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Dimethomorph	113210-98-3	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Dodemorph		μg/l	0.02	<	<	<	<	<	<	<	<		<	<	<	12	<	<	<	<	<	<
trans-Dodemorph		μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mepthyldinocap	131-72-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis																						
Diethofencarb	87130-20-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
Dodemorph	1593-77-7	μg/l	0.04	<	<	<	<	<	<	<	<		<	<	<	12	<	<	<	<	<	⟨ ■
Dodin	2439-10-3	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenpropiomorph	67564-91-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Phenylphenol	90-43-7	μg/l	0.02	<												1	*	*	*	*	*	*
Furalaxyl	57646-30-7	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexachlorbenzen (HCB)	118-74-1	μg/l	0.0002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Procymidon	32809-16-8	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyrazophos	13457-18-6	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tolclophos-Methyl	57018-04-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triadimefon	43121-43-3	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Vinclozolin	50471-44-8	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethomorph	110488-70-5	μg/l	0.07	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ediphenphos	17109-49-8	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Bixafen	581809-46-3	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fluxapyroxad	907204-31-3	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Isoparazam	881685-58-1	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Quinoxyfen	124495-18-7	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cybutryn	28159-98-0	μg/l	0.0007	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Dimethomorph	113210-97-2	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Dimethomorph	113210-98-3	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Dodemorph		μg/l	0.02	<	<	<	<	<	<	<	<		<	<	<	12	<	<	<	<	<	< <u>-</u>
trans-Dodemorph Andijk		μg/l	0.02	<	<	<	<	<	 <	<	<	<	<	<	<	13	<	<	<	<	<	<
Anulyk Anilazin	101.05.0	ug/I	0.01													13						<
Carboxin	101-05-3 5234-68-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u></u>
Cymoxanil	57966-95-7	μg/l	0.005 0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Dichlorophen	97-23-4	μg/l	0.005	<	<	< <	<	<	< <	<	<	<	<	< <	<	13	<	<	<	< <	<	< <u>\</u>
Diemorophen	37-23-4	μg/l	0.000	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	

Nicht-eingeteilte Fungizide Andijk (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Diethofencarb	87130-20-9	μg/l	0.02		<			<			<			<		4	<	×	×	<	×	<
Dinocap	39300-45-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dithianon	3347-22-6	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Dodemorph	1593-77-7	μg/l	0.04	<	<	<	<	<	<	<	<		<	<	<	12	<	<	<	<	<	<
Phenpropiomorph	67564-91-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Flusilazol	85509-19-9	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Furalaxyl	57646-30-7	μg/l	0.03		<			<			<			<		4	<	*	*	<	*	<
Fumecyclox	60568-05-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Hexachlorbenzen (HCB)	118-74-1	μg/l	0.0002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Oxadixyl	77732-09-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Oxycarboxin	5259-88-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pencycuron	66063-05-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Procymidon	32809-16-8	μg/l	0.02		<			<			<			<		4	<	*	*	<	*	<
Pyracarbolid	24691-76-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyrazophos	13457-18-6	μg/l	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tolclophos-Methyl	57018-04-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triadimefon	43121-43-3	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tridemorph	24602-86-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triforin	26644-46-2	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Vinclozolin	50471-44-8	μg/l	0.02		<			<			<			<		4	<	*	*	<	*	<
Dimethomorph	110488-70-5	μg/l	0.07	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ediphenphos	17109-49-8	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phluazinam	79622-59-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenamidon	161326-34-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	126833-17-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Famoxadon	131807-57-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triazoxid	72459-58-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Azadirachtin A	11141-17-6	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	581809-46-3	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Carpropamid	104030-54-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Climbazol	38083-17-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	120116-88-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
,	180409-60-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenpropidin	67306-00-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phluaziphop-P-butyl	79241-46-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fluotrimazol	31251-03-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fluxapyroxad	907204-31-3	μg/l	0.005	<	<	<			<	<	<	,			<	13			<	<	<	<
Imibenconazol	86598-92-7	μg/l	0.005	<		<				<	<		,		<	13			_	<	<	\ \[\begin{array}{c} \
Isoprothiolan	50512-35-1	μg/l	0.005	<	<	<				<	<			<	<	13			<	<	<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Isoparazam	881685-58-1	μg/l	0.005	<	,	<	2	<	<	<	<	<	2	<	<	13	<	,	<	<	<	<
·	125116-23-6	μg/l	0.005	<	<	<		<	<		<	<	<	<	<	13	<		<	<	<	\ \ =
	189278-12-4	μg/l	0.005	<	<	<			<					<	<	13	<		<	<	<	
•	120983-64-4	μg/l	0.005	<	<	<			<		<	<		<	<	13	<		~	<	<	
	124495-18-7	μg/I	0.003	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
,	118134-30-8	μg/I	0.001	<	<	<			<	<	<	<		<	<	13	<		<	<	<	
Cybutryn	28159-98-0	μg/I	0.003	<	<	<			<	<	<	<		<	<	13	<	<	<	<	<	<
	283159-90-0	μg/l	0.0007	<	<	<			<	<	<	<	<	<	<	13	<		<	<	<	_
	113210-97-2		0.003	<	<			<		<	<	<	<	<		13	<		<		<	
	113210-97-2	μg/l	0.04	`		<			<	`	`	,	`	`	<	13	`		`	<	,	
cis-Dodemorph	110210-30-3	μg/l	0.04	<		<		<	<	<	<	<	<	<	<	12	<	<	<	<	<	<
trans-Dodemorph		μg/l	0.02	<	<	<		<	<	<	<		<	<	<	13	<		<	<	<	
ti alis-podelii0[bii		μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Nicht-eingeteilte Fungizide Andijk (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Mepthyldinocap	131-72-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet 2-(Methylthio)benzothiazol	615-22-5	μg/l	0.03	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< =
Chlortalonil	1897-45-6	μg/l	0.02	<		<			<		<	2	<	<	<	16		2		<		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2,4-Dimethylphenol	105-67-9		0.02	`		`	`		<	`	,		Ì	<	Ì	3	*	*	*	*	*	*
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.02	<	,		,		<		<			`	<	7	<	*	*	<	*	<
Dodin	2439-10-3	μg/l	0.05	<		<		,	<	<		<		<	<	13		<	<	<	<	< ☑
Phenpropiomorph	67564-91-4	μg/l	0.03	<	`	<		`	<	<		<		<	<	16				<	<	
Hexachlorbenzen (HCB)	118-74-1	μg/I	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<		<	<	<
Pyrazophos	13457-18-6		0.02	<		<	<		<	<		<	<	<	<	16	<	<	<	<	<	
Quintozen	82-68-8	μg/I	0.03	<		<				<	<	<			<	16	<			<	<	
Tolclophos-Methyl	57018-04-9		0.02			<			<	<	`	<		<	<	16	<		<	<	<	
Quinoxyfen	124495-18-7	μg/l	0.02	< <		<	<		<	<	< <	<	<	< <	<	13	<	< <	<	<	<	< □
,	28159-98-0	μg/l	0.001	<	<	<	0.0033	<u> </u>	<	<					<	13	<u> </u>	<	-		0.00212	0.0033
Cybutryn	20109-90-0	μg/l	0.0007	<	<	<	0.0033	<	<	<	<	<	<	<	<	13	<	<	<	<	0.00212	0.0033
Herbizide mit Phenoxy-Gruppe																						
2,4-Dichlorphenoxyessigsäure (2,4-D)	94-75-7	μg/l	0.025	<	<	<	<	<	<	<	<	<	<	<	<	13	<		<	<	<	<
4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB)	94-82-6		0.023	<		<	<u> </u>		<	<		<	<		<	13	<	<	<		<	< >
		1 0	0.03		<	`	· ·	<		,	<	`		<		13			`	<		< <u>\</u>
Dichlorprop (2,4-DP)	120-36-5		0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>\</u>
4-Chlor-2-Methylphenoxyessigsäure (MCPA)	94-74-6	1 0		<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	< <u>\</u>
4-(4-Chlor-2-Methylphenoxy)buttersäure (MCPB)	94-81-5	1 0.	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>\</u>
Mecoprop (MCPP)	93-65-2	1 0	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,5-Trichlorphenoxyessigsäure (2,4,5-T)	93-76-5		0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< >
Phenoprop (2,4,5-TP)	93-72-1	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwegein	04.75.7		0.01											_		F0				_		0.01
2,4-Dichlorphenoxyessigsäure (2,4-D)	94-75-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	52	<	<	<	<	<	0.01
Dichlorprop (2,4-DP)	120-36-5	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	52	<	<	<	<	<	0.01
4-Chlor-2-Methylphenoxyessigsäure (MCPA)	94-74-6	1 0.	0.01	<	<	<	<	0.0125	<	<	<	<	<	<	<	52	<	<	<	<	0.01	0.02
4-(4-Chlor-2-Methylphenoxy)buttersäure (MCPB)	94-81-5		0.01	<	<	<	<	<	<	<	<	<	<	<	<	52	<	<	<	<	<	0.02
Mecoprop (MCPP)	93-65-2	1 0	0.01	<	<	<	<	<	<	<	0.0125	<	<	<	<	52	<	<	<	<	0.01	0.02
2,4,5-Trichlorphenoxyessigsäure (2,4,5-T) Nieuwersluis	93-76-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	52	<	<	<	<	<	<
	04.75.7		0.005													6		*	¥		*	
2,4-Dichlorphenoxyessigsäure (2,4-D)	94-75-7	μg/l	0.025	<		<		<		<		<		<		0	<	, *	*	<	*	< [
4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB)	94-82-6		0.03	<		<		<		<		<		<		b	<	, v	~ ×	<	, v	< [
Dichlorprop (2,4-DP)	120-36-5	1 0	0.01	<		<		<		<		<		<		b	<	×	×	<	×	< [
4-Chlor-2-Methylphenoxyessigsäure (MCPA)	94-74-6	1 3	0.03	<		<		<		<		<		<		b	<	,	~	<		←
4-(4-Chlor-2-Methylphenoxy)buttersäure (MCPB)	94-81-5		0.03	<		<		<		<		<		<		6	<	*	*	<	*	<
Mecoprop (MCPP)	93-65-2	1 0.	0.03	<		<		<		<		0.03		<		6	<	*	*	<	*	0.03
2,4,5-Trichlorphenoxyessigsäure (2,4,5-T)	93-76-5	1 0	0.03	<		<		<		<		<		<		6	<	*	*	<	*	<
Phenoprop (2,4,5-TP)	93-72-1	μg/l	0.03	<		<		<		<		<		<		6	<	*	*	<	*	< □
Andijk																						
2,4-Dichlorphenoxyessigsäure (2,4-D)	94-75-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlorprop (2,4-DP)	120-36-5		0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
4-Chlor-2-Methylphenoxyessigsäure (MCPA)	94-74-6	1 0	0.01	<	<	<	<	<	<	<	<	0.02	<	<	<	13	<	<	<	<	0.014	0.02
4-(4-Chlor-2-Methylphenoxy)buttersäure (MCPB)	94-81-5	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mecoprop (MCPP)	93-65-2		0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,5-Trichlorphenoxyessigsäure (2,4,5-T)	93-76-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ▶
Haringvliet																						
4-Chlorphenoxylessigsäure	122-88-3	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
4-Chlor-2-Methylphenol	1570-64-5	μg/l	0.02						<		<			<		3	*	*	*	*	*	* -
2,4-Dichlorphenoxyessigsäure (2,4-D)	94-75-7	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<

Herbizide mit Phenoxy-Gruppe Haringvliet (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	J	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB)	94-82-6	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	12	<	<	<	<	<	<
Dichlorprop (2,4-DP)	120-36-5		0.05			<	<			<	<	<	<	<	<	<	12	<	<	<	<	<	<
4-Chlor-2-Methylphenoxyessigsäure (MCPA)	94-74-6		0.05			<				<	<	<	<		<	<	12	<		<	<	<	<
4-(4-Chlor-2-Methylphenoxy)buttersäure (MCPB)	94-81-5	1 3	0.05			<	,			<		,	<		,		12		,	<	,	<	<u> </u>
Mecoprop (MCPP)	93-65-2	μg/l	0.05	<		<				<	<		<		<	<	12	<		<	<	<	
2,4,5-Trichlorphenoxyessigsäure (2,4,5-T)	93-76-5		0.05							<	<		<	<	<	<	12	<	<	<		<	
Phenoprop (2,4,5-TP)		1 0	0.05			<						<					12				<	<	< ■
FileHopFop (2,4,3-1 F)	93-72-1	μg/l	0.00	<		<	<			<	<	<	<	<	<	<	12	<	<	<	<	<	
Herbizide mit Amid-Gruppe																							
Lobith																							
Dimethenamid-p	163515-14-8	μg/l		0.00171	0.00721	0.00554	0.00767	0.0136	0.0	0172 0.	00265	0.00162	0.00264	0.00316	0.00206	0.00151	13	0.00151	0.00153	0.00265	0.00525	0.0158	0.0172
Nieuwegein																							
Isoxaben	82558-50-7	μg/l	0.005		<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Propyzamid	23950-58-5	μg/l	0.02		<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	0.032	0.04
Dimethenamid	87674-68-8	μg/l	0.005	<	0.013	0.012	0.008	<	0.	.029	0.013	<	<	<	<	<	13	<	<	<	0.00731	0.0226	0.029
Dimethenamid-p	163515-14-8	μg/l		0.00177	0.0157	0.0127	0.00804	0.00581	0.0	0336	0.015	0.00444	0.00139	0.00272	0.00262	0.0021	13	0.00139	0.00154	0.00444	0.00828	0.0264	0.0336
Beflubutamid	113614-08-7	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis																							
Propyzamid	23950-58-5	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	0.022	0.03
Dimethenamid	87674-68-8	μg/l	0.02		<	<	<	<	0.	.022	<	<	<	<	<	<	13	<	<	<	<	<	0.022
Dimethenamid-p	163515-14-8	μg/l			0.00231	0.00484	0.00623	0.0039			1 1129	0.00178	0.00145	0.00216	0.00227			0.00145	0.00146	0.00231	0.00508	0.0185	0.0223
Andijk	100010 11 0	P9/1		0.00200	0.00201	0.00101	0.00020	0.0000	0.0	7220	.0120	0.00170	0.00110	0.00210	0.00227	0.00102	10	0.00110	0.00110	0.00201	0.00000	0.0100	0.0220
Isoxaben	82558-50-7	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<		<	<	<	<
					· ·	<	<			<	<		<	<		<	4		*	*		*	ζ 🗒
Propyzamid	23950-58-5	μg/l	0.02		<	0.005	0.005	<				<			<			<			<		0.005
Dimethenamid	87674-68-8	μg/l	0.005		<	0.005	0.005	<		<	<	<	<	<	<	<	13	<	<	<	<	0.005	
Dimethenamid-p	163515-14-8	μg/l		0.00451	0.00443	0.0061	0.0054	0.00451	0.00	0568 0.	00466	0.00482	0.00337	0.00243	0.00211	0.00193	13	0.00193	0.002	0.00451	0.00419	0.00593	0.0061
Beflubutamid	113614-08-7	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																							
Dimethenamid-p	163515-14-8	μg/l	0.02	<		<	<		0.0	0255	<	<	<	<	<	<	17	<	<	<	<	0.0266	0.041
Herbizide aus der Anilid-Gruppe																							
Lobith																							
Metazachlor	67129-08-2	μg/l	0.002	<	<	<	0.00271	0.00294	0.00	0385 0.	00414	0.0034	0.00277	0.00254	0.00322	0.00423	13	<	<	0.00277	0.0026	0.00419	0.00423
Metazachlor-C-Metabolit	1231244-60-2	μg/l	0.01	0.09	0.04	0.04	0.02	<		0.01	0.01	0.01	<	<	<	<	13	<	<	0.01	0.0258	0.094	0.11
Metazachlor-S-Metabolit	172960-62-2	μg/l	0.01	0.145	0.07	0.09	0.05	0.02	(0.02	0.03	0.02	<	<	0.02	0.02	13	<	<	0.02	0.0492	0.152	0.18
Nieuwegein																							
Metazachlor	67129-08-2	μg/l	0.002	<	<	<	0.00266	0.00245	0.00	0297 0.	00314	0.00235	0.00257	<	0.00208	0.00268	13	<	<	0.00235	<	0.00307	0.00314
Flufenacet	142459-58-3	μg/l	0.005	0.00575	<	<	<	<		.008	<	<	<	<	<	<	13	<	<	<	<	0.0086	0.009
Metazachlor-C-Metabolit	1231244-60-2	μg/l	0.03	0.06	<		<	<		<	<	<	<	<	<	<	13	<	<	<	<	0.062	0.07
Metazachlor-S-Metabolit	172960-62-2		0.03		0.07		0.075	0.04		<		<	<		<	<	13	<	<	<	0.0496	0.142	0.15
Metosulam	139528-85-1	μg/l	0.005		0.07 <	<	· · · · · · ·	0.0 T		2		,				~	13				0.0100	<	<
Nieuwersluis	.00020 00 1	P9/1	5.000				ì	ì					ì	·	ì		10		ì			ì	
Metazachlor	67129-08-2	μg/l	0.002	<	<	<	<	<	0.00	0238 0	1 0023	0.00319	0.00274		0.00276	0.00267	13	<		0.00214		0 00303	0.00319
Andiik	07123-00-2	μу/і	0.002						0.00	J230 0	1.0023	0.00013	0.00274		0.00270	0.00207	10			0.00214		0.00302	0.00313
Metazachlor	67129-08-2	μg/l	0.002	<	<	<	<	<		<	<	<	<	<	<	<	13	<	,	<	<	<	0.00213
Flufenacet	142459-58-3		0.002		<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	0.0072	0.00213
Metazachlor-C-Metabolit	1231244-60-2	μg/l	0.005		0.05	<	0.055	0.08		0.04	0.04	0.04	,	,	`		13	`	,	0.04	0.0423	0.0072	0.008
		μg/l	0.03										0.06	< 0.04	< 0.04	< O OF		< 0.04	< 0.04				0.00
Metazachlor-S-Metabolit	172960-62-2	μg/l	0.005	0.115	0.09		0.08	0.1		0.06	0.06	0.06	0.06	0.04	0.04	0.05	13	0.04	0.04	0.06	0.0731	0.118	0.13
Metosulam	139528-85-1	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																							
Metazachlor	67129-08-2	μg/l	0.002	<	<	<	<	0.00302	0.00	0374 0.	00256	0.00286	0.00245	0.00238	0.00244	0.00306	13	<	<	0.00244	0.00212	0.00347	0.00374

Herbizide aus der Chloracetanilid-Gruppe Lobith	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Alachlor	15972-60-8	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwegein																						
Alachlor	15972-60-8	μg/l	0.001	<	<	0.00143	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.00106	0.00143
Propachlor Nieuwersluis	1918-16-7	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Alachlor	15972-60-8	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = <
Propachlor	1918-16-7	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																						
Alachlor	15972-60-8	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Propachlor	1918-16-7	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Alachlor	15972-60-8	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	< = < = < =
Dimethachlor	50563-36-5	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Propachlor	1918-16-7	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Herbizide aus der (Bis)Carbamat-Gruppe																						
Nieuwegein	404.07.5		0.00																			
Barban	101-27-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Carbetamid	16118-49-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>\</u>
Desmedipham	13684-56-5	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenmedipham	13684-63-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Perbulat	1114-71-2	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Chlorpropham	101-21-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methyl-N-(3-hydroxyphenyl)carbamat (MHPC) Nieuwersluis	13683-89-1	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Chlorpropham	101-21-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	0.02
Methyl-N-(3-hydroxyphenyl)carbamat (MHPC)	13683-89-1	μg/l	0.02	<	<	<	<	<	0.02	<	<	<	<	<	<	13	<	<	<	<	<	0.02
Andijk																						
Barban	101-27-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Carbetamid	16118-49-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ∑
Desmedipham	13684-56-5	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenmedipham	13684-63-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Perbulat	1114-71-2	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorpropham	101-21-3	μg/l	0.01	<	<	<	<	<	0.01	<	<	<	<	<	<	13	<	<	<	<	<	0.01
Methyl-N-(3-hydroxyphenyl)carbamat (MHPC)	13683-89-1	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Chlorpropham	101-21-3	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Herbizide aus der Dinitroanilin-Gruppe																						
Nieuwegein																						
Nitralin Andijk	4726-14-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nitralin	4726-14-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Pendimethalin	40487-42-1	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Herbizide aus der Sulfonylharnstoff-Gruppe																						
Lobith	74000 04 0		0.000												0.017	10					0.0100	0.017
Metsulphuron-Methyl	74223-64-6	μg/l	0.003	<	<	<	<	<	<	<	<	<	<	<	0.017	13	<	<	<	<	0.0108	0.01/
Nieuwegein Nieuwegein	111001 00 1		0.00													50						
Nicosulfuron	111991-09-4	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	< <u>-</u>
Triflusulfuron-Methyl	126535-15-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Manual Published Manual Publ	Herbizide aus der Sulfonylharnstoff-Gruppe Nieuwegein (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	. Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Mary Conference		101200-48-0	μg/l	0.05	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Minoral Mino																							
Manufactor Man	. ,		μg/l		<		<		<		<		<		<			<	*	*	<	*	<
Michaelmen Missississis Mississis		111991-09-4	μg/l	0.02	<	<	<	<	<	<	< <	<	<	<	<	<	13	<	<	<	<	<	<
This part Marco																							
This part Marco					<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	<
Mississamon	•		μg/l		<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	<
Manufally Manu		101200-48-0	μg/l	0.05	<	<	<	<	<	<	< <	<	<	<	<	<	13	<	<	<	<	<	<
Markinde millarstoff-Groupe 1989	· · · ·																						
Part	,		μg/l		<	<		<		<	<	<		<		<	•	<	*	*	<	*	<
Chief charman	Nicosulfuron	111991-09-4	μg/l	0.02	<		<	<		<	< <	<	<	<	<	<	17	<	<	<	<	<	<
Continuation																							
Designation 1984-44 1981 2011 2015 20187 20198																			_				
Definition 1982-414 1981 10 10 10 1 1 10 10 10				0.002																			< 🗵
Dimon 1985 1988						0.00547	0.00161	0.00259	0.00137	0.00094	4 0.00063	0.00062	0.00063	0.00078	0.00881				0.000624	0.00161	0.00492	0.0157	0.0164
Supername Supe						<	<	<	<	<	< <	<	<	<	<				<	<	<	<	<
Manufale M				0.01	,		,	,			, ,								<				<
Michanisman 1881-978 90 90	•				0.00279		0.00168	0.00416	0.005						0.00586				0.00151				
Modelmare 1984-98 y y y y y y y y y y y y y						`		<	<						`				<				
Memorinary 1987-5-98 1981 1 0.002 0 0.002 0 0.005 0 0.0005 0					<	<	<	<	<	0.00028	6 0.00012	0.00018	0.00019	0.0002	0.00013			<	<			0.000236	0.00026
Monitorium					<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<		
Manura M					<	<	<		<		< <	<	<	<	<	<		<	<	<	<		
Network Netw			10.		<	<	<	0.00105	<		< <	<	<	<	<	<		<	<	<	<	<	0.00105
4-sporghalin		150-68-5	μg/l	0.002	<	<	<	<	<	<	< <	<	<	<	<	<	13	<	<	<	<	<	<
Britton 376-86-87 yg/ 0.005 c c c c c c c c c																			_				
Bittorn 376-86-87 yg/ 0.005 c c c c c c c c c					<	<	<	<	<		< <	<	<	<	<	<		<	<	<	<	<	<
Chlorburnor 1380-45-7 196 0.01 0.0	•				<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	<
Chiefe					<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	<
Chioroxuron 1982-474				0.02				<															<
Diuro Diur					0.0196	0.00525	0.00447	0.00307	0.00261	0.00126	6 0.00122	0.00102	0.00091	0.00105	0.00134	0.004		0.00091	0.000954	0.00261	0.00502	0.0201	0.0221
Soproturon 34123-59-6					<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	
Linurum 18691-97-9 yg/ 0.001 0.001 0.0007 0.					<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	<
Metabenzthiazuron 18691-97-9	•				<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	
Metobromuron 19931-95-8 yg/ 0.005 0							<	<	<			<	<		<			<	<				
Metoxuron 19937-59-8			10.		0.00011	0.00017	<	<	<		< 0.00023	0.00024	0.00044	0.00041	0.0003	0.00031		<	<	0.00017	0.000194	0.000428	0.00044
Monolinuron 1746-81-2 yg/l 0.02 0.					<	<	<	<	<		< <	<	<	<	<	<		<	<	<	<	<	<
Monuron 150-68-5					<	<	<	<	<		< <	<	<	<	<	<		<	<	<	<	<	
Neburon Sebs-37-3 Neburon Sebs-37-3			10.		<	<	<	<	<		< <	<	<	<	<	<		<	<	<	<	<	<
NN-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST)			μg/l		<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	<
1-(3,4-Dichlorphenyl)-Harnstoff (DCPU)					<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	<
1-(3,4-Dichlorphenyl)-3-Methyl-Harnstoff (DCPMU) 3567-62-2 µg/l 0.02 <					<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	<
Chlorfluazuron Chl			1 0		<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	< □
Nieuwersluis Nieu					<	<	<	<	<	<	< <	<	<	<	<	<		<	<	<	<	<	<
Chlorbornuron 13360-45-7 μg/l 0.02 < < < < < < < < <		71422-67-8	μg/l	0.005	<	<	<	<	<	<u> </u>	< <	<	<	<	<	<	13	<	<	<	<	<	<
Chlortoluron 15545-48-9 μg/l 0.0211 0.0037 0.0028 0.00138 0.0093 0.0093 0.0098 0.00186 0.00143 0.0066 0.0143 0.0086 0.00143 0.0026 0.0018 0.0028 0.0093 0.0038 0.0093 0.0038 0.0098 0.00143 0.0046 13 0.0086 0.00368 0.0028 0.0226 0.0226 0.0226 0.0226 0.0226 0.0226 0.0238 0.0038																							
Chloroxuron 1982-47-4 μg/l 0.001 < < < < < < < < < < < < < < < < < <				0.02																			<
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			μg/l		0.0211	0.0067	0.00337	0.00278	0.00295	0.00138	0.00093	0.00093	0.00088	0.00086	0.00143	0.00646		0.00086	0.000868	0.00278	0.00545	0.0226	
Isoproturon 34123-59-6 μg/l 0.00388 0.00232 0.00364 0.00265 0.00313 0.00345 0.00251 0.00307 0.00299 0.00305 0.00384 0.00502 13 0.00232 0.00237 0.00307 0.00334 0.00519 0.00531			μg/l	0.001																			
	Diuron	330-54-1	μg/l		0.0037	0.00288	0.00316	0.00339	0.00436	0.00493	3 0.00348	0.00557	0.00582	0.00432	0.00504	0.00494	13	0.00288	0.00299	0.00432	0.00425	0.00572	0.00582
Linuron 330-55-2 μg/l 0.02 < < < < < < < < < < < < < < < < < < <	•		μg/l		0.00388	0.00232	0.00364	0.00265	0.00313	0.00345	5 0.00251	0.00307	0.00299	0.00305	0.00384	0.00502		0.00232	0.00237	0.00307	0.00334	0.00519	0.00531
	Linuron	330-55-2	μg/l	0.02	<	<	<	<	<	<	< <	<	<	<	<	<	13	<	<	<	<	<	<

Herbizide mit Harnstoff-Gruppe Nieuwersluis (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jur	ı. Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Ma
Wetabenzthiazuron	18691-97-9	μg/l	0.0001	0.00012	<	<	<	<	0.0002	1 0.00022	0.00029	0.00029	0.00024	0.00038	0.00029	13	<	< 0.0	00021 0.	.000182 0.	000344	0.0003
Metobromuron	3060-89-7	μg/l	0.002	0.00012	<			<		< < <	0.00023	<.00023	< 0.00024	0.00000	<	13	<	< 0.0	/0021 0.	.000102 0.	.00000.	
Metoxuron	19937-59-8	μg/I	0.002			`		<		`		<			<	13					<	
Monolinuron			0.02	<	ζ.	<	· ·				<		< .	ζ.		13			<			
	1746-81-2	μg/l		<	<	<	<	<		< <	<	<	<	<	<		<	<	<	<	<	
Monuron	150-68-5	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
N,N-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST)	66840-71-9	μg/l	0.05	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
I-(3,4-Dichlorphenyl)-Harnstoff (DCPU)	2327-02-8	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
I-(3,4-Dichlorphenyl)-3-Methyl-Harnstoff (DCPMU)	3567-62-2	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
Andijk																						
1-Isopropylanilin	99-88-7	μg/l	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
3-Chlor-4-Methoxyanilin	5345-54-0	μg/l	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
Buturon	3766-60-7	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
Chlorbromuron	13360-45-7	μg/l	0.02	<	<	<							<		<	13	<		<	<	<	
Chlortoluron	15545-48-9	μg/l	0.005	0.023	0.008	0.009		` `				`	,	` <	<	13				0.00658	0.024	0.0
Chloroxuron	1982-47-4		0.003			0.003				`		`	,			13	`					0.0
		μg/l	0.001	0.00204	0.00240	0.00051	0.00000	0.00232		,	0.00101	0.00101	0.00172	0.00192	0.00202		< 10161 0.00	1165 0.0	< 10203 (0.00210	> n nn 206	0.002
Diuron	330-54-1	μg/l	0.000	0.00284			0.00268		0.001				0.00172		0.00203						0.00286	
soproturon	34123-59-6	μg/l	0.0003	0.00484	0.00182	0.00207	0.00147	<	0.0010			0.00078	0.00082	0.001	0.00137	13	< 0.000	13b2 U.			0.00506	0.005
inuron	330-55-2	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
Metabenzthiazuron	18691-97-9	μg/l	0.0001	0.00012	0.00017	<	<	<		< 0.00014	0.00014	0.00017	0.00014	0.0002	0.00015	13	<	< 0.0	00014 0.	.000119 0.	.000196	0.00
Metobromuron	3060-89-7	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
Netoxuron	19937-59-8	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
Nonolinuron	1746-81-2	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
Monuron	150-68-5	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
Veburon	555-37-3	μg/l	0.005	<		<				`		<	<	<	<	13					<	
I,N-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST)	66840-71-9		0.003	<		<				< <				<	<	13	_			<		
-(3,4-Dichlorphenyl)-Harnstoff (DCPU)		μg/l	0.01													13	•				,	
	2327-02-8	μg/l		<	<	<	<	<		< <		<	<	<	<		<	<	<	<	<	
-(3,4-Dichlorphenyl)-3-Methyl-Harnstoff (DCPMU)	3567-62-2	μg/l	0.02	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	
Chlorfluazuron	71422-67-8	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
	71122 07 0	1 0																				
Haringvliet I-Isopropylanilin	99-88-7	μg/l	0.03	<		<	<			< <	<	<	<	<	<	12	<	<	<	<	<	
			0.03 0.03	< <		< <	< <			< <		< <	< <	< <	< <	12 12	< <	< <	< <	< <	< <	
1-Isopropylanilin	99-88-7	μg/l					< < <				<							< < <	-			
I-Isopropylanilin 3-Chlor-4-Methoxyanilin Buturon	99-88-7 5345-54-0	μg/l μg/l μg/l	0.03	<		<	< < <			< <	<			<	<	12	<	< < <	<	<	<	0.0
I-Isopropylanilin I-Chlor-4-Methoxyanilin Buturon Chlorbromuron	99-88-7 5345-54-0 3766-60-7 13360-45-7	µg/I µg/I µg/I µg/I	0.03 0.02 0.02	< <		< <	< < <			< <	<			< <	< <	12 17	< <	< < < < < < < < < < < < < < < < < < <	<	< <	<	0.0
I-Isopropylanilin B-Chlor-4-Methoxyanilin Buturon Chlorbromuron Chlortoluron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9	µg/l µg/l µg/l µg/l	0.03 0.02 0.02 0.02	< < <		< < <	< < < <			<	<	< < <		< < <	< < < <	12 17 17 17	< < < < < <	< < < < < < < < < < < < < < < < < < <	< < <	< < <	< < <	0.0
I-Isopropylanilin B-Chlor-4-Methoxyanilin Buturon Chlorbromuron Chlortoluron Chloroxuron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4	hā\l hā\l hā\l hā\l	0.03 0.02 0.02 0.02 0.001	< < < <	<	< < < <	< < < < < < < < < < < < < < < < < < <	<		< <	<			< <	< < < < < < < < < < < < < < < < < < <	12 17 17 17 17	< <	< < < < < < < < < < < < < < < < < < <	<	< < <	< <	0.0 0.0
I-Isopropylanilin B-Chlor-4-Methoxyanilin Buturon Chlorbromuron Chlortoluron Chloroxuron Difenoxuron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5	µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.02 0.02 0.02 0.001 0.02	< < < < < < < < < < < < < < < < < < <	<	< < < < <	< < < < < < < < < < < < < < < < < < <	<		< < < < < < < < < < < < < < < < < < <	< < < < < < < <	< < < < < < < < < < < < < < < < < < <		< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	12 17 17 17 17 13	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < <	< < < < <	0.0
I-Isopropylanilin B-Chlor-4-Methoxyanilin Buturon Chlorbromuron Chlortoluron Chloroxuron Difenoxuron Diuron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1	нд/I hд/I hд/I hд/I hд/I hд/I hд/I	0.03 0.02 0.02 0.02 0.001 0.02 0.02	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<		<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	12 17 17 17 13 17	<	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < <	0.0 0.0
I-Isopropylanilin I-Chlor-4-Methoxyanilin Buturon Chlorbromuron Chloroxuron Chloroxuron Difenoxuron Diuron Soproturon	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6	ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.03 0.02 0.02 0.02 0.001 0.02 0.02 0.02	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<			< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	12 17 17 17 13 17 17	< < < < < < < < < < < < < < < < < < <	<		< < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.0
I-Isopropylanilin I-Chlor-4-Methoxyanilin Buturon Chlorbomuron Chlorboluron Difenoxuron Difenoxuron Signor	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2	ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.03 0.02 0.02 0.02 0.001 0.02 0.02 0.02 0.0	< < < < < < < < < < < < < < < < < < <	· ·	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<	0.0026	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	12 17 17 17 13 17 17 17	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.002
I-Isopropylanilin I-Chlor-4-Methoxyanilin Buturon Chlortoluron Chlortoluron Chifenoxuron Difenoxuron Divon Saproturon Linuron Linuron Metabenzthiazuron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2 18691-97-9	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.02 0.02 0.02 0.001 0.02 0.02 0.02 0.0	< < < < < < < < < < < < < < < < < < <	< < <	< < < < < < < < < < < < < < < < < < <	<td>< < <</td> <td>0.0026 0.0002</td> <td>< < <</td> <td><pre></pre></td> <td>< < <</td> <td>< < <</td> <td>< < <</td> <td>< < <</td> <td>12 17 17 17 13 17 17 17 17 13</td> <td>< < <</td> <td><</td> <td></td> <td><td>< < <</td><td>0.00 0.002 0.000</td></td>	< < <	0.0026 0.0002	< < < < < < < < < < < < < < < < < < <	<pre></pre>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	12 17 17 17 13 17 17 17 17 13	< < < < < < < < < < < < < < < < < < <	<		<td>< < <</td> <td>0.00 0.002 0.000</td>	< < < < < < < < < < < < < < < < < < <	0.00 0.002 0.000
-Isopropylanilin -Chlor-4-Methoxyanilin iuturon hlorbromuron hlortoluron hloroxuron iifenoxuron iuron soproturon inuron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2	ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.03 0.02 0.02 0.02 0.001 0.02 0.02 0.02 0.0	< < < < < < < < < < < < < < < < < < <	< < < <	< < < < < < < < < < < < < < < < < < <	<td><</td> <td>0.0026</td> <td>< < <</td> <td><pre></pre></td> <td>< < <</td> <td>< < <</td> <td>< < <</td> <td>< < <</td> <td>12 17 17 17 13 17 17 17 13 13</td> <td>< < <</td> <td><</td> <td>< < <</td> <td><td>< < <</td><td>0.00 0.002 0.000</td></td>	<	0.0026	< < < < < < < < < < < < < < < < < < <	<pre></pre>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	12 17 17 17 13 17 17 17 13 13	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	<td>< < <</td> <td>0.00 0.002 0.000</td>	< < < < < < < < < < < < < < < < < < <	0.00 0.002 0.000
-Isopropylanilin -Chlor-4-Methoxyanilin iuturon hlorbromuron hlortoluron hloroxuron iifenoxuron iuron soproturon inuron Metabenzthiazuron Metobromuron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2 18691-97-9	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.02 0.02 0.02 0.001 0.02 0.02 0.02 0.0	< < < < < < < < < < < < < < < < < < <	< < <	< < < < < < < < < < < < < < < < < < <		<	0.0026 0.0002 0.011	< < < < < < < < < < < < < < < < < < <	<pre></pre>	<pre></pre>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<pre> <</pre>	12 17 17 17 13 17 17 17 17 13	< < < < < < < < < < < < < < < < < < <	< 0	<	<td>< < <</td> <td>0.00 0.002 0.000</td>	< < < < < < < < < < < < < < < < < < <	0.00 0.002 0.000
-Isopropylanilin -Chlor-4-Methoxyanilin uturon hlorbromuron hlortoluron hloroxuron ifenoxuron iuron nuron letabenzthiazuron letobromuron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2 18691-97-9 3060-89-7	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.02 0.02 0.02 0.001 0.02 0.02 0.002 0.002 0.0001	<	< < < < < < < < < < < < < < < < < < <	<td></td> <td><</td> <td>0.0026 0.0002 0.011</td> <td><pre><</pre> <pre><</pre> <pre><</pre> <pre></pre> <pr< td=""><td><pre></pre></td><td><pre></pre></td><td>< < <</td><td><pre></pre></td><td><pre></pre></td><td>12 17 17 17 13 17 17 17 13 13</td><td><</td><td>< 0</td><td>< < < < < < </td><td><pre></pre></td><td>< < <</td><td>0.00 0.002 0.000</td></pr<></td>		<	0.0026 0.0002 0.011	<pre><</pre> <pre><</pre> <pre><</pre> <pre></pre> <pr< td=""><td><pre></pre></td><td><pre></pre></td><td>< < <</td><td><pre></pre></td><td><pre></pre></td><td>12 17 17 17 13 17 17 17 13 13</td><td><</td><td>< 0</td><td>< < < < < < </td><td><pre></pre></td><td>< < <</td><td>0.00 0.002 0.000</td></pr<>	<pre></pre>	<pre></pre>	< < < < < < < < < < < < < < < < < < <	<pre></pre>	<pre></pre>	12 17 17 17 13 17 17 17 13 13	<	< 0	< < < < < <	<pre></pre>	< < < < < < < < < < < < < < < < < < <	0.00 0.002 0.000
-Isopropylanilin -Chlor-4-Methoxyanilin Buturon Chlorbomuron Chloroxuron Difenoxuron Diuron Soproturon Inuron Aetabenzthiazuron Aetobromuron Aetobromuron Aonolinuron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2 18691-97-9 3060-89-7 19937-59-8	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.02 0.02 0.001 0.002 0.002 0.002 0.002 0.0001 0.002 0.002	<	< < < <	<td></td> <td><</td> <td>0.0026 0.0002 0.011</td> <td>< < <</td> <td><pre></pre></td> <td><pre></pre></td> <td>< < <</td> <td><pre></pre></td> <td><pre></pre></td> <td>12 17 17 17 13 17 17 17 13 13 13</td> <td><td>< 0</td><td>< < < < < < </td><td><pre></pre></td><td>< < <</td><td>0.00 0.002 0.000</td></td>		<	0.0026 0.0002 0.011	< < <	<pre></pre>	<pre></pre>	< < < < < < < < < < < < < < < < < < <	<pre></pre>	<pre></pre>	12 17 17 17 13 17 17 17 13 13 13	<td>< 0</td> <td>< < < < < < </td> <td><pre></pre></td> <td>< < <</td> <td>0.00 0.002 0.000</td>	< 0	< < < < < <	<pre></pre>	< < < < < < < < < < < < < < < < < < <	0.00 0.002 0.000
-Isopropylanilin -Chlor-4-Methoxyanilin Buturon Chlorbomuron Chloroxuron Difenoxuron Divron Soproturon Inuron Aetabenzthiazuron Aetokoxuron Aetokoxuron Aonolinuron Aonolinuron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2 18691-97-9 3060-89-7 19937-59-8 1746-81-2	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.02 0.02 0.001 0.002 0.002 0.002 0.002 0.0001 0.002 0.002	<	< < < <			<	0.0026 0.0002 0.011	< < <	<pre></pre>	<pre></pre>	< < < < < < < < < < < < < < < < < < <	<	<pre></pre>	12 17 17 17 13 17 17 17 17 13 13 13 17	<td>< 0</td> <td><pre></pre></td> <td></td> <td><</td> <td>0.00 0.002 0.000</td>	< 0	<pre></pre>		<	0.00 0.002 0.000
I-Isopropylanilin I-Chlor-4-Methoxyanilin Suturon Chlorbromuron Chlorovuron Chloroxuron Difenoxuron Diuron Soproturon Linuron Metabenzthiazuron Metobromuron Motolinuron Motolinuron Motolinuron Monolinuron Monuron Monuron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2 18691-97-9 3060-89-7 19937-59-8 1746-81-2 150-68-5 555-37-3	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.02 0.02 0.001 0.02 0.002 0.002 0.0001 0.002 0.002 0.002 0.002	<pre></pre>	< < <			<	0.0026 0.0002 0.011	< < < < < < < < < < < < < < < < < < <	<pre></pre>	<pre></pre>	< < < < < < < < < < < < < < < < < < <	<pre></pre>	<pre></pre>	12 17 17 17 18 13 17 17 17 13 13 13 13 17 17	<td>< 0</td> <td><pre></pre></td> <td><pre></pre></td> <td>< < <</td> <td>0.00 0.002 0.000</td>	< 0	<pre></pre>	<pre></pre>	< < < < < < < < < < < < < < < < < < <	0.00 0.002 0.000
-Isopropylanilin -Chlor-4-Methoxyanilin buturon chlorbromuron chlorbromuron chloroxuron bitenoxuron bitenoxuron bitenoxuron bitenoxuron bitenoxuron bitenoxuron bitenoxuron bitenoxuron bitenoxuron betabenzthiazuron betobromuron betobromuron betobromuron betobromuron betobromuron betobromuron betobromuron betobromuron betouron	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2 18691-97-9 3060-89-7 19937-59-8 1746-81-2 150-68-5 555-37-3 66840-71-9	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.03 0.02 0.02 0.001 0.02 0.002 0.002 0.002 0.0001 0.0002 0.002 0.002 0.002	0.000115 <	< < < <			<	0.0026 0.0002 0.011	< < < < <p< td=""><td>0.00022 <</td><td>0.00023 <</td><td>< < <</td><td>0.00025 <</td><td>0.0002</td><td>12 17 17 17 17 13 17 17 17 13 13 13 17 17 17 17</td><td></td><td>< 0</td><td><pre></pre></td><td><pre></pre></td><td>0.00026 0.00796 <</td><td>0.002 0.002</td></p<>	0.00022 <	0.00023 <	< < < < < < < < < < < < < < < < < < <	0.00025 <	0.0002	12 17 17 17 17 13 17 17 17 13 13 13 17 17 17 17		< 0	<pre></pre>	<pre></pre>	0.00026 0.00796 <	0.002 0.002
-Isopropylanilin -Chlor-4-Methoxyanilin iuturon hlorbromuron hlorbromuron hloroxuron iifenoxuron iiuron soproturon inuron Metabenzthiazuron Metobromuron Metobromuron Metovuron Monolinuron Monolinuron leburon I,N-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST) -(4-Chlorphenyl)Harnstoff	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2 18691-97-9 3060-89-7 19937-59-8 1746-81-2 150-68-12 155-37-3 66840-71-9 140-38-5	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.03 0.02 0.02 0.001 0.02 0.02 0.002 0.002 0.0001 0.002 0.002 0.002 0.002 0.002 0.002	0.000115 <	< < < <			<	0.0026 0.0002 0.011	< < <	<pre></pre>	0.00023 <	0.00026 <	0.00025 <	0.0002	12 17 17 17 17 13 17 17 17 13 13 13 17 17 17 17 17		< 0 < < < < < < < < < < < < < < < < < <	<pre></pre>	<pre></pre>	0.00026 0.00796 <	0.00
I-Isopropylanilin 3-Chlor-4-Methoxyanilin Buturon Chlortonuron Chlortoluron Chlortoluron Difenoxuron Direnoxuron Soproturon Linuron Metabenzthiazuron Metobromuron Metobromuron Metobromuron Metobromuron Metobromuron Metobromuron Metobromuron Metobromuron Monolinuron Monolinuron Monuron Neburon N,N-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST) 1-(4-Chlorphenyl)Harnstoff	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2 18691-97-9 3060-89-7 19937-59-8 1746-81-2 150-68-5 555-37-3 66840-71-9 140-38-5 56046-17-4	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.02 0.02 0.001 0.02 0.02 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	<pre></pre>	< < < < < < < < < < < < < < < < < < <			<	0.0026 0.0002 0.011	< < <	0.00022 <	<pre></pre>	0.00026	<pre></pre>	<pre></pre>	12 17 17 17 13 17 17 17 13 13 13 13 17 17 17 17 17		< 0	<pre></pre>	<pre></pre>	<pre></pre>	0.002 0.002
I-Isopropylanilin 3-Chlor-4-Methoxyanilin 3-Chlor-4-Methoxyanilin 3-Chlortoluron Chlortoluron Chlortoluron Difenoxuron Diiron soproturon Linuron Metabenzthiazuron Metobromuron Metobromuron Monolinuron Monuron Nonuron N,N-Dimethyl-N'-(4-Methylphenyl)Sulfamid (DMST) I-(4-Chlorphenyl)Harnstoff I-(4-iso-propylphenyl)Harnstoff I-(4-iso-propylphenyl)-3-Methylharnstoff	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14213-59-6 330-55-2 18691-97-9 3060-89-7 19937-59-8 1746-81-2 150-68-5 555-37-3 66840-71-9 140-38-5 56046-17-4 34123-57-4	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.03 0.02 0.02 0.001 0.02 0.002	0.000115 <	< < <			<	0.0026 0.0002 0.011	< < <	0.00022 <	0.00023 <	0.00026 < < < < < < < < < < < < < < < < < < <	0.00025 <	0.0002	12 17 17 17 13 17 17 17 13 13 13 13 17 17 17 17 17 17	<td>< 0 < <</td> <td>0002 0.</td> <td><pre></pre></td> <td>0.00026 0.00796 <</td> <td>0.002 0.002</td>	< 0 < < < < < < < < < < < < < < < < < <	0002 0.	<pre></pre>	0.00026 0.00796 <	0.002 0.002
I-Isopropylanilin 3-Chlor-4-Methoxyanilin 3-Chlor-4-Methoxyanilin 3-Interpretation of the properties o	99-88-7 5345-54-0 3766-60-7 13360-45-7 15545-48-9 1982-47-4 14214-32-5 330-54-1 34123-59-6 330-55-2 18691-97-9 3060-89-7 19937-59-8 1746-81-2 150-68-5 555-37-3 66840-71-9 140-38-5 56046-17-4	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.02 0.02 0.001 0.02 0.02 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	<pre></pre>	< < <			<	0.0026 0.0002 0.011	< < <	0.00022 <	<pre></pre>	0.00026	<pre></pre>	<pre></pre>	12 17 17 17 13 17 17 17 13 13 13 13 17 17 17 17 17		< 0 < < < < < < < < < < < < < < < < < <	<pre></pre>	<pre></pre>	<pre></pre>	0.00 0.00 0.002 0.000 0.01

Herbizide mit Aryloxyphenoxypropionat-Gruppe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	. Jul	. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt
Nieuwegein Fluoxastrobin	361377-29-9	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Andiik	301377 23 3	р9/1	0.003													10						
Fluoxastrobin	361377-29-9	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet	001077 20 0	P 9/ ·	0.000			,	`	`			`	`	`	`	,			,	,	`	`	
Haloxyfop	69806-34-4	μg/l	0.05	<		<	<		•	< <	<	<	<	<	<	12	<	<	<	<	<	<
Herbizide mit Triazin-Gruppe																						
Lobith																						
Atrazin	1912-24-9	μg/l	0.002	<	0.00223	<	0.00262	0.00352	0.003	0.0027	0.00343	0.00444	0.0036	0.00386	0.00357	13	<	<	0.0031	0.00278	0.00421	0.00444
Desethylatrazin	6190-65-4	μg/l		0.00288	0.00409	0.00221	0.00429	0.00459	0.003	0.00366	0.00505	0.00565	0.00547	0.00568	0.00581	13	0.00221	0.00246	0.00429	0.00429	0.00576	0.00581
Metolachlor	51218-45-2	μg/l		0.00456	0.00473	0.002	0.00514	0.0276	0.048	0.00798	0.0029	0.0019	0.00388	0.003	0.00666	13	0.0019	0.00194	0.00473	0.00945	0.0398	0.048
Propazin	139-40-2	μg/l	0.002	<	<	<	<	<	4	< <	<	<	<	<	<	13	<	<	<	<	<	<
Simazin	122-34-9	μg/l	0.001	<	<	<	0.00112	0.00116	0.00129	0.00132	0.00172	0.00242	0.00176	0.00152	0.00134	13	<	<	0.00129	0.0012	0.00216	0.00242
Terbutryn	886-50-0	μg/l	0.002	<	<	<	0.00285	0.00452	<	0.0039	0.0079	0.00843	0.00733	0.00882	0.0129	13	<	<	0.00395	0.00483	0.0113	0.0129
Terbutylazin	5915-41-3	μg/l	0.002	<	<	<	<	0.0143	0.0554	0.0217	0.0102	0.00693	0.00433	0.00364	0.00364	13	<	<	0.00364	0.00963	0.0419	0.0554
Metolachlor-C-Metabolit	152019-73-3	μg/l	0.01	0.03	0.03	0.02	0.02	<	0.03	2 <	<	0.01	<	0.03	0.01	13	<	<	0.02	0.0169	0.03	0.03
Metolachlor-S-Metabolit	171118-09-5		0.01	0.055	0.04	0.04	0.03	<	0.02	2 0.0	<	<	<	0.01	<	13	<	<	0.01	0.0219	0.056	0.06
Nieuwegein		10-																				
Atrazin	1912-24-9	μg/l	0.002	<	0.00262	0.0026	0.00217	0.00223	0.00343	0.003	0.00307	0.00317	0.00342	0.00313	0.00343	13	<	<	0.003	0.00264	0.00343	0.00343
Cyanazin	21725-46-2	μg/l	0.02	<	<	<	<	<	0.09	0.03	3 <	<	<	<	<	13	<	<	<	<	0.066	0.09
Desethylatrazin	6190-65-4	μg/l	0.01	<	<	<	<	<				<	<	0.01	<	13	<	<	<	<	<	0.01
Desisopropylatrazin (Desethylsimazin)	1007-28-9	μg/l	0.02	<	<	<	<	<			. <	<	<	<	<	13	<	<	<	<	<	<
Desmetryn	1014-69-3	μg/l	0.01	<	<	<					. <	<		<	<	13			<		<	<
Hexazinon	51235-04-2	μg/l	0.04	<		<	,	_						,	<	13		<	<	,	<	< ▶
Metamitron	41394-05-2	μg/l	0.02			` `	,	_				,	-	,		53	,	,		,		\
Metolachlor	51218-45-2	μg/l	0.02	0.00595	0.00481	0.00361	0.0025	0.00462	0.0774	0.0354	0.00991	0.00299	0.00211	0.00287	0.00674		0.00211	0.00227	0.00481	0.0127	0.0606	0.0774
Metribuzin	21087-64-9	μg/l	0.02	<		<	0.0020	0.00102		(0.000		<	0.00211	0.00207	<	13	<	0.00227	<	0.0127	<	<
Prometryn	7287-19-6	μg/l	0.02			` `	,	<					,	,	<	13	,	,				⟨ ■
Propazin	139-40-2	μg/l	0.02	<	`	,	,	_				,	-	,	<	13	,	,	,	,	<	< ■
Simazin	122-34-9	μg/l	0.001	<		<	<	0.00128	0.00173	`	0.0017	0.00165	0.00178	0.00161	0.00156	13			0.00128	0.00116	0.00176	0.00178
Terbutryn	886-50-0	μg/l	0.001	<		<	0.00251	0.00120		0.00354		0.00507	0.00554	0.00579	0.00639	13			0.00120	0.00318	0.00176	0.00639
Terbutylazin	5915-41-3	μg/l	0.002				0.00231	0.00273	0.08				0.00334	0.00373	0.00492	13	<		0.00273	0.0162	0.0726	0.0003
Desethylterbutylazin	30125-63-4	μg/l	0.002	<	`	<	<		0.04			0.00000	······································	<	<	13	<	<	< 0.00432	0.0102	0.036	0.04
Dipropetryn	4147-51-7	μg/l	0.005	<					0.0			<			<	13			<	<<	< .000	<
Metolachlor-C-Metabolit	152019-73-3	μg/I	0.003			`		<				<		<	<	13	<	_			<	< ▶
Metolachlor-S-Metabolit	171118-09-5		0.03	0.06	,		0.045	<	0.04	`	` `	<	<	<	<	13	<		<	0.0304	0.06	0.06
Nieuwersluis	171110-03-3	μ9/1	0.00	0.00	0.04		0.043		0.0	,						10				0.0004	0.00	0.00
Atrazin	1912-24-9	μg/l	0.002	<	<	<	<	0.00247	0.00223	3 0.0023	0.00293	0.00282	0.0032	0.00346	0.00315	13	(-	0.0023	0.00212	0.00336	0.00346
Cyanazin	21725-46-2	μg/I	0.002	<		<	<	0.00247	0.0022			0.00202	0.0032	0.00040	0.00313	13	<		0.0023	0.00212	0.00330	0.00340
Desethylatrazin	6190-65-4		0.02	0.00195			0.0035	0.00399	0.0035			0.00428	0.00444	0.00482	0.00507		0.00176	0.00191	0.00362	0.00361	0.020	0.00507
Desisopropylatrazin (Desethylsimazin)	1007-28-9	μg/l μg/l	0.02	0.00133		0.00302	0.0033	0.00000			0.00433	0.00420	0.00444	0.00402		13	0.00170	0.00131	0.00302	0.00301	0.00437	<
Desmetryn	1007-28-9		0.02	<	`	<				< <		<	<		< <	13	<		<	<	<	< <u>N</u>
Hexazinon	51235-04-2	μg/l μg/l	0.01	<		<					` `	<		<	<	13	<		<		<	< <u>N</u>
Metamitron	41394-05-2		0.04	< <	`	<	<	<				< <	< <	<	<	13		<	<	<	<	
Metolachlor	51218-45-2	μg/l	0.02	0.00407	,	,	0.00194	0.00265	0.0250	`	,	,	0.00188	0.00425	0.00486		0.00188	0.0019	0.00425	0.00723	0.0273	0.0285
Metribuzin	21087-64-9	μg/l	0.02			0.00018	0.00194	0.00203	0.0250	0.028		0.00271	0.00100	0.00423		13		0.0019	0.00423	0.00723		0.0200 <u></u>
		μg/l		<		<	<	<			<	<	<	<	<	13	<	<	<	<	<	< <u>\</u>
Prometryn	7287-19-6	μg/l	0.02	<	`	<	<	<		`	` `	<	<	<	<		<	<	`	<	`	< <u>\</u>
Propazin	139-40-2	μg/l	0.02	<		<	0.00122	0.00145		7 0 00121		0.00147	0.00100	0.00161	0.0010	13	<	<	0.00145	0.00124	0.00101	
Simazin	122-34-9	μg/l	0.001	<		<	0.00123	0.00145	0.00177			0.00147		0.00161	0.0018	13	<	<	0.00145	0.00131	0.00191	-
Terbutryn	886-50-0	μg/l	0.002	<		<	<	<	0.007	0.00286				0.00633	0.00711	13	<	<	> 000004	0.00281	0.0068	0.00711
Terbutylazin	5915-41-3		0.002	<		<	<	<	0.037				0.00723	0.00572	0.00394	13	<	<	0.00394	0.0117	0.0501	0.0583
Desethylterbutylazin	30125-63-4	μg/l	0.01	<	<	<	<	<	0.03	0.03	0.01	0.01	<	<	<	13	<	<	<	<	0.03	0.03

Herbizide mit Triazin-Gruppe Andijk	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Atrazin	1912-24-9	μg/l	0.002	<	<	<	<	<	0.00205	<	0.00226	0.00222	0.00248	0.00224	0.00212	13	<	<	<	<	0.00239	0.00248
Cyanazin	21725-46-2	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	<
Desethylatrazin	6190-65-4	μg/l		0.00202	0.00239	0.0027	0.0028	0.0032	0.00305	0.00303	0.0031	0.00352	0.00326	0.00385	0.00342	13	0.00194	0.002	0.00305	0.00295	0.00372	
Desisopropylatrazin (Desethylsimazin)	1007-28-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Desmetryn	1014-69-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexazinon	51235-04-2	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metamitron	41394-05-2	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metolachlor	51218-45-2	μg/l		0.00482	0.00643	0.00579	0.00428	0.00413	0.00608	0.0061	0.00658	0.00443	0.0032	0.00253	0.00319	13	0.00253	0.00279	0.00443	0.0048	0.00652	0.00658
Metribuzin	21087-64-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Prometryn	7287-19-6	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	13	<	<	<	<	<	<
Propazin	139-40-2	μg/l	0.02					` <				<		,	<	13		,	,	`		<
Simazin	122-34-9	μg/l	0.001				,	ì	0.00101		0.00105			0.00113	0.00129	13		ì			0.00123	
Terbutryn	886-50-0	μg/l	0.002		<	<		<	<	<	<	<	0.00208	0.00246	0.003	13				<	0.00284	0.003
Terbutylazin	5915-41-3	μg/l	0.002	0.00427		<			0.0137		0.0231	0.0258	0.0246	0.00240	0.003	13	<	<	0.0112	0.0117	0.0253	0.0258
Desethylterbutylazin	30125-63-4	μg/l	0.002	0.00427	0.0024				0.03		0.0201	0.0230	0.0240	0.0213	0.02	13	<		0.0112	0.0154	0.0233	0.0230
Dipropetryn	4147-51-7		0.005	`		<		`		< 0.02	0.03		< .01		< .02	13		<		0.0134	0.00	
Metolachlor-C-Metabolit	152019-73-3	μg/l	0.003	0.135	0.12		0.125	0.12	0.09		0.07	0.07	0.04	0.05	0.05	13	0.04	0.044	0.09	0.0938	0.136	0.14
Metolachlor-S-Metabolit	171118-09-5	μg/l		0.133			0.125	0.12	0.03		0.07	0.07	0.04	0.03	0.03	13	0.04	0.044	0.09	0.0936	0.130	0.14
Haringyliet	1/1110-09-5	μg/l		0.23	0.19		0.100	0.10	0.13	0.14	0.12	0.1	0.07	0.09	0.08	13	0.07	0.074	0.14	0.146	0.232	0.24
Atrazin	1012 24 0	/1	0.002		0.00000	0.00207	0.00207	0.00000	0.00201	0.00000	0.00241	0.00227	0.00220	0.00211	0.00000	10			0.00011	0.00277	0.00272	0.00381
	1912-24-9	μg/l			0.00228		0.00207	0.00362	0.00381		0.00341		0.00338	0.00311	0.00326	13	<	<	0.00311	0.00277	0.00373	<
Cyanazin	21725-46-2	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	< <u>=</u>
Desethylatrazin	6190-65-4	μg/l	0.02	<		<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Desisopropylatrazin (Desethylsimazin)	1007-28-9	μg/l	0.02	<		<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Desmetryn	1014-69-3	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Hexazinon	51235-04-2	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Metamitron	41394-05-2	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Metolachlor	51218-45-2	μg/l	0.02	<		<	<		0.0485	0.0315	<	<	<	<	<	16	<	<	<	0.0202	0.0592	0.076
Metribuzin	21087-64-9	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Prometryn	7287-19-6	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Propazin	139-40-2	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Simazin	122-34-9	μg/l	0.001	<	<	<	<	0.00129	0.00237	0.00134	0.00182	0.00155	0.00199	0.00164	0.002	13	<	<	0.00134	0.00127	0.00222	0.00237
Terbutryn	886-50-0	μg/l	0.002	<	<	<	<	0.00217	<	0.00311	0.00421	0.00404	0.00537	0.0053	0.00669	13	<	<	0.00217	0.00284	0.00616	0.00669
Terbutylazin	5915-41-3	μg/l	0.002	<	<	<	<	0.00218	0.0987	0.0549	0.0367	0.0237	0.0145	0.0134	0.00779	13	<	<	0.00779	0.0198	0.0812	0.0987
Trietazin	1912-26-1	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Herbizide aus der Dithiocarbamat-Gruppe																						
Nieuwegein																						
Prosulphocarb	52888-80-9	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< 🗾
Thiobencarb	28249-77-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis																						
Prosulphocarb Andijk	52888-80-9	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Prosulphocarb	52888-80-9	μg/l	0.03		<			<			<			<		4	<	*	*	<	*	<
Thiobencarb	28249-77-6	μg/l	0.005	<		<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
Haringvliet	20210 77 0	P9/1	0.000		`		`	`			`	`		`		10		`				
S-Ethyl-N,N-Dipropylthiocarbamat (EPTC)	759-94-4	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Herbizide aus der Uracil-Gruppe Nieuwegein																						
Ü	044.40.0		0.00													F.C						<
Bromacil	314-40-9	μg/l	0.02	<		<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Lenacil	2164-08-1	μg/l	0.005	<		<		<	<		<	<	<	<	<	13	<	<	<	<	<	<
Butafenacil	134605-64-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Herbizide aus der Uracil-Gruppe Nieuwersluis	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul	. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Bromacil	314-40-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk		F 5/-																				
Bromacil	314-40-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Lenacil	2164-08-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Butafenacil	134605-64-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Bromacil	314-40-9	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Nicht-eingeteilte Herbizide																						
Lobith																						
Acloniphen	74070-46-5	1 0	0.003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	0.014
Bentazon	25057-89-0	1 0	0.01	<	<	<	<	<	<	<	<	0.014	<	<	<	13	<	<	<	<	0.0104	0.014
Bifenox	42576-02-3	μg/l	0.001	<	<	<	<		<		<	<	<	<	<	11	<	<	<	<	<	<
Chloridazon	1698-60-8	μg/l	0.001	<	<	<	<	0.00215	<	<	0.00131	0.00226	0.00197	<	0.00104	13	<	<	<	<	0.00222	0.00226
2,4-Dinitrophenol	51-28-5	μg/l	0.05	<	0.091	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.0646	0.091
Dinoseb	88-85-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dinoterb	1420-07-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Glyphosat	1071-83-6	μg/l	0.01	0.0129	<	<	0.0211	0.0197				<	0.0108	0.0229	0.0346	10	<	<	0.0129	0.015	0.0334	0.0346
Glyphosat (Fracht)		g/s		0.0643	0.0107	0.0101	0.04	0.0389				0.00496	0.00961	0.0194	0.0355	10	0.00496	0.00542	0.0274	0.0298	0.0724	0.0744
Trifluralin	1582-09-8	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Aminomethylphosphonsäure (AMPA)	1066-51-9	μg/l		0.0977	0.082	0.122	0.213	0.23	0.265	0.387	0.596	0.486	0.458	0.309	0.592	13	0.082	0.0858	0.265	0.303	0.594	0.596
Aminomethylphosphonsäure (AMPA) (Fracht)		g/s		0.481	0.175	0.246	0.404	0.455	0.553	0.43	0.568	0.483	0.408	0.261	0.607	13	0.175	0.204	0.455	0.427	0.592	0.607
Chloridazon-methyl-desphenyl	17254-80-7	μg/l	0.02	<	0.02	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	0.02
Chloridazon-desphenyl	6339-19-1			0.045	0.09	0.07	0.07	0.06	0.05	0.04	0.02	0.04	0.03	0.05	0.05	13	0.02	0.024	0.05	0.0508	0.082	0.09
Glufosinat	51276-47-2		0.01	<	0.0138	0.0118	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.013	0.0138
Nieuwegein																						
Acloniphen	74070-46-5	μg/l	0.003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Bentazon	25057-89-0		0.02	<	<	<	<	<	<	<	<	<	<	<	<	52	<	<	<	<	<	0.03
Bifenox	42576-02-3		0.001	<		<	<			<	<	<	<	<	<	10	<	<	<	<	<	<
Chlorthal	2136-79-0		0.02	<	<	<	<	<	<	<	<	<	<	<	<	52	<	<	<	<	<	<
Chloridazon	1698-60-8		0.001	<	<	<	<	0.00444	<	0.00578	0.00272	0.0025	0.00268	0.00304	0.00211	13	<	<	0.00211	0.00202	0.00524	0.00578
2,2-Dichlorpropionsäure	75-99-0	1 0	0.01	<	<	<	<	<	<			<	<	<	<	52	<	<	<	<	<	<
Dicamba	1918-00-9	1 0	0.01	<	0.02	<	<	<	0.0125		<	<	<	<	<	52	<	<	<	<	0.02	0.02
Dichlobenil	1194-65-6	1 0	0.02	<	<	<	<	<	<	<		<	<	<	<	13	<	<	<	<	<	<
2,6-Dichlorbenzamid (BAM)	2008-58-4	1 0	0.01	<	<	<	<	<	<	<		0.01	<	<	<	13	<	<	<	<	<	0.01
2.4-Dinitrophenol	51-28-5	1 0	0.05	<	<	<	<	<	· · · · · · · · · · · · · · · · · · ·			<	<	<	<	52	<	<	<	<	<	<
Dinoseb	88-85-7	1 0	0.05	<	<	<	<	<	· · · · · · · · · · · · · · · · · · ·	<		<	<	<	<	52	<	<	<	<	<	<
Dinoterb	1420-07-1		0.05	<	<	<	<	<	<	<		<	<	<	<	52	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	1 0	0.05	<	<	<	<	<	<	<		<	<	<	<	52	<	<	<	<	<	<
Ethofumesat	26225-79-6	1 0	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Glyphosat	1071-83-6		0.05	0.0675	0.11	<		<	<	<		<	<	<	<	13	<		<	<	0.11	0.11 = 0.138 =
Glyphosat (Fracht)	1071 00 0	g/s	0.00	0.0766	0.0473	0.00642	0.00262		0.00872		0.000979		0.00025		0.00025	13	0.00025	0.00025	0.00262	0.0174	0.102	0.138
Pyridat	55512-33-9		0.005	<	<	<	<	<	<	0.00020		<	<	<	<	13	<	<	<	<	<	<
Sethoxydim	74051-80-2		0.005	<	<	<			` \		,	<	<	<	<	13	<		<	<	<	< = < = < = < = < = < = < = < = < = < =
Tralkoxydim	87820-88-0	1 0	0.005	<	<	<			`			<	<	<	<	13	<		<	<	<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Trifluralin	1582-09-8	1 0	0.003	<		<			· ·			<		<	<	13					<	< ■
Aminomethylphosphonsäure (AMPA)	1066-51-9	1 0	0.01	0.115	<	0.36	<	0.34	0.32		,	0.37	0.5	0.52	0.54	13	<	<	0.34	0.294	0.532	0.54
Aminomethylphosphonsäure (AMPA) (Fracht)	1000-31-3	1 0.	0.1	0.113	0.0215	0.0925	0.00524	0.0668	0.32				0.005	0.0052	0.0054	13	0.0039		0.00755	0.234	0.332	0.54 = 0.15 =
Cycloxydim	101205-02-1	g/s µg/l	0.005				0.00324									13		0.00434			0.133	<
Fluroxypyr-1-methylheptylester	81406-37-3		0.005	<	<	<	0.008	<	<	<		<	<	<	<	13	<		<	<	0.0068	0.008
Picolinafen	137641-05-5	1 0	0.005			<	0.006		<			<		< <	<	13	<	< <		<	0.0008	0.008
i icuillateli	13/041-05-3	μу/1	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>

Nicht-eingeteilte Herbizide Nieuwegein (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	. Jul	. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pik
Profoxydim	139001-49-3	μg/l	0.01	<	<	<	(<	<		< <	<	<	<	<	13	<		<	<	<	. ■
Isoxaflutol	141112-29-0	μg/I	0.005	<	<	<		<			< <	<	<	<	<	13	<	<	<	<	<	< E
Carphentrazon-Ethyl	128639-02-1	μg/I	0.005	<				<	`						<	13					<	
Flumioxazin	103361-09-7	μg/I	0.003	<		<		<			` `				<	13	<		<	<	<	< \
Tepraloxydim	149979-41-9	μg/I	0.02	<		<						<		<	<	13	<		<	<	<	
Clethodim	99129-21-2		0.005	<	<							<	<	<	<	13	<		<		<	<
Fluthiacet-Methyl	117337-19-6	μg/l	0.005	,		,					` `			`		13			`			<
Isouron	55861-78-4	μg/l	0.005	<	<	<			<			<	< .	<	<u> </u>	13	<	<	<			
		μg/l		<	<u> </u>	<	· ·	<u> </u>	<			<	<	<	<	13	<	<	<	<	<	< =
Mefenacet	73250-68-7	μg/l	0.005	<	<	<	· ·	<u> </u>	<		< <	<	<	<	<	13	<	<	<	<	<	<
propaguizafop	111479-05-1	μg/l	0.005	<	<	<	<	<	<			<	<	<	<		<	<	<	<	<	<
Sulfentrazon	122836-35-5	μg/l	0.005	<	<	<	<	<	<	(< <	<	<	<	<	13	<	<	<	<	<	< E
Triapenthenol	76608-88-3	μg/l	0.005	<	<	<	<	<	<u> </u>	<	< <	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis	74070 40 5															40						<
Acloniphen	74070-46-5	μg/l	0.003	<	<		<		<			<	<	<	<	13	<	<	<	<	<	
Bentazon	25057-89-0	μg/l		0.014		0.014		0.016		0.012		0.017		0.013		6	0.012	*	*	0.0143	*	0.017
Bifenox	42576-02-3	μg/l	0.001	<		<	<				< <	<	<	<	<	10	<	<	<	<	<	<
Chloridazon	1698-60-8	μg/l	0.001	0.00306	0.0029	0.0028	<	0.00349	0.00629	0.0025	0.00433	0.00214	0.0031	0.00458	0.00152	13	<	<	0.0029	0.0031	0.00561	0.00629
Dichlobenil	1194-65-6	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	<
2,6-Dichlorbenzamid (BAM)	2008-58-4	μg/l	0.01	<	0.01	<	<	<	0.01	(<	0.01	<	<	<	13	<	<	<	<	0.01	0.01
2,4-Dinitrophenol	51-28-5	μg/l	0.05	<		<		<		<	<	0.062		<		6	<	*	*	<	*	0.062
Dinoseb	88-85-7	μg/l	0.01	<		<		<		<	<	<		<		6	<	*	*	<	*	<
Dinoterb	1420-07-1	μg/l	0.01			<		<		•	<	<		<		5	<	*	*	<	*	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.02	<		<		<		<	<	<		<		6	<	*	*	<	*	<
Ethofumesat	26225-79-6	μg/l	0.02	<	<	<	<	<	<	(< <	<	<	<	<	13	<	<	<	<	<	<
Glyphosat	1071-83-6	μg/l	0.05	0.0725	<	<	<	<	<	(< <	<	<	<	<	13	<	<	<	<	0.082	0.12
Trifluralin	1582-09-8	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Aminomethylphosphonsäure (AMPA)	1066-51-9	μg/l		0.13	0.27	0.61	0.21	0.54	0.72	0.78	0.35	0.52	0.3	0.51	0.55	13	0.1	0.124	0.51	0.432	0.756	0.78
Flumioxazin	103361-09-7	μg/l	0.02	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Andijk		10																				
Acloniphen	74070-46-5	μg/l	0.003	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Bentazon	25057-89-0	μg/l	0.02	<	<	<	<	<	<		< <	<	0.03	<	<	13	<	<	<	<	0.022	0.03
Bifenox	42576-02-3	μg/l	0.001	<		<	<				< <	<	<	<	<	10	<	<	<	<	<	<
Chlorthal	2136-79-0	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	<
Chloridazon	1698-60-8	μg/l	0.001		0.00268		0.00511	0.0065	0.00404	0.00527	0.00378	0.00324	0.00325	0.00505	0.00338	13	<	<	0.00378	0.00364	0.00601	0.0065
2,2-Dichlorpropionsäure	75-99-0	μg/l	0.01	<	<	<	· · · · · · · ·	0.0000	<			<	0.00020	······································	<	13			<	<	<	<
Dicamba	1918-00-9	μg/l	0.01		0.02			` <	·			ì	,	,		13		ì		<	0.014	0.02
Dichlobenil	1194-65-6	μg/l	0.02	`	<	`	`	,		`	`	ì	`	,	`	4	<	*	*	<	*	<
2.6-Dichlorbenzamid (BAM)	2008-58-4	μg/l	0.02	0.03	0.02	0.02	0.03	0.02	0.02	0.02	2 0.02	0.02	0.02	0.02	0.02	13	0.02	0.02	0.02	0.0223	0.03	0.03
2,4-Dinitrophenol	51-28-5	μg/I	0.05	0.00	0.02	0.02	0.00	0.02	0.02			0.02	0.02	0.02	0.02	13	0.02	0.02	0.02	0.0223	0.03	<
Dinoseb	88-85-7		0.05	,	`	,				`	`	`			`	13	`		`		,	
Dinoterb	1420-07-1	μg/l	0.05	<	<	<		<	<		< <	<	< <	<	<	13	< <		<	<	<	< E
		μg/l												<u> </u>		13	`	<				
2-Methyl-4,6-Dinitrophenol (DNOC) Ethofumesat	534-52-1 26225-79-6	μg/l	0.05 0.02	<	<	<	<	<		`	< <	<	<	<	<	13	<	< *	< *	<	< *	
		μg/l			<			<		,	<			<	0.14	4	<			<	0.110	
Glyphosat	1071-83-6	μg/l	0.05	<	<	<	<	<	<		< <	<	<	<	0.14	13	<	<	<	<	0.112	0.14
Pyridat	55512-33-9	μg/l	0.005	<	<	<	<	<	<			<	<	<	<	13	<	<	<	<	<	<
Sethoxydim	74051-80-2	μg/l	0.005	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Tralkoxydim	87820-88-0	μg/l	0.005	<	<	<	<	<	<			<	<	<	<	13	<	<	<	<	<	< E
Trifluralin	1582-09-8	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Aminomethylphosphonsäure (AMPA)	1066-51-9	μg/l	0.1	0.135	<	0.31	<	0.25	<	<	0.14	<	0.18	0.21	0.18	13	<	<	0.14	0.138	0.286	0.31
Cycloxydim	101205-02-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	0.006
Fluroxypyr-1-methylheptylester	81406-37-3	μg/l	0.005	<	<	<	<	<	<	((<	<	<	<	<	13	<	<	<	<	<	0.006
Picolinafen	137641-05-5	μg/l	0.005													13						<

Nicht-eingeteilte Herbizide Andijk (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	. Jı	l. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max.
Profoxydim	139001-49-3	μg/l	0.01	<	<	<	<	<	<	,	< <	<	<	<	<	13	<	<		<	<	<
Isoxaflutol	141112-29-0		0.005	<	<	<	<	<			< <			<	<	13	<	<		<	<	
Carphentrazon-Ethyl	128639-02-1		0.005													13			· ·			<
. ,		μg/l		<	<	<	<	<			< <			<	<		<	<	<	<	<	
Flumioxazin	103361-09-7	μg/l	0.02	<	<	<	<	<			< <		<	<	<	13 13	<	<	<	<	<	<
Tepraloxydim	149979-41-9	1 0.	0.01	<	<	<	<	<	<		< <		<	<	<		<	<	<	<	<	<
Clethodim	99129-21-2	1 0	0.005	<	<	<	<	<	<		< <			<	<	13	<	<	<	<	<	<
Fluthiacet-Methyl	117337-19-6		0.005	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Isouron	55861-78-4	1 0	0.005	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Mefenacet	73250-68-7	μg/l	0.005	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
propaquizafop	111479-05-1	μg/l	0.005	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Sulfentrazon	122836-35-5	μg/l	0.005	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	< <
Triapenthenol	76608-88-3	μg/l	0.005	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Acloniphen	74070-46-5	μg/l	0.003	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Bentazon	25057-89-0		0.05	<		<	<		<	<	< <	<	<	<	<	12	<	<	<	<	<	
Bifenox	42576-02-3	1 0	0.001	<		<	<			<	< <	<	<	<	<	11	<	<	<	<	<	<
Bromoxynil	1689-84-5		0.05	<		<	<		<	<	< <		<	<	<	12	<	<	<	<	<	<
Chloridazon	1698-60-8	1 0	0.001	<	<		0.00344	0.0229	0.011						0.00256	13	<	<	0.00305			
Dicamba	1918-00-9	1 0	0.001	<	`		0.00017	0.5220	0.011		< < <			<.00233	<.00230	12	<	<	J.55000	<	<<	0.0223
Dichlobenil	1194-65-6		0.02	<		<	<				< <			<	<	16	<	<		<	<	<
2,6-Dichlorbenzamid (BAM)	2008-58-4	1 0.	0.02	<										<	<	17	<	<				<
2,4-Dinitrophenol						<	<				< <	<	· ·	<		1/		*	*	<	*	
	51-28-5		0.05	<	<		<				<		<		<	/	<	,	,	<	,	<
Dinoseb	88-85-7	μg/l	0.01	<	<		<		<	<	<		<		<	1	<			<	×	<
Dinoterb	1420-07-1	μg/l	0.01	<	<		<						<		<	5	<	*	*	<	*	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.02	<	<		<		<	<	<		<		<	7	<	*	*	<	*	<
Ethofumesat	26225-79-6	μg/l	0.02	<		<	<		<	<	< <	<	<	<	<	16	<	<	<	<	<	0.022
Phluroxypyr	69377-81-7	μg/l	0.05	<		<	<		<	<	< <	<	<	<	<	12	<	<	<	<	<	<
Glufosinat-Ammonium	77182-82-2	μg/l	0.02	<		<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Glyphosat	1071-83-6	μg/l	0.02	<		0.025	0.026	0.044	0.0535	0.02	8 0.02	<	<	0.022	0.027	13	<	<	0.025	0.0271	0.0536	0.054
Triclopyr	55335-06-3	μg/l	0.05	<		<	<		<	<	< <	<	<	<	<	12	<	<	<	<	<	<
Trifluralin	1582-09-8		0.02	<		<	<		<	<	< <	<	<	<	<	16	<	<	<	<	<	<
Aminomethylphosphonsäure (AMPA)	1066-51-9			0.185		0.27	0.33	0.37	0.55	5 0.	5 0.61	0.57	0.56	0.58	0.76	13	0.16	0.18	0.55	0.467	0.7	0.76
Haloxyfop	69806-34-4	μg/l	0.05	<		<	<		<		< <			<	<	12	<	<	<	<	<	<
Floazifop	69335-91-7	μg/l	0.05	<		<	<				< <			<	<	12	<	<		<	<	<
loxynil	1689-83-4	μg/l	0.05	<		<	<				< <				<	12	<	<		`		<
Sebutylazin	7286-69-3		0.03	<		<							,	<	<	17		<		<	<	<
Clomazon	81777-89-1	1 0	0.02	<		<	<		•		< <			<	<	17	<	<		<	<	<
Chloridazon-methyl-desphenyl		μg/l	0.02													12			<	<		
, , ,	17254-80-7	μg/l	0.05	0.125		0.14	0.15		0.070		< <	0.050		0.000	< n n n n	12	< O OF	0.05	0.0705	0.0010	0.15	0.15
Chloridazon-desphenyl	6339-19-1	μg/l		0.135		0.14	0.15		0.0795	5 0.0	5 0.05	0.056	0.059	0.063	0.099	12	0.05	0.05	0.0795	0.0913	0.15	0.15
Harbirid Cafanar																						
Herbizid-Safener																						
Nieuwegein	405500		0.00-																			
Mefenpyr-diethyl	135590-91-9	1 3	0.005	<	<	<	<	<	<		< <			<	<	13	<	<	<	<	<	
Benoxacor	98730-04-2		0.005	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Triapenthenol	76608-88-3	μg/l	0.005	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Andijk																						
Mefenpyr-diethyl	135590-91-9	μg/l	0.005	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Benoxacor	98730-04-2	μg/l	0.005	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Triapenthenol	76608-88-3		0.005	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	< < <
•		1 3,																				

Physiologisch wirkende Pflanzenwachstumsregler Nieuwegein	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt
Diphenylamin	122-39-4	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Paclobutrazol	76738-62-0	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Forchlorfenuron	68157-60-8	1 0.	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis	00107 00 0	P 97 ·	0.000	`	,	`	`	`	•		`	,	`	`				`	•	`	•	
Diphenylamin	122-39-4	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk	122 00 1	P 9/ ·	0.02	`	,	`	`	`	•		`	,	`	`				`	•	`	•	
Diphenylamin	122-39-4	μg/l	0.02		<			<			<			<		4	<	*	*	<	*	<
Paclobutrazol	76738-62-0		0.005	<		<	<		<	<	<	<	<		<	13	<	<	<	<	<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Forchlorfenuron	68157-60-8	1 3,	0.005	<			<		_			2		2	<	13	_	2		2	<	< >
1 of children at on	00107 00 0	μ9/1	0.003	`	`	`	`	`		`	`	`	`	`		10		`	`	`	`	` _
Nicht-eingeteilte Pflanzenwachstumsregler Lobith																						
Metoxuron	19937-59-8	μg/l	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pentachlorphenol	87-86-5	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,5-Trichlorphenoxyessigsäure (2,4,5-T)	93-76-5		0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenoprop (2,4,5-TP)	93-72-1	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwegein																						
Carbaryl	63-25-2	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Metoxuron	19937-59-8		0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Pentachlorphenol	87-86-5	1 0	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< 🗸
2,4,5-Trichlorphenoxyessigsäure (2,4,5-T)	93-76-5	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	52	<	<	<	<	<	< >
Isoprothiolan	50512-35-1	μg/l	0.005	<	<	<			<	<	<	<	<	<	<	13		<		<	<	<
Metconazol	125116-23-6		0.005	<		<			<	<		<	<			13	<	<		<	<	<
Triapenthenol	76608-88-3		0.005	<	<			<	<	<	<			<	<	13		<	~	<	<	<
Uniconazol	83657-22-1	μg/I	0.005	<	<			<						<		13		2		<	<	<
Nieuwersluis	00037 22 1	μ9/1	0.003													10						
Carbaryl	63-25-2	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metoxuron	19937-59-8	1 0.	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<		<	<	< =
Pentachlorphenol	87-86-5	1 0.	0.02	<	<	<		<	<	<	<	<		<	<	13	<	<		<	<	<
2,4,5-Trichlorphenoxyessigsäure (2,4,5-T)	93-76-5		0.03	<		<	`	<				<	`	<		6	<	*	*	<	*	<
Phenoprop (2,4,5-TP)	93-70-3	μg/I	0.03	<		<		<		< <				<		6	<	*	*	<	*	\ _
Andijk	33-72-1	μ9/1	0.03													U						
Carbaryl	63-25-2	μg/l	0.02	,	,	<	<	<		<	,	<		<	<	13	<	<		<	<	<
Metoxuron	19937-59-8		0.02	< <				<	<	<	<	`	<u> </u>		<	13	<		<			<
Pentachlorphenol	87-86-5	10.	0.02		<	<	<		<		<	<	<u> </u>	<		13		<	<	<	<	_
		10.		<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	< ₹
2,4,5-Trichlorphenoxyessigsäure (2,4,5-T)	93-76-5	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13 13	<	<	<	<	<	< \(\)
Isoprothiolan	50512-35-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	<
Metconazol	125116-23-6	10.	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triapenthenol	76608-88-3	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Uniconazol	83657-22-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< □
Haringvliet	400.00		0.05																			
4-Chlorphenoxylessigsäure	122-88-3	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Dikegulac Natrium	52508-35-7	μg/l	0.02						<		<			<		3	*	*	*	*	*	
Metoxuron	19937-59-8	1 0	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Pentachlorphenol	87-86-5		0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,5-Trichlorphenoxyessigsäure (2,4,5-T)	93-76-5	1 3	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Phenoprop (2,4,5-TP)	93-72-1	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Keimhemmer Nieuwegein																						
	101.01.0	//	0.01													10						<
Chlorpropham	101-21-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< L

Keimhemmer Nieuwersluis	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Chlorpropham Andijk	101-21-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorpropham	101-21-3	μg/l	0.01	<	<	<	<	<	0.01	<	<	<	<	<	<	13	<	<	<	<	<	0.01
Haringvliet Chlorpropham	101-21-3	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Bodendesinfektionsmittel																						
Lobith Dimethyldisulfid (DMDS)	624-92-0	μg/l	0.01	0.0208	0.0158	0.0105	<	<	<	0.0141	0.0234	<	<	<	0.0185	13	<	<	0.0105	0.0118	0.0257	0.0273
Nieuwegein Dimethyldisulfid (DMDS)	624-92-0	μg/l	0.01	0.0165	0.0148	0.0133	0.0282	0.0258	0.014	0.0166	0.0361	0.0183	0.0124	<	0.0147	13	<	<	0.0148	0.0179	0.0329	0.0361
Nieuwersluis Dimethyldisulfid (DMDS)	624-92-0	μg/l		0.0469	0.0379	0.0246	0.0159	0.0143	0.0135	0.0127	0.0474	0.0399	0.0128	0.0146	0.0145	13	0.0127	0.0127	0.0159	0.0263	0.0566	0.0628
Andijk Dimethyldisulfid (DMDS)	624-92-0	μg/l	0.01	<	0.0149	0.0172	0.0183	0.0104	0.0116	<	0.0115	<	<	<	<	13	<	<	0.0104	<	0.0179	0.0183
Haringvliet Dimethyldisulfid (DMDS)	624-92-0	μg/l	0.01	0.0227	0.017	0.0167	0.0123	0.0214	0.0239	0.0199	0.0149	<	<	<	<	13	<	<	0.0167	0.0147	0.0236	0.0239
1,1-Dichlorpropen	563-58-6	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Insektizide aus der Neonikotinoid-Gruppe Lobith																						
Imidacloprid Thiacloprid	138261-41-3 111988-49-9	μg/l μg/l	0.0005	0.00328	0.00151	0.00082	0.00192 0.00058	0.00166 0.00075	0.00192 0.00068	0.00139	0.00249 0.00067	0.00206	0.00174	0.00217	0.00682 0.00064	13 13	0.00082	0.00105 <	0.00192	0.00239		0.00682 1 0.00075
Nieuwegein Imidacloprid	138261-41-3	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Thiacloprid Acetamiprid	111988-49-9 135410-20-7	μg/l μg/l	0.0005 0.005	< <	<	<	<	0.00083	0.00081	0.00067	0.00074	0.0006	0.00066	0.00059	0.00053	13 13	<	<	0.00059	0.000514	0.000822	0.00083
Clothianidin Thiametoxam	210880-92-5 153719-23-4	μg/l μg/l	0.01 0.01	< <	<	<	<	<	< <	< <	< <	<	<	< <	< <	13 13	< <	<	<	<	<	< <u>></u>
Nieuwersluis Imidacloprid	138261-41-3	μg/l		0.00422	0.00315	0.00323	0.00293	0.00332	0.00315	0.00268	0.00402	0.00515	0.00416	0.00402	0.00695	13	0.00268	0.00278	0.00374	0.00394	0.00623	0.00695
Thiacloprid Andijk	111988-49-9	μg/l	0.0005	<	<	<	0.00103	0.00111	0.00086	0.00071	0.0009	0.00056	0.00061	<	<	13	<			0.00056		0.00111
lmidacloprid Thiacloprid	138261-41-3 111988-49-9	μg/l μg/l	0.0005 0.0005	0.00254	0.00199	0.00203	0.00146	0.00113	0.00053	< <	< 0.0005	0.0005	0.00099	0.00062	0.00096	13 13	< <	< <	0.00099	0.00119	0.00256 0.0005	0.00265 0.0005
Acetamiprid Clothianidin	135410-20-7 210880-92-5	μg/I μg/I	0.005 0.01	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	13 13	< <	< <	< <	< <	< <	< <u>\</u> < <u>\</u>
Thiametoxam Haringvliet	153719-23-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Imidacloprid Thiacloprid	138261-41-3 111988-49-9	μg/l μg/l	0.0005	0.00355	0.0021	0.00216	0.00155	0.00383 0.00084	0.00241 0.00108	0.0008 0.00073	0.00064 0.00065		0.00107 0.00058	0.00135	0.0039 0.00094	13 13	0.00064	0.000704	0.0021 0.00058	0.00215 0.000538		0.0039 <u>\</u>
Insektizide aus der Pyrethroid-Gruppe		7 3																				
Lobith Cyhalothrin	68085-85-8	μg/l	0.005	<	<	<		<	<	<	<	<	<		<	13	<		<	<	<	
Cypermethrin	52315-07-8	μg/l	0.003	<	<	<	<		<		<	<	<	<	<	11	<	<	<	<	<	<
Deltamethrin	52918-63-5	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Esfenvalerat Nieuwegein	66230-04-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Cyhalothrin	68085-85-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Cypermethrin	52315-07-8	μg/l	0.0007	<	<	<	<			<	<	<	<	<	<	11	<	<	<	<	<	<
Deltamethrin	52918-63-5	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Insektizide aus der Pyrethroid-Gruppe Nieuwegein (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	. Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Esfenvalerat	66230-04-4	μg/l	0.01	<	<	<	<	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	
Fenvalerat	51630-58-1	μg/l	0.09	<		<			<	<	<	<	<	<	<	13	<	2	<	<	<	< <u>-</u>
Nieuwersluis	31000 30 1	μ9/1	0.03													10						
Cyhalothrin	68085-85-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cypermethrin	52315-07-8	μg/I	0.003	<	<	<				<	<	<	<	<	<	11	<	~	<	<	<	
Deltamethrin	52918-63-5	μg/I	0.0007	<	<	<		<	<	<	<	<	<	<	<	13	<			<	<	
Esfenvalerat	66230-04-4		0.03								•	<			<	13						
Fenvalerat		μg/l		<	<	<		<	<	<	<		<	<		13	<	<	<	<	<	
Andijk	51630-58-1	μg/l	0.09	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>—</u>
•	C000F 0F 0		0.005													10						
Cyhalothrin	68085-85-8	μg/l	0.005	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cypermethrin	52315-07-8	μg/l	0.0007	<	<	<				<	<	<	<	<	<	11	<	<	<	<	<	<
Deltamethrin	52918-63-5	μg/l	0.05	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Esfenvalerat	66230-04-4	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenvalerat	51630-58-1	μg/l	0.09	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
Haringvliet																						
Cyhalothrin	68085-85-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cypermethrin	52315-07-8		0.0007	<	<	<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Deltamethrin	52918-63-5	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Esfenvalerat	66230-04-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Insektizide aus der Carbamat-Gruppe Lobith																						
Phenoxycarb	72490-01-8	μg/l	0.00006	<	<	<	<	: <	<	<	<	<	<	<	0.00009	13	<	<	<	< 0.0	00066	0.00009
Pirimicarb	23103-98-2	μg/l	0.0002	<		<		0.00035	~		0.00025		0.00024			13	<		<		00346	0.00035
Nieuwegein	20100 30 2	μ9/1	0.0002				0.00023	0.00003			0.00023		0.00024	0.00024	0.00004	10				V 0.0	00040	0.00003
Aldicarb	116-06-3	μg/l	0.02	<	<	<		: <	<	<	<	<	<	<	<	53	<		<	<	<	<
Aldicarb-sulphon	1646-88-4	μg/I	0.02	<	<	<		<	<	<	<	<	<	<	<	53	<		<	<	<	<
Aldicarb-sulphoxid	1646-87-3		0.02						<			<				53			<		<	
Butocarboxim	34681-10-2	μg/l	0.02	<	<	<		<		<	<			<	<	53	<			<	-	< -
Butoxycarboxim		μg/l		<	· ·	<			<	<		· ·	<	<	<	53	<		<	<	<	<
,	34681-23-7	μg/l	0.02	<	<	<		<	<	<	<	<	<	<	<		<	<	<	<	<	<
Carbaryl	63-25-2	1 0	0.02	<	<	<		<	<	<	<	<	<	<	<	53	<	<	<	<	<	< =
Carbophuran	1563-66-2	μg/l	0.02	<	<	<		<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Ethiophencarb	29973-13-5	1 0	0.02	<	<	<		<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Phenoxycarb	72490-01-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Furathiocarb	65907-30-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methiocarb	2032-65-7	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Pirimicarb	23103-98-2	μg/l	0.0002	<	<	0.00026	0.0002	0.00034	<	0.00022	<	0.00024	<	<	0.00025	13	<	<	<	< 0.0	00308	0.00034
Thiofanox	39196-18-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Butocarboxim-sulphoxid	34681-24-8	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Ethiophencarb-sulphoxid	53380-22-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methiocarb-sulphon	2179-25-1	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Thiofano-sulphoxid	39184-27-5	μg/l	0.005	<	<	<	<	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Thiofanox-sulphon	39184-59-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
3-Hydroxycarbofuran	16655-82-6		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ≥
Methiocarb-sulphoxid	2635-10-1	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Pirimicarb-Desmethyl	30614-22-3	μg/l	0.005	<	<	<	<	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	_
Ethiofencarb-sulphon	53380-23-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
3,4,5-Trimethacarb	2686-99-9	μg/l	0.005	<		<	(<		<	<	<	<	<	13	<	<	<	<	<	<
Alanycarb	83130-01-2	μg/l	0.005	<	<			<	<			<		<	<	13	<	<	<	<		<
Carbofuran-3-keto	16709-30-1	μg/l	0.005	<				<		,	,	,	<		<	13		<	<	<		<
Nieuwersluis	10700 00-1	ру/	0.000													10						
Aldicarb	116-06-3	μg/l	0.02	<	<	<	<	. <	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Insektizide aus der Carbamat-Gruppe Nieuwersluis (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai		Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Aldicarb-sulphon	1646-88-4	ug/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	
Aldicarb-sulphoxid	1646-87-3	μg/l μg/l	0.02				<	<			<		<			<	13	<	<	<		<	
Butocarboxim	34681-10-2	μg/I	0.02	<		<		<		< <	<	<		<	<	<	13				<	<	
Butoxycarboxim	34681-23-7		0.03	<		<				<	<	<	<	<	<	<	13	<			<	<	<
Carbaryl	63-25-2	μg/l	0.02							<	<						13			< <			
Carbophuran		μg/l	0.02	<		<	<	<		•	,	<			<	<	13	<			<	<	
Ethiophencarb	1563-66-2	μg/l	0.02	<		<	<	<		<	<	<			<	<	13	<			<	<	< <u>-</u>
•	29973-13-5	1 0		<	`	<	<	<		<	<	<	<	<	<	<		<	<	<	<	<	< ■
Phenoxycarb Methiocarb	72490-01-8	μg/l	0.00006	<	`	<	<	<		<	<	<	<	<	<	<	13 13	<	<	<	<	<	
	2032-65-7	μg/l	0.02	0.00042		0.00025	<	0.00041		<	> 000007	<	0.00057	< 0.0000	0.00045	0.0004	13	<	<	< 0.00020 0	> 000222	0.00000	
Pirimicarb	23103-98-2	μg/l	0.0002	0.00043			<	0.00041			1.00067	<	0.00057	0.0002	0.00045	0.0004		<		0.00038 0		0.00063	0.00067
Butocarboxim-sulphoxid	34681-24-8	μg/l	0.02	<	`	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methiocarb-sulphon	2179-25-1	μg/l	0.02	<		<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methiocarb-sulphoxid	2635-10-1	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk									_														
Aldicarb	116-06-3	μg/l	0.02	<			<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Aldicarb-sulphon	1646-88-4	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Aldicarb-sulphoxid	1646-87-3	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Butocarboxim	34681-10-2	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Butoxycarboxim	34681-23-7	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Carbaryl	63-25-2	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Carbophuran	1563-66-2	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ethiophencarb	29973-13-5	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenoxycarb	72490-01-8	μg/l	0.00006	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< >
Furathiocarb	65907-30-4	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methiocarb	2032-65-7	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pirimicarb	23103-98-2	μg/l	0.0002	<	0.00021	<	<	<		<	<	<	<	0.00112	<	0.00029	13	<	<	<	0.00021 (0.000788	0.00112
Thiofanox	39196-18-4	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< = < = < = < = < = < = < = < = < = < =
Butocarboxim-sulphoxid	34681-24-8	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ethiophencarb-sulphoxid	53380-22-6	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methiocarb-sulphon	2179-25-1	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Thiofano-sulphoxid	39184-27-5		0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< = < = < = < = < = < = < = < = < = < =
Thiofanox-sulphon	39184-59-3	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
3-Hydroxycarbofuran	16655-82-6	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methiocarb-sulphoxid	2635-10-1	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pirimicarb-Desmethyl	30614-22-3	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ethiofencarb-sulphon	53380-23-7	μg/l	0.005	<		<				<	<			<	<	<	13	<		<	<	<	<
3,4,5-Trimethacarb	2686-99-9	μg/l	0.005			<	,	,		<				,			13	<	ì		<		
Alanycarb	83130-01-2		0.005	<	`	<	,	<		<	<	<	<	<	<	<	13	<	<	<	<	<	
Carbofuran-3-keto	16709-30-1	μg/l	0.005			<	<			<		<	<		<	<	13	<	<	<	<		< = < = < =
Haringvliet	10703 30 1	ру/1	0.003														10						
Aldicarb	116-06-3	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	17	<		<	<	<	<
Aldicarb-sulphon	1646-88-4	μg/I	0.02	<		<				<	<	<	<	<	<	<	17	<		<	<	<	< ▶
Aldicarb-sulphoxid	1646-87-3		0.02	<		<				<	<				<	<	17	<			<	<	< >
Butocarboxim	34681-10-2	μg/l	0.02				<					<	<	<			17		<				< >
		1 0.		<		<	<			<	<	<	<	<	<	<	17	<		<	<	<	<
Butoxycarboxim	34681-23-7	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Carbophuran	1563-66-2	μg/l	0.02	<		<	<			<	<	<	<	<	<	<		<	<	<	<	<	< <u></u>
Ethiophencarb	29973-13-5	1 0.	0.02	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	< >
Phenoxycarb	72490-01-8	μg/l	0.00006	<		<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	
Pirimicarb	23103-98-2	μg/l	0.0002	0.000285	0.00022		<	0.00027		<	<	<	<	<	<	0.0004	13	<	<	<		0.00045	
Butocarboxim-sulphoxid	34681-24-8	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Thiofano-sulphoxid	39184-27-5	1 0.	0.02	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	< <u>></u>
Thiofanox-sulphon	39184-59-3	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<

Insektizide aus der organischen Phosphor-Gruppe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	ı. J	ul. A	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Lobith Azinphos-Ethyl	2642-71-9	ua/l	0.01	,	,	<	<	<		,	,	,	<	,		<	13	<	<	,	<	<	<
Azinphos-Ethyl	86-50-0	1 0	0.0006	<	<					<	<	<		<	<		13			<			< <u>-</u>
· · · · ·	470-90-6		0.000	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	
Chlorfenvinphos	56-72-4	1 0	0.001	<	<	<		<		<	<		<u> </u>	<	<	<	13	<	<	<	<	5	
Coumaphos		1 3,		<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	
Dichlorvos	62-73-7		0.0002	<	<	<	<	0.00054		<	<	<	<	<	<	<		<	<	<	<	> 000470	
Dimethoat	60-51-5	1 0	0.0003	<	<	<	<	0.00054	0.0003		<	<	<	<	<	<	13	<	<	<		0.000476	0.00054
Etroprophos	13194-48-4	10.	0.002	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos	22224-92-6		0.0002	<	<	<	<	<		<	<	<			<		10	<	<	<	<	<	<
Phenitrothion	122-14-5	1 0	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenthion	55-38-9	1 0	0.001	<	<	<	<	<	•	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Heptenophos	23560-59-0	1 0	0.0003	<	<	<	<	<	•	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Malathion	121-75-5	1 0	0.001	<	<	<	<	<	•	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Parathion-Ethyl	56-38-2	1 0	0.005	<	<	<	<	<	•	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Parathion-Methyl	298-00-0	μg/l	0.01	<	<	<	<	<	•	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pirimiphos-Methyl	29232-93-7	μg/l	0.0001	<	<	<	<	<		<	< 0.00	0016	<	<	< 1	0.00031	13	<	<	<	<	0.00025	
Triazophos	24017-47-8	μg/l	0.00004	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	
Chlorpyriphos-Ethyl	2921-88-2	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	
Mevinphos	7786-34-7	μg/l	0.0009	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwegein																							
Azamethiphos	35575-96-3	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Azinphos-Ethyl	2642-71-9	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Azinphos-Methyl	86-50-0	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorfenvinphos	470-90-6		0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Coumaphos	56-72-4		0.0002	<	<	<	0.00021	<		<	<	<	<	<	<	<	13	<	<	<	<	<	0.00021
Demeton-S-methyl-sulphon	17040-19-6		0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< ▶
Diazinon	333-41-5		0.31	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dichlorvos	62-73-7		0.0002	<	<	<	<	<		< 0.00	02	<	<	<	<	<	13	<	<	<	<	<	0.0002
Dicrotophos	141-66-2	10.	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethoat	60-51-5	1 0	0.0003	<	<	<	<			<	<	< 0	0.00039	~	<	<	13	<	<	~	< 1	0.000366	
Etroprophos	13194-48-4		0.02	<		<	,	<		<	<		·······	,		<	13	<			<	<	<
Phenamiphos	22224-92-6	1 0	0.005	<	ì	,	,			<	<		į	,	<	<	13	<			<		< ▶
Phenitrothion	122-14-5	10.	0.005	<		2	,			<	<	<	2	-	2	<	13	<	<	_	2		< ■
Phenthion	55-38-9	10.	0.005	<						<	<	<			<	<	13	<	<		<	<	< ▶
Phosalon	2310-17-0		0.005	<	<	<		<		<	<	<			<	<	13	<	<		<	<	<
Phosphamidon	13171-21-6	1 0	0.005			~				<		_			~	<	13	-	<		~		< >
Phosmet	732-11-6		0.005	`							<				`	`	13	<			`		
Foxim	14816-18-3	1 0	0.005	<	<	<				<	<		<u> </u>	<	<	<	13	<		<	<	5	<
		10.		<	<	<	ζ.	<		<	<	<	<u> </u>	<	<	<	13	<	<	<	<	<	
Heptenophos Malathion	23560-59-0		0.0003	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<u> </u>
	121-75-5	1 0		<	<	<	<	<		<	<	<	<	<	<	<		<	<	<	<	<	
Methidathion	950-37-8	10.	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	
Naled	300-76-5		0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	
Oxydemeton-Methyl	301-12-2	10.	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Paraoxon-Ethyl	311-45-5	1 0	0.04	<	<	<	<	<	•	<	<	<	<	<	<	<	12	<	<	<	<	<	<
Methylparaoxon	950-35-6	1 0	0.01	<	<	<	<	<	•	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Parathion-Ethyl	56-38-2		0.03	<	<	<	<	<	•	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Parathion-Methyl	298-00-0	1 0	0.02	<	<	<	<	<	•	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pirimiphos-Methyl	29232-93-7		0.0001	<	<	<	<	0.0001	•	<	<	<	<	<	<	<	13	<	<	<	<	0.00013	0.00015
Profenophos	41198-08-7	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Sulphotep	3689-24-5	10.	0.03	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Terbufos	13071-79-9	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrachlorvinphos	22248-79-9	μg/l	0.02	<	<	<	<	<	<u></u>	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>

Insektizide aus der organischen Phosphor-Gruppe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Ju	ın.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein (Fortsetzung)	04017 47 0		0.00004														10						<
Triazophos	24017-47-8	μg/l	0.00004	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< <u></u>
Vamidothion	2275-23-2	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Phosphamidon	23783-98-4	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Phosphamidon	297-99-4	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorpyriphos-Ethyl	2921-88-2	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fosthiazat	98886-44-3	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Terbufos-sulphoxid	10548-10-4	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos-sulphoxid	31972-43-7	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos-sulphon	31972-44-8	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-sulphoxid	3761-41-9	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-sulphon	3761-42-0	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>></u>
Terbufos-sulphon	56070-16-7	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Isocarbofos	24353-61-5	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phosmet-oxon	3735-33-9	μg/l	0.1	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mevinphos	7786-34-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-oxon	6552-12-1	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-oxon-sulphoxid	6552-13-2	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-oxon-sulphon	14086-35-2	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< -
Nieuwersluis		- 1																					
Azinphos-Ethyl	2642-71-9	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Azinphos-Methyl	86-50-0	μg/l	0.0006	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorfenvinphos	470-90-6	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Coumaphos	56-72-4	μg/l	0.0002	<	<	<	<	0.00023		<	<	<	<		<	<	13	<		<	<		0.00023
Diazinon	333-41-5	μg/l	0.31	<	<	<	2	0.00020		<	<	,	<	,	<	<	13	<	2	<	<	<	<
Dichlorvos	62-73-7	μg/l	0.0002		<	<		<			00054				<		13	<		~	< 0.000		0.00054
Dimethoat	60-51-5	μg/l	0.0002		<		0.00055		0.000		<	<	0.00051		<	<	13	<		<	< 0.000		0.00055
Etroprophos	13194-48-4	μg/I	0.003	<	<	<	0.00033			<	<	<	0.00031		<	<	13	<		<	< 0.000	<	<
Phenamiphos	22224-92-6		0.0002								<						10	<		<		<	
Phenitrothion	122-14-5	μg/l	0.0002	<	<	<	<			<	`	<			<		13	`		<	<		< <u> </u>
		μg/l		ζ.	<	<	<	· ·		<	<	<	<	<	<	<	13	<		<		<	
Phenthion Phenchagidas	55-38-9	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<		<	<	<	<	<	<
Phosphamidon	13171-21-6	μg/l	0.03	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	
Heptenophos	23560-59-0	μg/l	0.0003	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>\</u>
Malathion	121-75-5	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< >
Paraoxon-Ethyl	311-45-5	μg/l	0.04	<	<	<	<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< >
Parathion-Ethyl	56-38-2	μg/l	0.03	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Parathion-Methyl	298-00-0	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pirimiphos-Methyl	29232-93-7	μg/l	0.0001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< >
Sulphotep	3689-24-5	μg/l	0.03	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrachlorvinphos	22248-79-9	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triazophos	24017-47-8	μg/l	0.00004	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Phosphamidon	23783-98-4	μg/l	0.02	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Phosphamidon	297-99-4	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>></u>
Chlorpyriphos-Ethyl	2921-88-2	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mevinphos	7786-34-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																							
Azamethiphos	35575-96-3	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Azinphos-Ethyl	2642-71-9	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Azinphos-Methyl	86-50-0	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorfenvinphos	470-90-6	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Coumaphos	56-72-4	μg/l	0.0002	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Demeton-S-methyl-sulphon	17040-19-6	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Diazinon	333-41-5	μg/l	0.31	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< ▶
		La,						,															

Insektizide aus der organischen Phosphor-Gruppe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Andijk (Fortsetzung) Dichlorvos	62-73-7	μg/l	0.0002	<	<	<	<	<		0.00025	<	<	<	<	<	13	<		<	<	<	0.00025
Dicrotophos	141-66-2	μg/I	0.0002	<	<	<		<	<	7.00023	<	<	<	<	<	13	<		<	<	<	<
Dimethoat	60-51-5	μg/I	0.0003	<		<		<	<	<	<	<		<	<	13	<			<	<	<
Etroprophos	13194-48-4	μg/I	0.003	<	<	<		<	<	<	<	<		<	<	13	<			<	<	<
Phenamiphos	22224-92-6	μg/I	0.005	<		<			<					<	<	13	<			<	<	<
Phenitrothion	122-14-5	μg/I	0.005	<		<			<	<	<	<		<	<	13	<			<	<	
Phenthion	55-38-9		0.003		<			<	<		<	<			<	13					<	<
Phosalon	2310-17-0	μg/l	0.001	<	<	<		<		<	`		<	<		13	<	\$	<	<	-	<
Phosphamidon	13171-21-6	μg/l	0.005		<	<		<	< <	<u> </u>	<		< .	<	<	13	<	\$	<	<	< <	<
Phosmet	732-11-6	μg/l	0.005	<	<	<		<	<	<	<	<	< .	<	<	13	< <	<	<	<	-	
Foxim	14816-18-3	μg/l	0.005	<	<	<				<	<	<	<	<	<	13			<	<	<	< <u>-</u>
		μg/l	0.003	<	<			<	<	,	<		< .	<	<	13	<	\$	<	<	<	<
Heptenophos Malathion	23560-59-0 121-75-5	μg/l	0.003		<	<		· ·	<	<	<	<		<	<	13	<	· ·	<	<	<	<
Methidathion		μg/l	0.02	<	<	<		· ·	<	<	<			<	<	13	<	· ·	<	<	<	
	950-37-8	μg/l		<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	< = <
Naled	300-76-5	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Oxydemeton-Methyl	301-12-2	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Paraoxon-Ethyl	311-45-5	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	12	<	<	<	<	<	< <u>\</u>
Methylparaoxon	950-35-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u></u>
Parathion-Ethyl Parathion-Ethyl	56-38-2	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Parathion-Methyl	298-00-0	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pirimiphos-Methyl	29232-93-7	μg/l	0.0001	<	<	<	<	<	<	<		<	<	<	<	12	<	<	<	<	<	<
Profenophos	41198-08-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Sulphotep	3689-24-5	μg/l	0.03		<			<			<			<		4	<	*	*	<	*	<
Terbufos	13071-79-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrachlorvinphos	22248-79-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Thiometon	640-15-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triazophos	24017-47-8	μg/l	0.00004	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Vamidothion	2275-23-2	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Phosphamidon	23783-98-4	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Phosphamidon	297-99-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorpyriphos-Ethyl	2921-88-2	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fosthiazat	98886-44-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Terbufos-sulphoxid	10548-10-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos-sulphoxid	31972-43-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenamiphos-sulphon	31972-44-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-sulphoxid	3761-41-9	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-sulphon	3761-42-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Terbufos-sulphon	56070-16-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Isocarbofos	24353-61-5	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>\</u> < <u>\</u> < <u>\</u> < <u>\</u>
Phosmet-oxon	3735-33-9	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mevinphos	7786-34-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-oxon	6552-12-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-oxon-sulphoxid	6552-13-2	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-oxon-sulphon	14086-35-2	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet		1 3,																				
Azinphos-Ethyl	2642-71-9	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	< ■
Azinphos-Methyl	86-50-0	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Bromophos-Methyl	2104-96-3	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Bromophos-Ethyl	4824-78-6	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Chlorfenvinphos	470-90-6	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorpyriphos-Methyl	5598-13-0	μg/l	0.02	<	`	<		`	<	<	<	<	<	<	<	16	<	<	<	<	<	\ \ =
Coumaphos	56-72-4	μg/l	0.0002	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	00 72 4	H 2/1	0.0002	,		•		`	`	`	`	`	`	`	`	10	`	,	`	`	`	

Insektizide aus der organischen Phosphor-Gruppe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Ju	ın. Jı	ıl. Aug.	. Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt
Haringvliet (Fortsetzung)	000 44 5		0.00													10						
Diazinon	333-41-5	1 0.	0.02			<	<			<	< <			<	<	16	<	<	<	<	<	
Dichlofenthion	97-17-6	10.	0.02	<		<	<			< 0.000	< <			<	<	16	<	<	<	<	> 0000400	
Dichlorvos	62-73-7	μg/l	0.0002	<	<	<	<	<	0.000	< 0.000	/b <	`	`	<	<	13	<	<	<		0.000496	
Dimethoat	60-51-5		0.0003	<	<	<	<	<	0.0004		< <	<		<	<	13	<	<	<		0.000306	0.00041
Ethion	563-12-2	10.	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	< = < = < =
Etroprophos	13194-48-4	μg/l	0.02	<		<	<			<	< <	<	<	<	<	17	<	<	<	<	<	<
Phenamiphos	22224-92-6	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Fenchlorphos	299-84-3	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	< =
Phenitrothion	122-14-5		0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Phenthion	55-38-9	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	< =
Phosalon	2310-17-0	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Phosphamidon	13171-21-6		0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Heptenophos	23560-59-0	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Malathion	121-75-5	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Methidathion	950-37-8	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Parathion-Ethyl	56-38-2	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Parathion-Methyl	298-00-0	μg/l	0.02	<		<	<			<	< <	: <	<	<	<	16	<	<	<	<	<	<
Primifos-Ethyl	23505-41-1	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	< ■
Pirimiphos-Methyl	29232-93-7	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Sulphotep	3689-24-5	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Tetrachlorvinphos	22248-79-9	μg/l	0.02	<		<	<			<	< <	<	<	<	<	16	<	<	<	<	<	<
Triazophos	24017-47-8	μg/l	0.02	<		<	<			<	< <	: <	<	<	<	16	<	<	<	<	<	<
Chlorpyriphos-Ethyl	2921-88-2	μg/l	0.001	<	0.00117	0.00146	0.00104	<		<	< <	. <	<	<	<	13	<	<	<	<	0.00134	0.00146
Mevinphos	7786-34-7	μg/l	0.02	<		<	<			<	< <	: <	<	<	<	16	<	<	<	<	<	<
Insektizide aus der organischen Chlor-Gruppe																						
Lobith																						
p,p'-DDD	72-54-8	μg/l	0.0003	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
p,p'-DDE	72-55-9	μg/l	0.0002	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
o,p'-DDT	789-02-6		0.0002	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
p,p'-DDT	50-29-3	μg/l	0.00009	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
alpha-Endosulphan	959-98-8	μg/l	0.0005	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
beta-Endosulphan	33213-65-9	μg/l	0.0003	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
Endrin	72-20-8	μg/l	0.0005	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
Heptachlor	76-44-8	μg/l	0.00005	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
alpha-HCH	319-84-6	μg/l	0.00006	0.00012	0.00012	<	0.00014	0.00077	0.0002	22 0.00	0.00014	0.00018	0.00015	0.00024	0.00017	13	<	<	0.00015	0.000192	0.000558	0.00077
beta-HCH	319-85-7	μg/l		0.00012	0.00009	0.00021	0.00021	0.0007	0.0003	39 0.000	38 0.00085	0.00059	0.00055	0.00047	0.00044	13	0.00009	0.000098	0.00044	0.000432	0.000868	0.00088
gamma-HCH	58-89-9	μg/l		0.000185	0.00014	0.00018	0.00017	0.00035	0.0002	0.000	11 0.00021	0.00015	0.00016	0.00022	0.00028	13	0.00011	0.000122	0.00018	0.000196	0.000322	0.00035
delta-HCH	319-86-8	μg/l	0.00008	<	<	<	<	<		<	< 0.0001	0.00009	0.00009	<	<	13	<	<	<	<	0.000096	0.0001
cis-Heptachlorepoxid	1024-57-3	μg/l	0.00005	<	<	<	<	<		<	< <	: <	<	<	<	13	<	<	<	<	<	
trans-Heptachlorepoxid	28044-83-9	μg/l	0.0007	<	<	<	<	<		<	< <	. <	<	<	<	13	<	<	<	<	<	<
Nieuwegein																						
p,p'-DDD	72-54-8	μg/l	0.02	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
p,p'-DDE	72-55-9	μg/l	0.02	<	<	<	<	<		<	< <	: <	<	<	<	13	<	<	<	<	<	<
o,p'-DDT	789-02-6		0.0002	<	<	<	<	<		<	< <	. <	<	<	<	13	<	<	<	<	<	<
p,p'-DDT	50-29-3		0.02	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
alpha-Endosulphan	959-98-8	μg/l	0.02	<		<				<	< <	`		<	<	13	<		<	<	<	\ \ =
beta-Endosulphan	33213-65-9	μg/l	0.0003		<	<				<	< <			<	<	13	<		<	<		< <u>-</u>
Endrin	72-20-8	μg/I	0.0005	<	<	<				<	< <	<	`	<	0.00066	13	<		<	<	<	
Heptachlor	76-44-8		0.0003	<	<	<					< <			<	<	13	<		<	<	<	<
Heptachlorepoxid (cis + trans)	70-44-0		0.02		<	<										13	<				<	
alpha-HCH	319-84-6	μg/l		0.000095	,		0.00011	0.0001	0.0000	08 0.000	,	0.00009		0.00011	0.00016	13			0.0001.0	0.0000962		
aipiia-iioii	313-04-0	μg/l	0.00000	0.000033	0.00012	<	0.00011	0.0001	0.0000	0.000	0.0001	0.00009	0.00009	0.00011	0.00010	13	<	<	0.0001	0.0000302	0.000144	0.00010

Insektizide aus der organischen Chlor-Gruppe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	n. Jul	. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pik
Nieuwegein (Fortsetzung) beta-HCH	319-85-7	μg/l	0.02	<	<	<		<		< <	<	<		<	<	13	<		<	<	<	
gamma-HCH	58-89-9	μg/I μg/I	0.02	<	<	<		<		< <		<	<	<	<	13	<	<	<	<	<	< <u>-</u>
delta-HCH	319-86-8		0.00008			<				< <						13					<	
cis-Heptachlorepoxid	1024-57-3	μg/l	0.0000	<	<u> </u>	`					,	<	<u> </u>	<	<	13	<	<	<u> </u>	<		<
trans-Heptachlorepoxid	28044-83-9	μg/l	0.0007	<	<u> </u>	<				< <		<	<	<u> </u>	<	13	<	<	<	<	<	
·		μg/l		<	<	<	<	<		< <		<	<	<	<		<	<	<	<	<	< <u>-</u>
cis-Chlorphenvinphos	18708-87-7	μg/l	0.02	<	<	<	<	<		< <		<	<	<	<	13 13	<	<	<	<	<	< <u>\</u>
trans-Chlorphenvinphos Nieuwersluis	18708-86-6	μg/l	0.01	<	<	<	<	<	•	< <	<	<	<	<	<	13	<	<	<	<	<	< 🔽
	70.54.0		0.0000													10						
p,p'-DDD	72-54-8	μg/l	0.0003	<		<	<			< <		<	<	<	<	13	<	<	<	<	<	<
p,p'-DDE	72-55-9	μg/l	0.0002	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	< = < = < =
o,p'-DDT	789-02-6	μg/l	0.0002	<	<	<	<	<		< <	<		<	<	<	12	<	<	<	<	<	<
p,p'-DDT	50-29-3	μg/l	0.00009	<	<	<	<	<	•	< <	<	<	<	<	<	13	<	<	<	<	<	<
alpha-Endosulphan	959-98-8	μg/l	0.02	<	<	<	<	<	•	< <	<	<	<	<	<	13	<	<	<	<	<	<
beta-Endosulphan	33213-65-9	μg/l	0.0003	<	<	<	<	<	•	< <	<	<	<	<	<	13	<	<	<	<	<	<
Endrin	72-20-8	μg/l	0.0005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Heptachlor	76-44-8	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Heptachlorepoxid (cis + trans)		μg/l	0.04	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
alpha-HCH	319-84-6	μg/l	0.00006	0.0001	0.00007	<	0.00012	0.00009	0.0000	0.00009	0.00011	0.00008	0.00011	0.00014	0.00016	13	<	<	0.00009	0.0000969 0	0.000152	0.00016
beta-HCH	319-85-7	μg/l		0.00009	0.00011	0.00018	0.00013	0.00036	0.0002	22 0.00035	0.00069	0.00058	0.00047	0.00065	0.00043	13	0.00008	0.000088	0.00035	0.000335 0	0.000674	0.00069
gamma-HCH	58-89-9	μg/l		0.00017	0.00013	0.00021	0.00018	0.00037	0.0000	0.00012	0.00012	0.00014	0.00012	0.00014	0.0002	13	0.00009	0.000102	0.00014	0.000166 0	0.000306	0.00037
delta-HCH	319-86-8	μg/l	0.00008	<	<	<	<	0.00013		< <	<	<	<	<	<	13	<	<	<	< 0	0.000094	0.00013
cis-Heptachlorepoxid	1024-57-3	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
trans-Heptachlorepoxid	28044-83-9	μg/l	0.0007	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
cis-Chlorphenvinphos	18708-87-7	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
trans-Chlorphenvinphos	18708-86-6	μg/l	0.01	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	<
Andijk		7 3,																				
p,p'-DDD	72-54-8	μg/l	0.0003	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
p,p'-DDE	72-55-9	μg/l	0.0002	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
o,p'-DDT	789-02-6	μg/l	0.0002	<	<	<		<		< <			<	<	<	13	<		<	<	<	<
p,p'-DDT	50-29-3	μg/l	0.00009	<		<		<		< <		` <		<	<	13	<	,		<	<	` <u> </u>
alpha-Endosulphan	959-98-8	μg/l	0.0005		,			,		< <		` <	,	<	<	13		ì	,		<) =
beta-Endosulphan	33213-65-9	μg/l	0.0003		,			,				,	,		<	13		,) =
Endrin	72-20-8	μg/l	0.0005	<		<				< <					<	13			<		<) =
Heptachlor	76-44-8	μg/l	0.00005			<				< <			<	<	<	13			<	<	<	` =
Heptachlorepoxid (cis + trans)	70-44-0		0.00003							< <			<		<	13	<		<			< = < = < =
alpha-HCH	319-84-6	μg/l	0.00006	0.00011	0.0001	0.0001	0.00009	0.00008					0.00007		0.00006	13	<			0.0000669	0.00011	0.00011
beta-HCH	319-85-7	μg/l	0.00000	0.00011				0.0000	0.0001		,	0.00024			0.00008	13		0.000098				0.00011
		μg/l	0.00000		0.00012		0.00015					0.00024	0.00024					0.000098			0.000252	0.00026
gamma-HCH	58-89-9	μg/l		0.00015	0.00013	0.00016	0.00013	0.00011		< <		<	<		0.00008	13	<	<		0.0000923	0.00016	0.00016
delta-HCH	319-86-8	μg/l	0.00008	<	<	<	<	<		< <	` `	<	<	<	<	13	<	<	<	<	<	< = < = < = <
cis-Heptachlorepoxid	1024-57-3	μg/l	0.00005	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	<
trans-Heptachlorepoxid	28044-83-9	μg/l	0.0007	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	< <u>\</u>
cis-Chlorphenvinphos	18708-87-7	μg/l	0.02	<	<	<	<		•	< <		<	<	<	<	13	<	<	<	<	<	< <u>></u>
trans-Chlorphenvinphos	18708-86-6	μg/l	0.01	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																		_				
o,p'-DDD	53-19-0	μg/l	0.02	<		<	<		•	< <	<	<	<	<	<	16	<	<	<	<	<	<
p,p'-DDD			0.00	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
	72-54-8	μg/l	0.02	`																		
o,p'-DDE	3424-82-6	μg/I μg/I	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
o,p'-DDE p,p'-DDE	3424-82-6 72-55-9		0.02 0.02			< <	< <			< <		< <	< <	< <	< <	16 16	<	< <	<	< <	< <	< <u>-</u>
o,p'-DDE	3424-82-6	μg/l	0.02	<			< < <				<								·			< = < = < = < = < = < = < = < = < = < =
o,p'-DDE p,p'-DDE	3424-82-6 72-55-9	μg/l μg/l	0.02 0.02	< <		<	< < <			< <	<			<	<	16	<		<	<	<	<
o,p'-DDE p,p'-DDE o,p'-DDT	3424-82-6 72-55-9 789-02-6	µg/I µg/I µg/I	0.02 0.02 0.02	< <		< <	< < < <			< <	< <	<		< <	< <	16 16	<		< <	< <	< < <	

Insektizide aus der organischen Chlor-Gruppe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jui	n. Jul	. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Haringvliet (Fortsetzung)																						
Endrin	72-20-8	μg/l	0.05			<	<			< <	<	<	<	<	<	16	<	<	<	<	<	< <u>-</u>
Heptachlor	76-44-8	μg/l	0.02			<				< <		<	<	<	<	16	<	<	<	<	<	<
alpha-HCH	319-84-6	μg/l		0.000335	0.00016	<	0.00044	0.00053	0.0004	4 0.00076	0.00078	0.00062	0.00034	0.0003	0.00046	13	< 0.00	10082	0.00044 0	.000425 0.00		0.00078
beta-HCH	319-85-7	μg/l	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
gamma-HCH	58-89-9	μg/l	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
Methoxychlor	72-43-5	μg/l	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
Mirex	2385-85-5	μg/l	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
Telodrin (iso-benzan)	297-78-9	μg/l	0.02	<		<	<			< <	,	<	<	<	<	16	<	<	<	<	<	<
delta-HCH	319-86-8	μg/l	0.00008	0.00012	<	0.00009	0.0001	0.00016	0.0001	5 0.00034	0.0002	0.00018	0.00014	0.00012	0.00012	13	<	<	0.00014	0.000145	0284	0.00034
cis-Heptachlorepoxid	1024-57-3	μg/l	0.03	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	< <u>-</u>
trans-Heptachlorepoxid	28044-83-9	μg/l	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
cis-Clordan	5103-71-9	μg/l	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
trans-Chlordan	5103-74-2	μg/l	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
cis-Chlorphenvinphos	18708-87-7	μg/l	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
trans-Chlorphenvinphos	18708-86-6	μg/l	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
Oxychlordan	27304-13-8	μg/l	0.02	<		<	<			< <	<	<	<	<	<	16	<	<	<	<	<	<
Insektizide aus der Benzoylharnstoff-Gruppe																						
Lobith																						
Teflubenzuron	83121-18-0	μg/l	0.02	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwegein	00121 10 0	P9/-	0.02		`	`		·		`	`	`	,	`	`		`	`	,	`		
Diflubenzuron	35367-38-5	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	< N
Teflubenzuron	83121-18-0	μg/l	0.003	<		<		<		< <			<	<	<	13	<		<	<	<	<
Lufenuron	103055-07-8	μg/l	0.005	<		<		<		< <		<		<	<	13	<			<	<	
Flufenoxuron	101463-69-8		0.005					<		< <		<	<			13	<		< <		<	
Flucycloxuron	113036-88-7	μg/l μg/l	0.005	<		<				< <		<	<	<	< <	13		<	<	< <	<	
Triflumuron	64628-44-0		0.005		<		<u> </u>	<u> </u>						<		13	<					
Hexaflumuron		μg/l		<	`	<	۲	<		< <	,	<	<	<	<		<	<	<	<	<	
	86479-06-3	μg/l	0.005	<		<	<	<		< <		<	<	<	<	13	<	<	<	<	<	< <u>=</u>
Novaluron Nieuwersluis	116714-46-6	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
	00404 40 0		0.00													0		*	*		*	<
Teflubenzuron	83121-18-0	μg/l	0.02	<		<		<		•		<		<		6	<	^	*	<		< □
Andijk	05007.00.5															40						< 🕥
Diflubenzuron	35367-38-5	μg/l	0.005			<	<	<		< <		<	<	<	<	13	<	<	<	<	<	<
Teflubenzuron	83121-18-0	μg/l	0.01	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Lufenuron	103055-07-8	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Flufenoxuron	101463-69-8	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Flucycloxuron	113036-88-7	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Triflumuron	64628-44-0	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Hexaflumuron	86479-06-3	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Novaluron	116714-46-6	μg/l	0.005	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	< ■
Haringvliet																						
Teflubenzuron	83121-18-0	μg/l	0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	< □
Insektizide aus Vergärung erhalten																						
Lobith																						
Abamectin	71751-41-2	μg/l	0.01	<	<	<	<	<		< <	<	<	<	<	<	26	<	<	<	<	<	<
Nieuwegein																						
Spinosad	168316-95-8	μg/l	0.05	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis																						
Abamectin	71751-41-2	μg/l	0.01	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																						
Spinosad	168316-95-8	μg/l	0.05	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<

Insektizide aus Vergärung erhalten Haringvliet	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Abamectin	71751-41-2	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Biologische Insektizide																						
Nieuwegein																						
Rotenon	83-79-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Azadirachtin A	11141-17-6	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																						
Rotenon	83-79-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Azadirachtin A	11141-17-6	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nicht-eingeteilte Insektizide																						
Lobith																						
1,2-Dichlorbenzen	95-50-1	μg/l	0.01	<	<	<	0.0101	<	<	<	0.0157	<	<	<	<	13	<	<	<	<	0.0135	
Aldrin	309-00-2	1 0.	0.0003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dicophol	115-32-2			0.0001	0.0001		0.00016				0.00127	0.00053		0.00017	0.0002	9	0.0001	*		0.000332	*	0.00127
Dieldrin	60-57-1	μg/l	0.0002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = < = < =
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Isodrin	465-73-6	μg/l	0.0003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyridaben	96489-71-3	1 0.	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyriproxyphen	95737-68-1	μg/l	0.00001	<	<	<	<	0.00001	<	<	<	<	<	<	0.00001	13	<	<	<	<	0.00001	0.00001
Nieuwegein	05 50 1	/1	0.01													10						
1,2-Dichlorbenzen	95-50-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Aldrin	309-00-2	1 0.	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Amitraz	33089-61-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Clofentezin	74115-24-5	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>=</u>
Chlorthiophos	60238-56-4	μg/l	0.005	> 0.0004	<	<	> > > > > > > > > > > > > > > > > > > >	<	<	<	< 0.00110	<	<	<	<	13	<	<	<	> 000400	<	
Dicophol	115-32-2	10.	0.00	0.0001		0.00022	0.00049				0.00113		0.00056		0.00045	8	0.0001	*		0.000426	*	0.00113
Dieldrin	60-57-1	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	52	<	<	<	<	<	<
Fenbutatinoxid	13356-08-6	1 0.	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>\</u>
Hexythiazox	78587-05-0	1 0.	0.005	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
lsodrin Marka and	465-73-6	μg/l	0.0003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>=</u>
Methomyl	16752-77-5	1 0.	0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Oxamyl This control of the control o	23135-22-0	1 0.	0.02	<	<	<	<	<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Thiocyclamhydrogenoxalat	31895-22-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = < >
Tebuphenpyrad	119168-77-3	10.	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< 🗵
Pyridaben	96489-71-3	1 3	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>=</u>
Pyriproxyphen Fipronil	95737-68-1	μg/l	0.00001	<	<	<	<	<	<	<	<	<	<	<	<	13 13	<	<	<	<	<	< = < < = < < > < = < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < > < < > < < > < < > < < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > <
Spirodiclofen	120068-37-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	148477-71-8	1 0.	0.005	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	< <u>\</u>
Buprofezin Tebufenozid	69327-76-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13 13	<	<	<	<	<	< <u>N</u>
	112410-23-8	μg/l	0.005	<	<	<		<	<	<	<	<	<	<	<		<	<	<	<	<	< >
Flonicamid	158062-67-0	μg/l	0.5	<	<	<	<	<	<	<	<	<	<	<	<	13 13	<	<	<	<	<	
Methoxyfenozid	161050-58-4	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	< <u>1</u>
Indoxacarb Chlorantraniliprol	173584-44-6 500008-45-7	μg/l	0.005 0.005	<	<	<		<	<	<	<	<	<	<	<	13 13	<	<	<	<	<	< N < N < N
Chlorthiophos-sulphon		μg/l		<	<	<	<	<	< <	<	<	<	<	<	<	13	<	<	<	<	<	
• •	25900-20-3	μg/l	0.1	<	<	<	<	<	`	<	<	<	<	<	<		<	<	<	<	•	< <u>-</u>
Cythioat	115-93-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Ethiprol	181587-01-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Etofenprox	80844-07-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Famphur (Famofos)	52-85-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenazaquin	120928-09-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Nicht-eingeteilte Insektizide Nieuwegein (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Flubendiamid	272451-65-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Halofenozid	112226-61-6		0.005	<	<	`		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Isoprothiolan	50512-35-1	μg/l	0.005					<	<				~		<	13	<	2	~	2	<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Isoxathion	18854-01-8		0.005	<	<			<	<	<			<	<	<	13	<	2	<	<	<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Mephosfolan	950-10-7	μg/l	0.005			<		` `	<			<		<	<	13	<	,	<		<	<
Metaflumizon	139968-49-3	μg/l	0.005			<		` `	<					,	<	13		,	~		<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Pyraclofos	77458-01-6		0.005			<			<			<	<	<	<	13	<		<	<	<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Pyridaphenthion	119-12-0		0.005	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Pyridalyl	179101-81-6	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyrimidifen	105779-78-0	μg/l	0.005	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Silafluofen	105024-66-6	μg/l	0.005			<		` `	<			<		<	<	13	<	,	~		<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Spirotetramat	203313-25-1	μg/l	0.005			<		` `	<				<	<	<	13	<	,	<		<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Spirotetramat cis-keto-hydroxy	1172134-11-0		0.005			<			<			<	<	<	<	13	<	,	<		<	<
Spirotetramat monohydroxy	1172134-12-1	μg/l	0.005			<		` `	<			<		<	<	13	<		<	<	<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Fenpyroximat	111812-58-9	μg/l	0.005			<		` `	<					<	<	13	<	,	~		<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Cyflumetofen	400882-07-7	μg/l	0.005	<		<			<	<		<	<	<	<	13	<	,	<	<	<	<
Chlorthion	500-28-7	μg/l	0.005	<	,			,	<	<		<	2	<	<	13	<	2	<	<	<	
cis-Deltamethrin	000 20 7	μg/l	0.02					,	~				~		<	13		2	~	<	~	< ■
cis-Fenvalerat		μg/l	0.03	<	,			,	<	<	,	<	2	<	<	13	,	2	<	<	<	
trans-Fenvalerat		μg/I	0.06	<					<	<		<	<	<	<	13	<		<	<	<	<
Cyantraniliprol	736994-63-1	μg/l	0.005	<					<	<		<	<	<	<	13	<		<	<	<	
Formetanathydrochlorid	23422-53-9	μg/I	0.003	<	<	`			<	<	<	<	<	<	<	13	<		<	<	<	
Tolfenpyrad	129558-76-5		0.005	<	<	`		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
trans-Deltamethrin	64363-96-8	μg/I	0.003	<				<	<	<	<	<	<		<	13	<	<	<	<	<	<
Nieuwersluis	04303-30-0	μg/I	0.04	<	<	<	. <	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
1,2-Dichlorbenzen	95-50-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Aldrin	309-00-2		0.0003	<				<	<	<					<	13	<		<		<	< <u>-</u>
Dicophol	115-32-2	10	0.0003	0.00012		0.00036				,	0.00136	0.00129	0.00105	0.00027	0.0003		0.00012	< *		.000609		0.00136
Dieldrin	60-57-1		0.0002	0.00012	<	0.00030			<	<	0.00130	0.00123	0.00103	0.00027	0.0003	13	0.00012		<	.000003	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l μg/l	0.002							,		<		`		10	-	< *	*		*	<
Isodrin	465-73-6		0.0003	<	,	<			<	< <	<	<		< <	<	13	< <			< <	<	<
Methomyl	16752-77-5	μg/l	0.0003	<	<				<	<		<	<	<	<	13	<		<	<	<	
Oxamyl	23135-22-0	μg/l μg/l	0.02	<					<	<		<		<	<	13	<		<	<	<	
Pyridaben	96489-71-3		0.005							<					<	13	-				<	
•	95737-68-1	μg/l	0.0001	<	<			<	<		<	<	<	<		12	<	<	<	<	-	<
Pyriproxyphen	400882-07-7	μg/l	0.00001	<		<		<	<	<	<	<	<	<	<	10	<	<	<	<	<	
Cyflumetofen cis-Deltamethrin	400002-07-7	μg/l		<	<	<				<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Fenvalerat		μg/l	0.02	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
trans-Fenvalerat		μg/l	0.03	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
trans-Peltamethrin	64363-96-8	μg/l	0.06	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Andijk	04303-90-0	μg/l	0.04	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u></u>
1,2-Dichlorbenzen	0F F0 1	/1	0.01													13						
•	95-50-1	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<		<	<	<	<	<	<
Aldrin	309-00-2	10	0.0003	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>=</u>
Amitraz	33089-61-1	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Clofentezin	74115-24-5	μg/l	0.005	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Chlorthiophos	60238-56-4	μg/l	0.005	<	<	0.00011		<	<	<	0.00000	0.00010	<	<	<	13	<	< *	< * n	<	< *	
Dicophol	115-32-2	μg/l	0.0001	<		0.00011					0.00026	0.00019	<	<	<	8	<	*	U	.000126		0.00026
Dieldrin	60-57-1	μg/l	0.0002	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.05	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenbutatinoxid	13356-08-6	μg/l	0.02	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Hexythiazox	78587-05-0	μg/l	0.005	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>></u>
Isodrin	465-73-6	μg/l	0.0003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Nicht-eingeteilte Insektizide	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Andijk (Fortsetzung) Methomyl	16752-77-5	ug/l	0.02	<	<	<	<			<	<	<	<	<	<	13	<		<	<	<	
Oxamyl	23135-22-0	μg/l μg/l	0.02	<	<	<	<	<	< <	<	<	<		<	<	13	<	<	<	<	<	<
Thiocyclamhydrogenoxalat	31895-22-4		0.02		<		<		<		<	<		<		13		<u> </u>	<		<	
Tebuphenpyrad	119168-77-3	μg/l	0.005	<	`	<	<	<		<	`	< .	`	`	<	13	<	<u> </u>	<u> </u>	<		
Pyridaben	96489-71-3	μg/l	0.005	<	<	<	<	<	< <	<	<	<	<	<	<	13	<	<u> </u>	<	< <	<	
Pyriproxyphen	95737-68-1	μg/l	0.0001		<	<	<		<		<			<	<	13	<	<u> </u>	-		<	< <u>-</u>
Fipronil	120068-37-3	μg/l	0.00001	<	<		<	<		<	<	<	<	<	<	13	<	<	<	<		< <u>-</u>
Spirodiclofen	148477-71-8	μg/l	0.005	<	ζ.	<	<	<	<	<	· ·	۲	<	<	<	13	< .	· ·	<	<	<	
Buprofezin	69327-76-0	μg/l		<	<	<	<	<	<	<	<	<		<	<	13	<	<	<	<	<	< =
Tebufenozid	112410-23-8	μg/l	0.005 0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Flonicamid		μg/l		<	<	<	<	<	<	<	<	۲	<	<	<	13	<	· ·	<	<	<	<
	158062-67-0	μg/l	0.5		<	<	<	<	<	<	<	<		<	<		<	<	<	<	<	< <u>></u>
Methoxyfenozid	161050-58-4	μg/l	0.005		<	<	<	<	<	<	<	<		<	<	13	<	<	<	<	<	
Indoxacarb	173584-44-6	μg/l	0.005	<	<	<	<	<	<	<	<	<		<	<	13	<	<	<	<	<	< <u>-</u>
Chlorantraniliprol	500008-45-7	μg/l	0.005	<	<	<	<	<	<	<	<	<		<	<	13	<	<	<	<	<	< <u>-</u>
Chlorthiophos-sulphon	25900-20-3	μg/l	0.1	<	<	<	<	<	<	<	<	<	`	<	<	13	<	<	<	<	<	< <u>=</u>
Cythioat	115-93-5	μg/l	0.01	<	<	<	<	<	<	<	<	<		<	<	13	<	<	<	<	<	< <u> </u>
Ethiprol	181587-01-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Etofenprox	80844-07-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	`	<	<	13	<	<	<	<	<	<
Famphur (Famofos)	52-85-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenazaquin	120928-09-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Flubendiamid	272451-65-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Halofenozid	112226-61-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Isoprothiolan	50512-35-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
"Isoxathion"	18854-01-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mephosfolan	950-10-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metaflumizon	139968-49-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyraclofos	77458-01-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyridaphenthion	119-12-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyridalyl	179101-81-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyrimidifen	105779-78-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Silafluofen	105024-66-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Spirotetramat	203313-25-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Spirotetramat cis-keto-hydroxy	1172134-11-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Spirotetramat monohydroxy	1172134-12-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenpyroximat	111812-58-9	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cyflumetofen	400882-07-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorthion	500-28-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Deltamethrin		μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Fenvalerat		μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Fenvalerat		μg/l	0.06	<	,	<			<				<	<	<	13	<	<	<	<	<	\ \[\begin{array}{c} \
Cyantraniliprol	736994-63-1	μg/l	0.005	<				<	<	` <					<	13	<	,	<	<	<	\ \[\begin{array}{c} \
Formetanathydrochlorid	23422-53-9	μg/l	0.01	<		<	ì	,	<	` <		<			<	13	<	<	<	<	<	< ■
Tolfenpyrad	129558-76-5	μg/l	0.005		<	<	,		<	<	<	<		<	<	13	<	<	<	<	<	}
trans-Deltamethrin	64363-96-8	μg/l	0.04	<	<	<	<		<	<				<	<	13	<	2	<	<	<	<
Haringvliet	37000 JU-U	μ9/1	0.04													10						
1,2-Dichlorbenzen	95-50-1	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Tetrahydrothiophen (THT)	110-01-0	μg/l	0.05			<			<	<	<	<		<	<	17	<	<	<	<	<	
Aldrin	309-00-2	μg/I	0.03	<		<	<		<	<	<	<		<	<	16	<	<	<	<	<	<
Dicophol	115-32-2		0.02	0.00011			0.0001				0.00047	0.00039		,	0.00012	8	0.0001	*		0.000211	*	0.00047
Dieldrin	60-57-1	μg/l	0.02			0.00011	0.0001			<		0.00039		0.0002		16					<	
2-Methyl-4,6-Dinitrophenol (DNOC)		μg/l	0.02			<	<		<	<	<	<		<	<	7	<	< *	*	<	*	< <u>-</u>
	534-52-1	μg/l			<		<		<		<		<		<	16	<			<		< <u></u>
Isodrin	465-73-6	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<

Nicht-eingeteilte Insektizide	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Haringvliet (Fortsetzung) Methomyl	16752-77-5	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Pyridaben	96489-71-3	μg/l	0.005		<				<	<	<	<		<	<	13	<		<	<	<	<
Pyriproxyphen	95737-68-1	μg/l	0.00001	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>\</u> < =
		L Si									·						·					
Molluskizide																						
Nieuwegein Thiodicarb	59669-26-0	μg/l	0.005	<	<	<	<			<	<	<	<	<	<	13	<	<	<	<		<
3,4,5-Trimethacarb	2686-99-9	μg/I μg/I	0.005						< <	<	<	<		<	<	13	<	<	<	<	< <	<
Andijk	2000-33-3	μy/1	0.005													13						
Thiodicarb	59669-26-0	μg/l	0.005	<	<	<	<	,	<	<	<	<	<	<	<	13	<	<	<	<		<
3,4,5-Trimethacarb	2686-99-9	μg/I μg/I	0.005		<				<	<	<	<		<	<	13	<		<	<	<	<
3,4,3-11IIIIetiiacaib	2000-33-3	μy/1	0.003													10						
Akarizide																						
Lobith																						
Azinphos-Ethyl	2642-71-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorfenvinphos	470-90-6	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.02		<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
alpha-Endosulphan	959-98-8	μg/l	0.0005		<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
beta-Endosulphan	33213-65-9	μg/l	0.0003		<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
gamma-HCH	58-89-9	μg/l		0.000185	0.00014	0.00018	0.00017	0.00035	0.00021	0.00011	0.00021	0.00015	0.00016	0.00022	0.00028	13	0.00011	0.000122	0.00018	0.000196 0	0.000322	0.00035
Parathion-Ethyl	56-38-2	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = <
Triazophos	24017-47-8	μg/l	0.00004	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mevinphos	7786-34-7	μg/l	0.0009	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwegein																						
Aldicarb	116-06-3	μg/l	0.02	<	<	<	<		<	<	<	<	<	<	<	53	<	<	<	<	<	<
Amitraz	33089-61-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
Azinphos-Ethyl	2642-71-9	μg/l	0.01	<	<			<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Butoxycarboxim	34681-23-7	μg/l	0.02	<	<			<	<	<	<	<	<	<	<	53	<	<	<	<	<	<
Chlordimeform	6164-98-3	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorfenvinphos	470-90-6	μg/l	0.001	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< N < N < N
Chlorthiophos	60238-56-4	μg/l	0.005		<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Demeton-S-methyl-sulphon	17040-19-6	μg/l	0.005	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Dicrotophos	141-66-2	μg/l	0.005		<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< >
Dinocap	39300-45-3	μg/l	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1 959-98-8	μg/l	0.05	<	<	<		<	<	<	<	<	<	<	<	52 13	<	<	<	<	<	
alpha-Endosulphan beta-Endosulphan	33213-65-9	μg/l	0.02	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Fenvalerat	51630-58-1	μg/l	0.0003	<	<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Phosalon	2310-17-0	μg/l	0.005		<	<		<	< <	<	<	<	<	<	<	13	<	<	<	<	<	< D < D < D < D < D < D < D < D < D < D
Phosphamidon	13171-21-6	μg/l	0.005		<	<		<	<	<	<	<	<		<	13	<	<u> </u>	<	< <	<	
Phosmet	732-11-6	μg/l	0.005		<	<		<	<	<	<	<	<	<	<	13		<	<		<	< <u>\</u>
gamma-HCH	58-89-9	μg/l μg/l	0.003	<	<			<	<	<	<	<	<	<	<	13	<	<	<	< <	<	< ▶
Methidathion	950-37-8	μg/l	0.005		<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	< >
Parathion-Ethyl	56-38-2	μg/l	0.003		<				<	<	<			<	<	13	<		<	<	<	
Profenophos	41198-08-7	μg/l	0.005		<			<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Sulphotep	3689-24-5	μg/l	0.003		<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Tetrachlorvinphos	22248-79-9	μg/l	0.02			<			<						<	13				<		
Thiofanox	39196-18-4	μg/I	0.005		<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Thiometon	640-15-3	μg/l	0.003	<	<	<		<	<	<	<	<	<	<	<	13	<		<	<	<	
Triazophos	24017-47-8	μg/I	0.00004	<	<	<		<	<	<	<	<	<	<	<	13	<		<	<	<	
Vamidothion	2275-23-2	μg/l	0.0004		<	<		<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Butocarboxim-sulphoxid	34681-24-8	μg/l	0.003	<	<	<			<	<	<	<	<	<	<	53	<	<	<	<	<	<
Datova Dokim Sulphokiu	07001724-0	μ9/1	0.02										`	`	`	33		`	`	`		

Akarizide	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	. Mrz	. Apr.	. Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein (Fortsetzung)																		_				
cis-Phosphamidon	23783-98-4	μg/l	0.02	<					<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Phosphamidon	297-99-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Spirodiclofen	148477-71-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = <
Flufenoxuron	101463-69-8	μg/l	0.005	<				. <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Etoxazol	153233-91-1	μg/l	0.005	<	<	<	<	. <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenazaquin	120928-09-8	μg/l	0.005	<	<	<	<	. <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mephosfolan	950-10-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phosmet-oxon	3735-33-9	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyrimidifen	105779-78-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mevinphos	7786-34-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenpyroximat	111812-58-9	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cyflumetofen	400882-07-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Acequinocyl	57960-19-7	μg/l	0.01	<	<	: <	<	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	< = < = < = < = < = < = < = < = < = < =
Formetanathydrochlorid	23422-53-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis																						
Aldicarb	116-06-3	μg/l	0.02	<	<	: <	<	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u> </u>
Azinphos-Ethyl	2642-71-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Butoxycarboxim	34681-23-7	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorfenvinphos	470-90-6	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
alpha-Endosulphan	959-98-8	μg/l	0.02	<	<	: <	<	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
beta-Endosulphan	33213-65-9	μg/l	0.0003	<	<	: <	: <	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenvalerat	51630-58-1	μg/l	0.09	<	<	. <	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phosphamidon	13171-21-6	μg/l	0.03	<	<	: <	: <	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
gamma-HCH	58-89-9	μg/l		0.00017	0.00013	0.00021	0.00018	0.00037	0.00009	0.00012	0.00012	0.00014	0.00012	0.00014	0.0002	13	0.00009	0.000102	0.00014	0.000166 0	.000306	0.00037
Parathion-Ethyl	56-38-2	μg/l	0.03	<	<	: <	: <	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Sulphotep	3689-24-5	μg/l	0.03	<	<	: <	: <	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	< = < >
Tetrachlorvinphos	22248-79-9	μg/l	0.02	<	<	: <	: <	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triazophos	24017-47-8	μg/l	0.00004	<	<	: <	: <	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Butocarboxim-sulphoxid	34681-24-8	μg/l	0.02	<	<	: <	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Phosphamidon	23783-98-4	μg/l	0.02	<	<	: <	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Phosphamidon	297-99-4	μg/l	0.01	<	<	: <	. <	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mevinphos	7786-34-7	μg/l	0.01	<	<	: <	. <	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cyflumetofen	400882-07-7	μg/l	0.03	<	<					<	<	<	<	<	<	10	<	<	<	<	<	<
Andijk		F3/-	-														•					
Aldicarb	116-06-3	μg/l	0.02	<	<	: <	: <	: <	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Amitraz	33089-61-1	μg/l	0.01	<				<	<	<	<		<	<	<	13	<	,	<	<	<	\ \[\]
Azinphos-Ethyl	2642-71-9	μg/l	0.01					<	<			,	,		<	13			,	<	<	
Butoxycarboxim	34681-23-7	μg/l	0.02					,	<				,	`	<	13			,	<	<	< =
Chlordimeform	6164-98-3	μg/l	0.01	<					<	<			`	<	<	13	<		<	<	<	
Chlorfenvinghos	470-90-6	μg/l	0.001	<					<	<				<	<	13			<	<	<	< ▶
Chlorthiophos	60238-56-4	μg/I	0.001	<					<	<		<		<	<	13	<		<	<	<	<
Demeton-S-methyl-sulphon	17040-19-6	μg/I	0.005	<					<	<	<		<	<	<	13	<		<	<	<	< ▶
Dicrotophos	141-66-2		0.005						<							13			<		<	< >
•	39300-45-3	μg/l	0.003	<		`		. <	<	<	<	,	`	<	<	13	<		<u> </u>	<	<	<
Dinocap 2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.01	<		. <				<	<	<		<	<	13	<		· ·	<	-	<
		μg/l		<		`		. <	<	<	<	<	`	<	<		<	<	<	<	<	
alpha-Endosulphan	959-98-8	μg/l	0.0005	<		. <		<	<	<	<	<		<	<	13	<	<	<	<	<	<
beta-Endosulphan	33213-65-9	μg/l	0.0003	<		`		. <	<	<	<	<	`	<	<	13	<	<	<	<	<	< <u>-</u>
Fenvalerat	51630-58-1	μg/l	0.09	<				<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>=</u>
Phosalon	2310-17-0	μg/l	0.005	<				<	<	<	<	<		<	<	13	<	<	<	<	<	< <u>-</u>
Phosphamidon	13171-21-6	μg/l	0.005	<				<	<	<	<	<		<	<	13	<	<	<	<	<	< <u>1</u>
Phosmet	732-11-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Akarizide	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Andijk (Fortsetzung)																						
gamma-HCH	58-89-9	10.	0.00008	0.00015	0.00013	0.00016	0.00013		<	<		<	<		0.00008	13	<		0.00009 0.	.0000923	0.00016	0.00016
Methidathion	950-37-8	10.	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Parathion-Ethyl	56-38-2	1 0	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Profenophos	41198-08-7		0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Sulphotep	3689-24-5	1 0	0.03		<			<			<			<		4	<	*	*	<	*	<
Tetrachlorvinphos	22248-79-9		0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Thiofanox	39196-18-4	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Thiometon	640-15-3	1 3	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triazophos	24017-47-8		0.00004	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Vamidothion	2275-23-2	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Butocarboxim-sulphoxid	34681-24-8	10.	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-Phosphamidon	23783-98-4		0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-Phosphamidon	297-99-4	10.	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Spirodiclofen	148477-71-8	10.	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Flufenoxuron	101463-69-8	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Etoxazol	153233-91-1	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenazaquin	120928-09-8	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mephosfolan	950-10-7	1 0	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phosmet-oxon	3735-33-9		0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyrimidifen	105779-78-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Mevinphos	7786-34-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenpyroximat	111812-58-9	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cyflumetofen	400882-07-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
Acequinocyl	57960-19-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Formetanathydrochlorid	23422-53-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Aldicarb	116-06-3		0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Azinphos-Ethyl	2642-71-9	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Butoxycarboxim	34681-23-7	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
Chlorfenvinphos	470-90-6	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2-Methyl-4,6-Dinitrophenol (DNOC)	534-52-1	μg/l	0.02	<	<		<		<		<		<		<	7	<	*	*	<	*	<
alpha-Endosulphan	959-98-8	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
beta-Endosulphan	33213-65-9	μg/l	0.0003	<	<	<	<	<	<	0.00128	<	<	<	<	<	13	<	<	<	< 0	0.000828	0.00128
Ethion	563-12-2	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	< <u>-</u>
Phosalon	2310-17-0	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Phosphamidon	13171-21-6	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
gamma-HCH	58-89-9	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Methidathion	950-37-8	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Parathion-Ethyl	56-38-2		0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Primifos-Ethyl	23505-41-1	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Sulphotep	3689-24-5	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	< <u>-</u>
Tetrachlorvinphos	22248-79-9		0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Triazophos	24017-47-8		0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Butocarboxim-sulphoxid	34681-24-8		0.02	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	< ▶
Mevinphos	7786-34-7	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Rodentizide																						
Lobith																						
Coumachlor	81-82-3	μg/l	0.0002	<	<	<	0.00028	0.0005	0.00039	<	0.00028	0.00027	0.00022	0.00026	0.00049	13	<	<	0.00026 0	0.000245 0	1.000496	0.0005
Endrin	72-20-8		0.0005	<	<	<			<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwegein																						
Erimidin	535-89-7	μg/l	0.005	<	<	<	<	<	 <	<	<	<	<	<	<	13	<	<	<	<	<	<

Nieuwegein (Fortsetzung) Coumachlor Endrin Nieuwersluis	81-82-3	μg/l	0.0002		0.00000																	
Endrin Nieuwersluis		μg/l	0.0002																			
Nieuwersluis							0.00034			0.00059				0.00037		13	<				0.000638	
	72-20-8	μg/l	0.0005	<	<	<	<	<	<	<	<	<	<	<	0.00066	13	<	<	<	<	<	0.00066
•																						
Coumachlor	81-82-3	μg/l			0.00037		0.00045			0.00024				0.00037								0.00099
Endrin	72-20-8	μg/l	0.0005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																						
	535-89-7	μg/l	0.005	<	<		<	<	<	<	<	<	<	<	<	13	<	<	<			
Coumachlor	81-82-3	μg/l		0.00029	0.00037	0.00025	0.00033	<	<	<	<	<	<	<	<	13	<	<	<	<	0.000354	
Endrin	72-20-8	μg/l	0.0005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
Haringvliet																						
Coumachlor	81-82-3	μg/l	0.0002	<	<	0.00027	0.00027	<	0.00022	<	0.00037	0.0004	0.00031	0.00034	0.00041	13	<	<	0.00027	0.000247	0.000406	
Endrin	72-20-8	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Warfarin	81-81-2	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Nematizide																						
Lobith																						
	0061-01-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	0061-01-5	μg/I μg/I	0.01	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<		< <u>=</u>
	4017-47-8		0.00004	<		<	<	<	<			<			<	13	<	<		<		<
Nieuwegein	4017-47-0	μg/l	0.00004	<	<	<	<	<	<u> </u>	<	<	<	<	<	<	13	<	<	<	<	<	\
	0061-01-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	0061-01-5	μg/l	0.01	<	<			<	<		<			<	<	13	<			<		< <u>-</u>
The state of the s	116-06-3		0.01		·			<								53	-				-	<
	1646-88-4	μg/l	0.02	<	<	<	<	-	<		<	<	<u> </u>	<	<	53	<	<	<u> </u>	<		< = < =
·	1646-87-3	μg/l	0.02	<	<	<	<	<	< <		<	<	<	<	<	53	<	< <	<u> </u>	<		<
1,2-Dibrom-3-Chlorpropan (DBCP)	96-12-8	μg/l	0.02		<	· ·		· ·			<			<	<	13	<	`		<	-	
· · · · · · · · · · · · · · · · · · ·		μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<		
	3071-79-9	μg/l	0.00004	<	<	· ·		<	<		<			<	<	13	<	<		<	-	<
	4017-47-8 0548-10-4	μg/l	0.0004	<	<	<		· ·	<		<			<	<	13	<	<		<	`	< =
,		μg/l	0.005	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	`	<
	6070-16-7	μg/l		<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<		<
1, 1	2686-99-9	μg/l	0.005	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	`	
	5900-20-3 8066-35-4	μg/l	0.1 0.005	<	<	<	<	<	< 0.012	,	0.006	O 00E	0.000	0.006	< .	13	<	<	0.005	0.00500	0.0110	
17		μg/l		<	<	<	<	<	0.013		0.006	0.005	0.006		0.005	13	<	<	0.005	0.00508		
Pyraclofos 77 Nieuwersluis	7458-01-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	0001 01 5	/1	0.01													10						<
1 1	0061-01-5	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<		<
	0061-02-6	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	-	<
	116-06-3	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<		<
·	1646-88-4	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	-	<
	1646-87-3	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	-	<
1,2-Dibrom-3-Chlorpropan (DBCP)	96-12-8	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<		< <u>-</u>
Triazophos 24 Andijk	4017-47-8	μg/l	0.00004	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< □
•	0001 01 5	/1	0.01													10						
	0061-01-5	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<		<
	0061-02-6	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<		<
	116-06-3	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	-	<
·	1646-88-4	μg/l	0.02	<	<	<	<	<	<	,	<	<	<	<	<	13	<	<	<	<	`	<
· ·	1646-87-3	μg/l	0.02	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<		<
1,2-Dibrom-3-Chlorpropan (DBCP)	96-12-8	μg/l	0.03	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	<
Terbufos 13	3071-79-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
																						. 1
Triazophos 24	4017-47-8 0548-10-4	μg/l μg/l	0.00004 0.005	<	<	<	<	<	<		<	<	<	< <	< <	13 13	< <	< <	<	<		< <u>\</u> < <u>\</u>

Nematizide	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai		Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Andijk (Fortsetzung)	E0070 10 7	/1	0.005						_								10						
Terbufos-sulphon	56070-16-7	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< <u> </u>
3,4,5-Trimethacarb	2686-99-9	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorthiophos-sulphon	25900-20-3	μg/l	0.1	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fluopyram	658066-35-4	μg/l	0.005	0.0065	<	<	<	<		0.005	<	0.006	0.007	0.007	0.007	0.01	13	<	<	0.005	0.00519	0.0092	0.01
Pyraclofos	77458-01-6	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																							
cis-1,3-Dichlorpropen	10061-01-5	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
trans-1,3-Dichlorpropen	10061-02-6	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Aldicarb	116-06-3	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Aldicarb-sulphon	1646-88-4	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Aldicarb-sulphoxid	1646-87-3	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
1,2-Dibrom-3-Chlorpropan (DBCP)	96-12-8	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Triazophos	24017-47-8	μg/l	0.02	<		<	<			<	<	<	<	<	<	<	16	<	<	<	<	<	<
Ether																							
Lobith																							
Diisopropylether (DIPE)	108-20-3	μg/l	0.01	<	0.0135	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	0.0101	0.0135
Methyl-Tertiär-Butylether (MTBE)	1634-04-4	μg/l		0.0136	0.0203	0.0226	0.191	0.0249		0.0192	0.0289	0.0476	0.0325	0.0453	0.0305	0.0437	13	0.0121	0.0133	0.0289	0.041	0.134	0.191
1,4-Dioxan	123-91-1	μg/l	0.4	<		1.11	0.95	0.869		0.828	1.19	2.06	1.38	2.13	2.36	2.44	12	<	<	1.15	1.31	2.41	2.44
1.4-Dioxan (Fracht)	.20 01 1	g/s	0	1.15		2.24	1.8	1.72		1.73	1.32	1.96	1.37	1.9	1.99	2.5	12	1.09	1.13	1.76	1.73	2.42	2.5
Nieuwegein		9/0		1.10		2.21	1.0	1.72		1.70	1.02	1.00	1.07	1.0	1.00	2.0	12	1.00	1.10	1.70	1.70	2.12	2.0
Diisopropylether (DIPE)	108-20-3	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetraglym	143-24-8	μg/l	0.01	0.02	0.03	0.04	0.06	0.08		0.33	0.27	0.26	0.48	0.33	0.22	0.15	13	0.02	0.02	0.15	0.176	0.42	0.48
0 /				0.02	0.03		0.00	0.0623		0.043	0.27	0.20	0.0609			0.0623	13			0.0484		0.42	0.46
Methyl-Tertiär-Butylether (MTBE)	1634-04-4	μg/l				0.0203								0.0405	0.0182			0.0112	0.014		0.0603		0.174
Diglym	111-96-6	μg/l	0.00	0.05	0.2	0.1	0.25	0.17		0.04	0.04	0.04	0.15	0.07	0.13	0.22	13	0.02	0.028	0.1	0.116	0.238	0.25
Ethyl-Tertiär-Butylether (ETBE)	637-92-3	μg/l	0.03	<	<	<	<	0.03		<	0.05	0.12	<	<	<	<	12	<	<	<	<	0.099	0.12
Triglym	112-49-2	μg/l		0.015	0.06	0.03	0.08	0.09		0.07	0.05	0.05	0.11	0.08	0.13	0.12	13	0.01	0.014	0.07	0.0692	0.126	0.13
Tertiair-Amyl-Methylether (TAME)	994-05-8	μg/l	0.03	<	<	<	<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
1,4-Dioxan	123-91-1	μg/l		0.69	1	1.2	1.3	0.95		0.59	0.71	1.1	1.5	0.98	1.3	1.5	13	0.51	0.542	1	1.04	1.5	1.5
1,4-Dioxan (Fracht)		g/s		0.588	0.43	0.308	0.136	0.187		0.206	0.0071	0.0431	0.0306	0.0098	0.013	0.015	13	0.0071	0.00818	0.136	0.197	0.598	0.639
Nieuwersluis																							<u> </u>
Diisopropylether (DIPE)	108-20-3	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetraglym	143-24-8	μg/l		0.02	0.02	0.04	0.03	0.08		0.11	0.26	0.24	0.46	0.3	0.14	0.11	13	0.02	0.02	0.11	0.141	0.396	0.46
Methyl-Tertiär-Butylether (MTBE)	1634-04-4	μg/l		0.0357	0.233	0.0288	0.408	0.242	(0.0496	0.188	0.179	0.196	0.385	0.0258	0.331	13	0.022	0.0235	0.188	0.18	0.399	0.408
Diglym	111-96-6	μg/l		0.075	0.18	0.28	0.16	0.17		0.07	0.04	0.05	0.11	0.08	0.06	0.19	13	0.04	0.044	0.1	0.118	0.244	0.28
Ethyl-Tertiär-Butylether (ETBE)	637-92-3	μg/l	0.03	<	<	<	<	0.06		<	0.04	0.09	<	<	<	<	12	<	<	<	<	0.081	0.09
Triglym	112-49-2			0.03	0.06	0.08	0.05	0.09		0.09	0.05	0.05	0.06	0.08	0.11	0.1	13	0.03	0.03	0.06	0.0677	0.106	0.11
Tertiair-Amyl-Methylether (TAME)	994-05-8	μg/l	0.03	<	<	<	<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Andiik	00.000	P 9/ 1	0.00	·	Ì	·	·			`					`			·	·		·	`	
Diisopropylether (DIPE)	108-20-3	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetraglym	143-24-8	μg/I	0.01	0.03	0.01	0.03	0.03	0.02		0.04	0.04	0.07	0.07	0.12	0.14	0.12	13	0.01	0.014	0.04	0.0577	0.132	0.14
Methyl-Tertiär-Butylether (MTBE)	1634-04-4	μg/I	0.01	0.03	0.01	0.03	0.03	0.02		0.04	0.04	0.07	0.07	0.12	0.14	0.0121	13	0.01	0.014	0.04	0.0311	0.132	0.0121
	111-96-6		0.01	0.045	0.11	0.13	0.16	0.11		0.13	0.1	0.1	0.09	0.08	0.08	0.0121	13	0.03	0.042	0.1	0.1	0.148	0.0121
Diglym		μg/l	0.00											0.08							0.1		
Ethyl-Tertiär-Butylether (ETBE)	637-92-3	μg/l	0.03	<	<	<	< .	<		<	< <	<	<	< <	<	<	12	<	<	< <	< .	<	
Triglym	112-49-2	μg/l		0.03	0.03	0.04	0.05	0.03		0.06	0.05	0.05	0.04	0.05	0.06	0.07	13	0.02	0.024	0.05	0.0454	0.066	0.07
Tertiair-Amyl-Methylether (TAME)	994-05-8	μg/l	0.03	<	<	<	<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
1,4-Dioxan	123-91-1	μg/l		0.305	0.41	0.58	0.6	0.34		0.41	0.39	0.24	0.2	0.22	0.29	0.42	13	0.2	0.208	0.34	0.362	0.592	0.6
Haringvliet																							
Diisopropylether (DIPE)	108-20-3	μg/l	0.01	0.0732	0.0367	0.0416	0.0141	<	(0.0126	<	<	<	<	<	<	13	<	<	<	0.022	0.0737	0.0759
Tetraglym	143-24-8	μg/l	0.02	<		0.024	0.027			0.139	0.264	0.24	0.31	0.3	0.28	0.12	17	<	<	0.24	0.186	0.302	0.31
Methyl-Tertiär-Butylether (MTBE)	1634-04-4	μg/l	0.01	<	0.0654	0.0185	0.524	0.0412		0.0264	0.0437	0.0206	0.0179	<	<	0.0142	13	<	<	0.0185	0.0609	0.341	0.524
Diglym	111-96-6	μg/l	0.02	0.0335		0.065	0.12			0.041	0.0274	0.0325	0.066	0.075	0.12	0.14	17	<	0.0204	0.039	0.0551	0.124	0.14

Ether	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai		Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Haringvliet (Fortsetzung)	0.7.00		0.05														17						<
Ethyl-Tertiär-Butylether (ETBE)	637-92-3	10.	0.05	<		<	< 0.00		0.6	<	< 0.000	< 0.0005	< 0.055	> 0.007	< 0.10	< 0.000	17	<	<	< 0.04	< 0.044	< 0.0070	0.13
Triglym	112-49-2	10.	0.02	<		<	0.03		0.0		0.033	0.0395	0.055	0.067	0.13	0.089	17	<	<	0.04	0.044	0.0972	0.13
Tertiair-Amyl-Methylether (TAME)	994-05-8	10.	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	< = 1.5 =
1,4-Dioxan	123-91-1	μg/l		0.355		0.63	0.46		0	0.615	0.46	0.84		0.87	1	1.34	16	0.28	0.385	0.855	0.889	1.43	1.5
Benzinzusatzmittel Lobith																							
1,3,5-Trimethylbenzen	108-67-8	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	—
1,2,4-Trimethylbenzen	95-63-6	1 0.	0.01	<	<	<		<		<		<	<	<	<	<	13	<	<	~	<	<	< = <
1,2,3-Trimethylbenzen	526-73-8	1 3,	0.01	<	<	<		<		<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
Methyl-Tertiär-Butylether (MTBE)	1634-04-4	μg/l	0.01	0.0136	0.0203	0.0226	0.191	0.0249	0.0		0.0289	0.0476	0.0325	0.0453	0.0305	0.0437	13	0.0121	0.0133	0.0289	0.041	0.134	0.191
Nieuwegein	1001 01 1	P9/1		0.0100	0.0200	0.0220	0.101	0.0210	0.0	0102	0.0200	0.0170	0.0020	0.0100	0.0000	0.0107	10	0.0121	0.0100	0.0200	0.011	0.101	0.101
1,3,5-Trimethylbenzen	108-67-8	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,4-Trimethylbenzen	95-63-6	1 0.	0.01	<	0.0101		<	<		<	2		,			<	13	<	,	~		` _	0.0101
1,2,3-Trimethylbenzen	526-73-8		0.01	<	<	<	<	0.0102		<		<	<		<	<	13			,	<	<	0.0102
Methyl-Tertiär-Butylether (MTBE)	1634-04-4	1 0.	0.01	0.0314	0.0298	0.0203	0.0484	0.0623	n	0.043	0.161	0.174	0.0609	0.0405	0.0182	0.0623	13	0.0112	0.014	0.0484	0.0603	0.169	0.174
Ethyl-Tertiär-Butylether (ETBE)	637-92-3		0.03	<	<	<	<	0.03	0.	<	0.05	0.12	<	0.0100	<	<	12	<	<	0.0101	<	0.099	0.12
Tertiair-Amyl-Methylether (TAME)	994-05-8		0.03	<	<	<	<	<		<	<	< .12	<		<	<	12	<	<		<	< 0.000	<
Nieuwersluis	307 03 0	μ9/1	0.00														12						
1,3,5-Trimethylbenzen	108-67-8	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<		<	<	<
1,2,4-Trimethylbenzen	95-63-6	1 0.	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
1,2,3-Trimethylbenzen	526-73-8	10.	0.01	<			<	0.0117		<	<	<	<	<	<	<	13	<	<		<	<	0.0117
Methyl-Tertiär-Butylether (MTBE)	1634-04-4	μg/I	0.01	0.0357	0.233	0.0288	0.408	0.242	0.0	0496	0.188	0.179	0.196	0.385	0.0258	0.331	13	0.022	0.0235	0.188	0.18	0.399	0.0117
Ethyl-Tertiär-Butylether (ETBE)	637-92-3		0.03	0.0337	0.233	0.0200	0.400	0.242	0.0	<	0.100	0.173	0.130	0.303	0.0230	0.331	12	0.022	0.0233	0.100	0.10	0.081	0.408
Tertiair-Amyl-Methylether (TAME)	994-05-8	μg/I μg/I	0.03	<	<	<	<	0.00		<	0.04	0.03	<	<	<	<	12	<	<	<	<	0.001	<
Andijk	334-03-0	μу/ι	0.03														12						
1,3,5-Trimethylbenzen	108-67-8	μg/l	0.01	<	<	<	<	<		<	<	<	<		<	<	13	<	<		<	<	<
1,2,4-Trimethylbenzen	95-63-6	10.	0.01	<	<	<	<	<		<	<	<	<		<	<	13	<	<		<	<	< >
1,2,3-Trimethylbenzen	526-73-8	1 0.	0.01			`		<		<	,		`		`		13					`	<
Methyl-Tertiär-Butylether (MTBE)	1634-04-4	1 0	0.01	<	<	<	<	<		<	< <	<	< <	<	< <	0.0121	13	<	< <	<	< <	< <	0.0121
Ethyl-Tertiär-Butylether (ETBE)	637-92-3	10.	0.01		<	<		<		<		<		`		0.0121	12			<	<	-	<
Tertiair-Amyl-Methylether (TAME)	994-05-8	μg/l μg/l	0.03	<	<	<	<	<		<	< <	< <	< <	<	< <	<	12	< <	< <	<	<	< <	⟨ 🗏
Haringvliet	334-03-0	μy/i	0.03	<	<	<	<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	
1,3,5-Trimethylbenzen	108-67-8	ua/l	0.01	<	<	<	0.0103	<		<	<	<	<	<	<	<	13	<	<	<	<	<	0.0103
1,2,4-Trimethylbenzen	95-63-6	10.	0.01	<	<	<		<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
1,2,3-Trimethylbenzen	526-73-8		0.03			`	0.0314			<	,	`	`	`	`		13		,	<	`	0.0208	0.0314
Methyl-Tertiär-Butylether (MTBE)	1634-04-4	1 0	0.01	<	0.0654	0.0185	0.0314	0.0412	0.0		0.0437	0.0206	0.0179	<	< <	< 0.0142	13	<	<	0.0185	0.0609	0.0200	0.524
1,2-Dibromethan		μg/l	0.01		0.0004	0.0100		0.0412	0.0				0.0175	<			17	<	<	0.0103	0.0005		0.324
Ethyl-Tertiär-Butylether (ETBE)	106-93-4 637-92-3		0.05	<		<	<			<	<	<	\$	<	<	<	17	<	<	<	<	<	<
Tertiair-Amyl-Methylether (TAME)	994-05-8	μg/l	0.05	<		<	<			< <	<	<	<	<	<	< <	17	< <	<	<	<	<	< <u>-</u>
rertiali-Alliyi-wettiyletiler (TAWE)	334-03-0	μg/l	0.03	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	
Industrielle Lösemittel																							
Lobith																							
1,2-Dichlorethan	107-06-2	μg/l	0.01	<	<	<	0.0174	<		<	<	0.0897	<	<	<	<	13	<	<	<	0.0125	0.0608	0.0897
Dichlormethan	75-09-2		0.5	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexachlorbutadien	87-68-3			0.00137	0.00256	0.00258	0.00179	0.00199	0.00	0162 0	.00125	0.00112	0.00124	0.00182	0.00176	0.00171	13	0.00112	0.00117	0.00171	0.00171	0.00257	0.00258
Tetrachlorethen	127-18-4		0.01	<	0.0166	0.0173	0.0133	<		<	0.0157	0.0222	<	0.0146	0.0143	0.092	13	<	<	0.0143	0.0183	0.0641	0.092
Tetrachlorkohlenstoff	56-23-5		0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Trichlorethen	79-01-6		0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chloroform	67-66-3	1 0.	0.01	<	<	0.0103	<	<	0.0	.0118	0.0103	0.0102	<	<	<	0.011	13	<	<	<	<	0.0115	0.0118
1,2,3-Trichlorpropan	96-18-4		0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Benzen	71-43-2	10.	0.01	<	<	<	<	<		<	<	<	<	0.0232	<	0.0289	13	<	<	<	<	0.0266	0.0289
		1 3/																					_

Industrielle Lösemittel	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Lobith (Fortsetzung)																						
Cyclohexan	110-82-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methylbenzen	108-88-3	μg/l	0.01	<	0.0146	0.0218	<	<	<	0.0168	0.0127	<	0.0137	<	0.016	13	<	<	0.0106	0.0105	0.0198	0.0218
Chlorbenzen	108-90-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dichlorbenzen	95-50-1	μg/l	0.01	<	<	<	0.0101	<	<	<	0.0157	<	<	<	<	13	<	<	<	<	0.0135	0.0157
1,3-Dichlorbenzen	541-73-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,4-Dichlorbenzen	106-46-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethoxymethan	109-87-5	μg/l	0.1	<	<	<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Tributylphosphat (TBP)	126-73-8		0.1			<	,	_	<		<	,		<	0.109	13		,	,			0.109
Triphenylphosphat (TPP)	115-86-6	μg/l	0.05	<	<	<	,	<	<		<	<	<	<	<	13	<	<	<	<	<	<
N-Propylbenzen	103-65-1	μg/l	0.01	<		<		<	<		<	<	<	<	<	13		<	<	<	<	< ■
cis-1,2-Dichlorethen	156-59-2	μg/l	0.01	<	0.0128	0.0131			<	<	<	<	<	<	<	13	<		<	<	0.013	0.0131
trans-1.2-Dichlorethen	156-60-5	μg/l	0.01	<	0.0120	0.0131			<	<	<	<	<	<	<	13	<	<		<	0.013	<
1,3,5-Trimethylbenzen	108-67-8		0.01	<					<	<	<	<	<		<	13	<	<	<	<	<	< ■
1,1,2,2-Tetrachlorethan	79-34-5		0.01			<						`		`		13						< ■
	75-54-5	10.	0.01	<	0.0154	0.0000	0.01	<	<	<	<	<	0.0111	<	0.0102	13	<	ζ.	<	<	0.0199	0.0209
1,3- und 1,4-Dimethylbenzen		μg/l		<		0.0209		<	<	<	<	<		<	0.0183	13	<	<	< *	<	0.0199	
2,3,4,6- und 2,3,5,6-Tetrachlorphenol	100.01.1	μg/l	0.02	<	<		< .	0.000	<	4.40	<	4.00	<	0.00	<	10	<		4.45	<	0.44	<
1,4-Dioxan	123-91-1	1 3	0.4	<		1.11	0.95	0.869	0.828	1.19	2.06	1.38	2.13	2.36	2.44	12	<	<	1.15	1.31	2.41	2.44
1,4-Dioxan (Fracht)		g/s		1.15		2.24	1.8	1.72	1.73	1.32	1.96	1.37	1.9	1.99	2.5	12	1.09	1.13	1.76	1.73	2.42	2.5
1,2-Dichlorpropan	78-87-5	1 0	0.01	<	<	<	<	<	<	<	<	<	0.0151	<	<	13	<	<	<	<	0.0111	0.0151
2,2,5,5-Tetramethyltetrahydrofuran	15045-43-9	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwegein Bromchlormethan	74 07 5	/1	0.05								_					10						<
	74-97-5		0.05	<	<	<	<	<	<	<	<		<	<	<	12	<	<	<	<	<	< <u>=</u>
1,2-Dichlorethan	107-06-2		0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Dichlormethan	75-09-2	1 0	0.05	<	<	<	<	<	<	<	<	<	<	<	<	12	<	<	<	<	<	<
Hexachlorbutadien	87-68-3	μg/l	0.001	<	<	0.00117	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.00113	0.00117
Tetrachlorethen	127-18-4	μg/l	0.01	<	0.0175	0.0109	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.0149	0.0175
Tetrachlorkohlenstoff	56-23-5	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Trichlorethen	79-01-6	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = <
Chloroform	67-66-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,3-Trichlorpropan	96-18-4	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Benzen	71-43-2	μg/l	0.03	<	<	<	<	<	0.09	<	<	<	<	<	<	13	<	<	<	<	0.06	0.09
Cyclohexan	110-82-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methylbenzen	108-88-3	μg/l	0.01	<	<	<	<	<	<	0.0113	<	<	<	<	0.0111	13	<	<	<	<	0.0112	0.0113
Chlorbenzen	108-90-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dichlorbenzen	95-50-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3-Dichlorbenzen	541-73-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,4-Dichlorbenzen	106-46-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethoxymethan	109-87-5		0.1	<	<	<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Tributylphosphat (TBP)	126-73-8	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triethylphosphat (TEP)	78-40-0	μg/l	0.02	0.045	0.09	<	0.03	0.07	0.07	0.04	0.09	<	0.14	<	0.2	13	<	<	0.05	0.0654	0.176	0.2
Triphenylphosphat (TPP)	115-86-6		0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
N-Propylbenzen	103-65-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-1,2-Dichlorethen	156-59-2	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-1,2-Dichlorethen	156-60-5		0.01	<	<	<			<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3,5-Trimethylbenzen	108-67-8	μg/l	0.01	<		<	,	,	<		<		<	<	<	13		<	<	<	<	` -
1,1,2,2-Tetrachlorethan	79-34-5		0.01	<	<	<		<	<	<	<	<	<	<	<	13		<	<	<	<	< <u> </u>
1,3- und 1,4-Dimethylbenzen	70 01 0	μg/l	0.01	<	0.0141	0.386	0.0122	<	<		<	<	<	<	0.0223	13			<	0.0369	0.241	0.386
1,4-Dioxan	123-91-1		0.01	0.69	1	1.2	1.3	0.95	0.59	0.71	1.1	1.5	0.98	1.3	1.5	13	0.51	0.542	1	1.04	1.5	1.5
1,4-Dioxan (Fracht)	120-31-1	g/s		0.588	0.43	0.308	0.136	0.33	0.33	0.0071	0.0431	0.0306	0.0098	0.013	0.015	13	0.0071	0.00818	0.136	0.197	0.598	0.639
1,2-Dioxaii (Fraciit) 1,2-Dichlorpropan	78-87-5	-	0.01	0.300	0.43	0.300	0.130	0.107	0.200	0.0071	0.0431	0.0300	0.0036	0.013	0.013	13	0.0071	0.00010	0.130	0.137	0.000	0.003
2,2,5,5-Tetramethyltetrahydrofuran	15045-43-9	1 3,	0.01	<		<		<	<	<		<	<		<	13			<	<	<	< =
د,د,ی,ی- retrametryrtetranyul Ulul all	13043-43-9	μ9/1	0.03	<	<	<	<	<	(<	<	<	((<	13	<	<	<	<	<	

Industrielle Lösemittel	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai		Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwersluis Bromchlormethan	74-97-5	/1	0.05														12						
		1 0		<	<	<	<	<		<	<	<		<	<	<		<	<	<	<	<	< = <
1,2-Dichlorethan	107-06-2	10	0.03	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	< 1.10	< 0.01	
Dichlormethan	75-09-2	1 0	0.05	<	<	<	<	<		<	<	<	<	14	<	<	12	<	<	<	1.19	9.81	
Hexachlorbutadien	87-68-3		0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrachlorethen	127-18-4	10	0.01	0.0151	0.0161	0.0184	<	<		<	<	<	<	<	<	<	13	<	<	<	<	0.0175	0.0184
Tetrachlorkohlenstoff	56-23-5		0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Trichlorethen	79-01-6	10	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chloroform	67-66-3		0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	0.0103
1,2,3-Trichlorpropan	96-18-4		0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Benzen	71-43-2		0.01	<	<	<	<	<			0.0102	<	<	<	<	<	13	<	<	<	<	<	0.0102
Cyclohexan	110-82-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methylbenzen	108-88-3	μg/l	0.01	<	0.0157	0.0188	<	<		<	0.0141	<	<	0.0162	<	0.0105	13	<	<	<	<	0.0178	0.0188
Chlorbenzen	108-90-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dichlorbenzen	95-50-1	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3-Dichlorbenzen	541-73-1	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,4-Dichlorbenzen	106-46-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethoxymethan	109-87-5		0.1	<	<	<	<			<	<	<	<	<	<	<	12	<	<	<	<	<	<
TributyIphosphat (TBP)	126-73-8	μg/l	0.1	<	<	<	<	<		<	<	<	<	<	0.13	<	13	<	<	<	<	<	0.13
Triethylphosphat (TEP)	78-40-0	μg/l	0.02	0.07	<	0.04	0.04	0.06		0.06	0.06	0.24	<	0.1	0.45	0.17	13	<	<	0.06	0.106	0.366	0.45
Triphenylphosphat (TPP)	115-86-6	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
N-Propylbenzen	103-65-1	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< =
cis-1,2-Dichlorethen	156-59-2	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
trans-1,2-Dichlorethen	156-60-5	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3,5-Trimethylbenzen	108-67-8	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,2,2-Tetrachlorethan	79-34-5	μg/l	0.03	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3- und 1,4-Dimethylbenzen		μg/l	0.01	<	0.0154	0.0204	<	<		<	<	<	<	0.0108	0.0162	0.0106	13	<	<	<	<	0.0187	0.0204
2,3,4,6- und 2,3,5,6-Tetrachlorphenol		μg/l	0.02	<		<		<			<		<		<		6	<	*	*	<	*	<
1,2-Dichlorpropan	78-87-5	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2,5,5-Tetramethyltetrahydrofuran	15045-43-9	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																							
Bromchlormethan	74-97-5	μg/l	0.05	<	<	<	<	<		<	<	<		<	<	<	12	<	<	<	<	<	<
1,2-Dichlorethan	107-06-2	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>\text{\tin}\text{\tin}\exiting{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\text{\texi}\tittt{\texititt{\text{\text{\texi}\text{\texit{\text{\texi}\text{\texi}\text{\texi}\texi{\texi{\texi{\texi{\texi{\texi{\tex</u>
Dichlormethan	75-09-2	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Hexachlorbutadien	87-68-3	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrachlorethen	127-18-4	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< ∑
Tetrachlorkohlenstoff	56-23-5	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Trichlorethen	79-01-6	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chloroform	67-66-3		0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,3-Trichlorpropan	96-18-4	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Benzen	71-43-2		0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cyclohexan	110-82-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Methylbenzen	108-88-3	μg/l	0.01	<	<	0.0223	0.0251	0.011	0	0.0131	0.0191	<	<	<	<	<	13	<	<	<	0.01	0.024	0.0251
Chlorbenzen	108-90-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dichlorbenzen	95-50-1	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3-Dichlorbenzen	541-73-1	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,4-Dichlorbenzen	106-46-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dimethoxymethan	109-87-5		0.1	<	<	<		•		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Tributylphosphat (TBP)	126-73-8	μg/I	0.1	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< ▶
Triethylphosphat (TEP)	78-40-0		0.02	0.055	0.05		0.04	0.04		0.05	0.05	0.04	<	0.07	<	0.09	13	<	<	0.05	0.0446	0.082	0.09
Triphenylphosphat (TPP)	115-86-6	μg/I	0.02	0.033	0.03	0.02	0.07	0.04		0.03	0.03	0.04	<	< .0.07	<	0.03	13	<		0.03	0.0440 <	0.002	<
N-Propylbenzen	103-65-1	μg/I	0.03	<	<	<		<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
cis-1,2-Dichlorethen	156-59-2		0.01	<		<				<	<			<	<	<	13	<		<	<	<	<
013 1 ₁ 2 D101110110111	130-33-2	μ9/1	0.01								`						10				,		

Industrielle Lösemittel	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Ju	ın. J	ul. A	ug. S	ер.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Andijk (Fortsetzung) trans-1,2-Dichlorethen	156-60-5	ua/l	0.01	<	<	<					<	<		,	<	<	13	<	<		<	<	<
1,3,5-Trimethylbenzen	108-67-8	μg/l	0.01	<		<	<	<		< <	<	<	< <	<	<		13	<	<	<u> </u>	<	<	<
1,1,2,2-Trimetriyiberizeri 1,1,2,2-Tetrachlorethan		1 0	0.01		<							-		<		<	13			<u> </u>		-	
1,1,2,2-retrachiorethan 1,3- und 1,4-Dimethylbenzen	79-34-5	10.		<	<	0.0000	<	<		<	<	<	<	<	<	<	13	<	<	<	<	0.016	0.0233
· · · · · · · · · · · · · · · · · · ·	100 01 1	μg/l	0.01	< 0.005	< 0.41	0.0233	> 0.0	< 0.04		< .	<	<	<	< 0.00	O 00	< .		<	<	< 0.04	> 0.000	0.016	
1,4-Dioxan	123-91-1	μg/l	0.01	0.305	0.41	0.58	0.6	0.34	0.4					0.22	0.29	0.42	13	0.2	0.208	0.34	0.362	0.592	
1,2-Dichlorpropan	78-87-5	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2,5,5-Tetramethyltetrahydrofuran	15045-43-9	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet	74.07.5																45						
Bromchlormethan	74-97-5		0.05			<				<	<	<	<	<	<	<	17	<	<	<	<	<	<
1,2-Dichlorethan	107-06-2	10.	0.01	<	0.0122	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	0.0122
Dichlormethan	75-09-2	1 0	0.1	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Hexachlorbutadien	87-68-3		0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Tetrachlorethen	127-18-4	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Tetrachlorkohlenstoff	56-23-5	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Trichlorethen	79-01-6	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Chloroform	67-66-3	μg/l	0.01	<	<	0.013	<	<	0.01	24	<	< 0.01	145 0.0	195	<	<	13	<	<	<	<	0.0175	0.0195
1,2,3-Trichlorpropan	96-18-4	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Benzen	71-43-2	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	0.0126
Cyclohexan	110-82-7	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Methylbenzen	108-88-3	μg/l	0.01	0.0135	<	0.0202	<	0.0193		< 0.02	62 0.0	145 0.02	235 0.0)172 (0.0175	<	13	<	<	0.0172	0.0143	0.0251	0.0262
Methylcyclohexan	108-87-2	μg/l	0.05				<			<	<	<	<	<	<	<	14	<	<	<	<	<	<
Chlorbenzen	108-90-7	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	< <u>-</u>
1,2-Dichlorbenzen	95-50-1	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
1,3-Dichlorbenzen	541-73-1	μg/l	0.05	<		` <	,			_	2		2	~	<	,	17	<	,	,			<
1,4-Dichlorbenzen	106-46-7	μg/l	0.05	<		<				<	<	<	<	,	<	<	17	<	<	,	<	,	<
Dimethoxymethan	109-87-5		0.1	<	<	<	_			<	<	<	2	2	<	<	12	<		2	<	<	< ■
Tributylphosphat (TBP)	126-73-8	μg/l	0.1	<		0.22		<		<	2	~	<		~	<	13	~				0.152	0.22
Triphenylphosphat (TPP)	115-86-6	μg/l	0.05	<		0.22				<	<		<		<	<	13	<	<		<	0.13Z <	<
N-Propylbenzen	103-65-1	μg/l	0.05	<	`	<		`		<	2	<			<	<	17	<	<		<		<
cis-1,2-Dichlorethen	156-59-2		0.05	<		<				<	<	_	<		<	<	17	<	<		<		< ■
trans-1,2-Dichlorethen	156-60-5		0.05	<		<				<	<	<	<		<	<	17	<	<		<	<	<
1,3,5-Trimethylbenzen	108-67-8	μg/l	0.03	<	,	<	0.0103			<	<	•	<			<	13	-	<		<	<	0.0103
Tetrahydrofuran (THF)	109-99-9	μg/l	0.01	<	<	<	0.0103	<		<	`	< 0	1.13	<	< <	0.795	14	<	<	0.0775	0.362	1.4	1.9
1,1,1,2-Tetrachlorethan		μg/l	0.05								<						17	-		0.0773			1.3
	630-20-6	μg/l		<		<	<			<	<	<	<	<	<	<		<	<	<	<	<	<
1,1,2,2-Tetrachlorethan	79-34-5	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Chlorethan (Freon 160)	75-00-3	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Tri- und Tetrachlorethen		μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	
1,3- und 1,4-Dimethylbenzen		μg/l	0.01	0.0118	<	0.117	<	0.0185		< 0.01	69	<	<	< (0.0121	<	13	<	<	<	0.0172	0.0776	0.117
1,1,2-Trichlor-1,2,2-trifluoroethan (Freon 113)	76-13-1	μg/l	0.05				<			<	<	<	<	<	<	<	14	<	<	<	<	<	<
2,3,4,6- und 2,3,5,6-Tetrachlorphenol		μg/l	0.02		<		<			<		<		<		<	7	<	*	*	<	*	<
1,4-Dioxan	123-91-1	μg/l		0.355		0.63	0.46		0.6	15 0.	46 0).84	1	0.87	1	1.34	16	0.28	0.385	0.855	0.889	1.43	1.5
Cyclohexen	110-83-8	μg/l	0.05				<			<	<	<	<	<	<	<	14	<	<	<	<	<	<
1,2-Dichlorpropan	78-87-5	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
2,2,5,5-Tetramethyltetrahydrofuran	15045-43-9	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< <u> </u>
Acrylnitril	107-13-1	μg/l	0.05				<			<	<	<	<	<	<	<	14	<	<	<	<	<	<
Industriechemikalien (mit Perfluor-Stoffe)																							
Lobith																							
Perfluoroctanoat (PFOA)	335-67-1	μg/l	0.001	0.00125	<	0.004	0.002	0.002		< 0.0	04 0.	0.0	004 0.	.002	0.002	0.003	13	<	<	0.002	0.00235	0.004	0.004
Perfluoroctansulfonat (PFOS)	1763-23-1	μg/l		0.011	0.022	0.002	0.003	0.004	0.00	0.0	05 0.	0.0	006 0.	.004	0.004	0.006	13	0.002	0.0024	0.005	0.007	0.0208	0.022
Perfluor-1-Butansulfonate linear (PFBS)	375-73-5	μg/l		0.003	0.005	0.008	0.014	0.008	0.00	0.0	11 0.	023 0.0	019 0	.017	0.015	0.015	13	0.002	0.0028	0.011	0.0113	0.0214	0.023
Perfluorundecanoat (PFUnA)	2058-94-8	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<

Industriechemikalien (mit Perfluor-Stoffe)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	J	lun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Perfluorpentanoat (PFPeA)	2706-90-3	μg/l	0.001	<	<	0.002	<	0.002	0.0	002 0.	.004	0.005	0.004	0.004	0.003	0.005	13	<	<	0.002	0.00254	0.005	0.005
Perfluor-n-hexansäure (PFHxA)	307-24-4		0.001	<	0.002	0.002	0.002	0.002			.003	0.005	0.004	0.004	0.003	0.005	13	<	<	0.002	0.00234		0.005
Perfluordodecanoat (PFDoA)	307-55-1	μg/I	0.001	<	0.002	0.002	0.002	0.002	0.0	< 0.	<	< .003	0.004	0.003	0.003	0.003	13		<	0.003	0.00273	0.003	<
Perfluordecanoat (PFDA)	335-76-2		0.001	<		<	<	<		<	<	<	<	<		<	13	<		<		<	<
Perfluorbutanoat (PFBA)	375-22-4	μg/I	0.001	0.00775	0.006	0.002	0.001	0.002	0.0		.011	0.008	0.003	0.004	0.004	0.003	13			0.003	0.00473		0.015
Perfluorheptanoat (PFHpA)	375-22-4		0.001	0.00773	0.000	0.002	0.001	0.002			.002	0.003	0.003	0.004	0.004	0.003	13	<	<	0.003	0.00473		0.013
Perfluornonanoat (PFNA)	375-95-1	μg/l	0.001	<		0.001	<	0.001	0.0	< 0.	.002	0.003	0.002	0.001		0.002	13	<		0.001	0.00113	0.0020	<
Perfluorhexansulfonat (PFHxS)	3871-99-6		0.001	0.0015	0.001	0.001	0.001	0.001	0.1		.002	0.002	0.002	0.002	0.002	0.002	13	0.001	0.001	0.002	0.00154	0.002	0.002
6:2 Fluortelomersulfonsäure (6:2 FTS)	27619-97-2	1 3,	0.001	0.0013	0.001	0.001	0.001	0.001	0.0	< 0.	.002	0.002	0.002	0.002	0.002	0.002	13	0.001	0.001	0.002	0.00134	0.002	0.002
Perfluoroctansulfonsäureamid (PFOSA)	754-91-6	μg/l	0.001	<				<		<		<			<	0.002	13		<		<	0.0014	<
Perfluoro-n-heptansulfonat (PFHpS)	21934-50-9	μg/l	0.001	<		<				<	<	<			<	<	13		<				< ■
Perfluordecansulfonat (PFDS)	335-77-3		0.001		<		<	<u> </u>		<	,	<		<u> </u>	<	<u> </u>	13		\$	<		<	<
7H-Dodecafluorheptanoat	335-99-9	1 0	0.001	<	<		<	<u> </u>			<	<		<u> </u>	<	<u> </u>	13		\$	<		<	< ■
2H,2H-Perfluordecanoat		1 3	0.001	<	<	<		<		<	<	<			<	<	13	<	<	· ·	<	<	
Perfluorpentansulfonat (PFPeS)	83-89-6	1 0	0.001	<	· ·	<		· ·		< <	<	<	<		<	<	13	<	<	· ·	<	<	< <u>-</u>
	24500 22 0	μg/l	0.001	<	<	<	<	<		`	<	<	<	<	<	<	13	<	<	<	<	<	
2H,2H,3H,3H-Perfluorundecanoat (OTS)	34598-33-9	1 0		<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	< *	<	< *	
Tetrafluor-2-(heptafluorpropoxy)propanoat (HFPO-DA) (GenX) Nieuwegein	62037-80-3	μg/l	0.01					<		<	<	<	<	<	<	<	8	<			<	^	<
	005 67 1			0.0010	0.0014	0.0014	0.0000	0.0000	0.00	000 00	007	0.000	0.0004	0.0000	0.0001	0.0000	10	0.0014	0.0014	0.0007	0.00000	0.00004	0.0038
Perfluoroctanoat (PFOA)	335-67-1	μg/l		0.0019	0.0014	0.0014	0.0026	0.0026	0.00		027	0.003	0.0034	0.0038	0.0031	0.0029	13	0.0014	0.0014	0.0027	0.00262		
Perfluoroctansulfonat (PFOS)	1763-23-1	μg/l	0.0005	0.00215	0.0033	0.0025	0.0034	0.0069	0.00			0.0048	0.0037	0.0044	0.0039	0.0028	13	0.0012	0.00172	0.0037	0.00385		
Perfluor-1-Butansulfonate linear (PFBS)	375-73-5	1 0	0.0025	0.00457	0.0027	0.0034	0.0084	0.0084	0.00	0.0	059	0.0089	0.017	0.015	0.012	0.013	13	<	<	0.0084	0.00833	0.0162	
Perfluorundecanoat (PFUnA)	2058-94-8	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Perfluorpentanoat (PFPeA)	2706-90-3	1 0	0.005	<	<	<	<	0.0053		<		0.0064	0.0066	0.0061	<	<	13	<	<	<	<	0.0000	0.0066
Perfluor-n-hexansäure (PFHxA)	307-24-4	μg/l	0.0025	<	<	<	<	0.0031	0.00	035 0.0	034	0.0037	0.0044	0.0051	0.0041	0.0041	13	<	<	0.0034	0.0029	0.00482	0.0051
Perfluordecanoat (PFDA)	335-76-2	1 0	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Perfluorbutanoat (PFBA)	375-22-4	1 0	0.005	<	<	<	<	<	0.0	0.0	079	0.0089	0.0073	0.0056	0.006	0.0067	13	<	<	0.0056	<	0.0085	0.0089
Perfluorheptanoat (PFHpA)	375-85-9	1 0	0.0025	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Perfluornonanoat (PFNA)	375-95-1	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Perfluorhexansulfonat (PFHxS)	3871-99-6	1 3,	0.001	<	<	<	<	<		<	<	0.0015	0.001	0.0016	<	0.0012	13	<	<	<	<	0.00156	0.0016
6:2 Fluortelomersulfonsäure (6:2 FTS)	27619-97-2	1 0	0.0025	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrafluor-2-(heptafluorpropoxy)propanoat (HFPO-DA) (GenX)	62037-80-3	μg/l	0.0001	0.000575	<	<	<	<		< 0.00	0011	<	<	<	<	<	13	<	<	<	0.000135	0.000704	0.0011
Nieuwersluis																							
Perfluoroctanoat (PFOA)	335-67-1	μg/l		0.004	0.0031	0.002	0.0027	0.0032	0.00			0.0032	0.0049	0.0038	0.0034	0.0029	13	0.002			0.00336		0.0049
Perfluoroctansulfonat (PFOS)	1763-23-1	μg/l		0.0027	0.0036	0.0028	0.006	0.0057	0.00			0.0038	0.0045	0.0043	0.003	0.0033	13	0.0018	0.0022	0.0038	0.00388		0.006
Perfluor-1-Butansulfonate linear (PFBS)	375-73-5	1 0		0.00365	0.0037	0.0056	0.014	0.007	0.00	055 0.0	054	0.01	0.014	0.013	0.011	0.011	13	0.003	0.00328	0.007	0.00827	0.014	0.014
Perfluorundecanoat (PFUnA)	2058-94-8	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Perfluorpentanoat (PFPeA)	2706-90-3	1 0	0.005	<	<	<	<	0.0061		<		0.0059	0.0063	0.0054	<	<	13	<	<	<	<		0.0063
Perfluor-n-hexansäure (PFHxA)	307-24-4	μg/l	0.0025	<	<	<	0.0025	0.0044	0.00	0.0	038	0.0038	0.0044	0.005	0.0043	0.004	13	<	<	0.0038	0.00314	0.00476	0.005
Perfluordecanoat (PFDA)	335-76-2	1 0	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Perfluorbutanoat (PFBA)	375-22-4	μg/l	0.005	<	<	<	<	<	0.00	055 0.0	053	0.0076	0.0092	0.0054	0.0056	0.0062	13	<	<	0.0053	<	0.00856	0.0092
Perfluorheptanoat (PFHpA)	375-85-9	μg/l	0.0025	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Perfluornonanoat (PFNA)	375-95-1	μg/l	0.001	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Perfluorhexansulfonat (PFHxS)	3871-99-6	μg/l	0.001	<	<	<	<	<		< 0.0	0011	0.0012	0.0012	<	0.0012	0.0014	13	<	<	<	<	0.00132	0.0014
6:2 Fluortelomersulfonsäure (6:2 FTS)	27619-97-2	μg/l	0.0025	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrafluor-2-(heptafluorpropoxy)propanoat (HFPO-DA) (GenX) Andijk	62037-80-3	μg/l	0.0001	0.000615	<	<	0.00012	<		<	< 0	0.00012	0.00016	<	<	<	13	<	<	<	0.000156	0.00068	0.00094
Perfluoroctanoat (PFOA)	335-67-1	μg/l		0.0029	0.0028	0.0018	0.0032	0.0033	0.00	035 0.0	031	0.0033	0.0036	0.003	0.0033	0.0026	13	0.0018	0.00212	0.0032	0.00302	0.00356	0.0036
Perfluoroctansulfonat (PFOS)	1763-23-1	μg/l		0.0024	0.003	0.0038	0.0043	0.0056	0.00			0.0011	0.003	0.0023	0.0024	0.0028	13	0.0011	0.00146	0.003	0.00318		0.0056
Perfluor-1-Butansulfonate linear (PFBS)	375-73-5		0.0025	0.00425	<	0.004	0.0041	0.0057				0.0052	0.0063	0.0084	0.007	0.0083	13	<	<	0.0057	0.00544		0.0084
Perfluorundecanoat (PFUnA)	2058-94-8	μg/l	0.001	< .00120	<	<	<	<	0.50	<	<	<	<	<	<	<	13		<	<	/	<	<
Perfluorpentanoat (PFPeA)	2706-90-3	μg/l	0.001	<	<					<	<	<					13	<				<	<
Perfluor-n-hexansäure (PFHxA)	307-24-4	μg/I	0.003	0.0031		<	0.0035	0.0034	0.00			0.0038	0.0047	0.0053	0.0047	0.0047	13	<	<	0.0038	0.00358	0.00506	0.0053
Totalian in monumounic (FFTTAA)	007-24-4	μ9/1	0.0023	0.0001		`	0.0000	0.0004	0.00	0.0	000	0.0000	3.0047	0.0000	0.0047	3.0041	10		`	0.0000	0.00000	0.00000	3.0033

Perfusion Personal Pe	Industriechemikalien (mit Perfluor-Stoffe)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	. Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Pre-Inter-In	3, ()	005.70.0	//	0.001						_							10						
Preduntamental Physiol 1985 981 2015 0.00 0	,							<											<	-			0.0052
Full Definition (1978) (2014)						<		<	<				0.0003	0.0053					<	·			
Full Definition (1978) (2014)					,	<	`	<	<			`	<	<	<			`	<	`	`		<
Part						-		<	<						< 0.0044				<	`			<
Part	·					-		<	<			•			0.0014				<				
Method M	·				,	`	`	<	,		` `		,		,			`	,				<
Produce contamin PFAID PRODUCE CONTAMIN PAID PRODUCE CONTA		62037-80-3	μg/l	0.0001	0.000375	<	<	0.00018	0.0001		0.00018	0.00016	<	0.00012	0.00011	<	13	<	<	0.00011	0.000142	0.00041	0.00055
Performance plant (PIPS) 193 191 0.00																							
Permonantemanum Firer Fields																							
Purpose paramete Purpose par																							
Pumber			μg/l			0.0048	0.00335	0.0066	0.009	0.00609	0.00455	0.0069	0.0125	0.0125	0.0105	0.0104		0.0014	0.00335	0.00745	0.00757	0.0125	
Perfonde channes (PFAA) 397-404 397-4			μg/l		<	<	<	<	<	<	<	<		<	<	<		<	<	<	<	<	
Part	Perfluorpentanoat (PFPeA)	2706-90-3	μg/l	0.004	<	<	<	<	<	•	<	0.0041	0.00555	0.00545	0.0045	0.00455	24	<	<	<	<	0.00545	
Perfunctional PEPAL 97.54 97.00 0.00	Perfluor-n-hexansäure (PFHxA)	307-24-4	μg/l		0.00153	0.0016	0.0018	0.00255	0.00285	0.003	0.00285	0.00385	0.0045	0.00505	0.0048	0.00525	24	0.0015	0.00155	0.0032	0.00332	0.00505	
Performaniant Performania	Perfluordecanoat (PFDA)	335-76-2	μg/l	0.0005	<	<	<	<	<		<	<	<	<	<	<	24	<	<	<	<	<	
Perfundence product pr	Perfluorbutanoat (PFBA)	375-22-4	μg/l	0.004	<	<	<	<	<	4	0.0079	0.00675	0.00635	0.0054	0.00495	0.00595	24	<	<	0.00455	0.00422	0.0075	0.011
Perfusion programment (PFN-S)	Perfluorheptanoat (PFHpA)	375-85-9	μg/l	0.001	<	<	<	<	0.00125	0.0015	0.0015	0.00175	0.0022	0.0025	0.0024	0.00225	24	<	<	0.0015	0.00154	0.0025	0.0026
Performant	Perfluornonanoat (PFNA)	375-95-1		0.0005	<	<	<	<	<		0.000545	<	<	0.000545	<	<	24	<	<	<	<	0.00056	0.00059
Section Part Section Part Section Part Section Part Pa	· ·				0.000663	0.00091	0.00073	<	0.00078			0.00115			0.0013		24	<	0.000585	0.000855			0.0015
Industrice-benikalies (mit arom. Stickst. Verb. 1000-1000-1000-1000-1000-1000-1000-10	·							<	<						<				<				
Industriechemikaline (mit arom. Stickst. Verb.) Industriechemikaline (mit arom. Stickst. Ver					0.000643	0.00036	0.00042	0.000665	0.00043			0.000175	0.00014	0.000155	0.00016	0.000175		0.00011	0.00013	0.00026	0.000345	0.000665	
Control Cont			10.																				
Pyrate Pyra	Industriechemikalien (mit arom. Stickst. Verb.)																						
Pract Prac																							<u> </u>
Nethylaniin	Pyrazol	288-13-1	μg/l	0.5	1.44	2.51	1.12	1.04	0.579	•	1.59	0.837	<	<	<	<	340	<	<	0.653	0.84	1.7	4.4
Anim 62-53-3 yg 0.03 0.765 0.68 0.1 0.47 0.04 0.04 0.042 0.042 0.045 0.045 0.046 0.046 0.096 0.1 N-Methylaniin 10-61-8 yg 0.03 0.765 0.68 0.1 0.47 0	Pyrazol (Fracht)		g/s		7.66	8.87	2.36	2.26	1	0.833	1.84	0.772	0.268	0.215	0.343	0.685	334	0.183	0.211	0.856	1.82	3.51	12.7
N.Methylanin	Nieuwegein																						
3-Chloradiin																							
2.3.4-Frichloraniin 634-87-3 yg/ 0.03	Anilin	62-53-3	μg/l	0.03	0.0765	0.068	0.1	0.047	<	0.04	<	<	0.042	0.042	<	0.053	13	<	<	0.042	0.0465	0.0996	0.1
2.3.4-Frichloraniin 634-87-3 yg/ 0.03	Anilin N-Methylanilin				0.0765								0.042						< <				✓
2.45-Trichloranilin 634-93-5 µg/l 0.03		100-61-8	μg/l	0.03	<	<	<		<		<	<	<	<	<	<	13	<	< < <	<	<	<	✓
2.45-Trichloranilin 634-93-5 µg/l 0.03	N-Methylanilin	100-61-8 108-42-9	μg/l μg/l	0.03 0.03	< <	< <	< <		< <	•	: <	< <	< <	<	< <	< <	13 13	< <	< < <	< <	< <	< <	< <u>\</u>
2.45-Trichloranilin 634-93-5 µg/l 0.03	N-Methylanilin 3-Chloranilin	100-61-8 108-42-9 608-27-5	μg/l μg/l μg/l	0.03 0.03 0.03	< < <	< < <	< < <		< < <	•	< < <	< < <	< < <	< < <	< < <	< < <	13 13 13	< < <	< < < <	< < <	< < <	< < <	< <u>\</u>
3-Methylanilin	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin	100-61-8 108-42-9 608-27-5 634-67-3	µg/I µg/I µg/I µg/I	0.03 0.03 0.03 0.03	< < <	< < <	< < <		< < <	•	: < : < : < : <	< < <	< < <	< < <	< < <	< < <	13 13 13 13	< < <	< <	< < <	< < <	< < <	<
3-Methylanilin	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6	μg/l μg/l μg/l μg/l μg/l	0.03 0.03 0.03 0.03 0.03	< < < <	< < < <	< < < <		< < < <			< < < <	< < < <	< < < <	< < < <	< < < <	13 13 13 13 13	< < < <	< <	< < < <	< < < <	< < < <	<
N,N-Diethylanilin 103-69-5	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin 2,4,5-Trichloranilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5	μg/l μg/l μg/l μg/l μg/l μg/l	0.03 0.03 0.03 0.03 0.03 0.03	< < < <	< < < <	< < < < < < < < < < < < < < < < < < <		< < < <			< < < <	< < < <	< < < < < <	< < < < < < <	< < < < < < < < < < < < < < < < < < <	13 13 13 13 13 13	< < < < < < < < < < < < < < < < < < <	< <	< < < < < < < < < < < < < < < < < < <	< < < <	< < < < < < <	< N < N < N < N < N < N < N < N < N < N
N-Ethylanilin 103-69-5	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3	µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.03 0.03 0.03 0.03 0.03 0.03	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < <		< < < < < < < < < < < < < < < < < < <			< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	13 13 13 13 13 13 13	< < < < < <	< < < <	< < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< N < N < N < N < N < N < N < N < N < N
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3-Methylanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.03 0.03 0.03 0.03 0.03 0.03 0.03	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		< < < < < < < < < < < < < < < < < < <			< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	13 13 13 13 13 13 13 13	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< N < N < N < N < N < N < N < N < N < N
3,4-Dimethylanilin 95-64-7 µg/l 0.03 <	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3,Methylanilin N,N-Diethylanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		< < < < < < < < < < < < < < < < < < <			< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	13 13 13 13 13 13 13 13 13	< < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	
3,4-Dimethylanilin 95-64-7 µg/l 0.03 <	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin 2,4,6-Trichloranilin 2,4,6-Trichloranilin 3-Methylanilin N,N-Diethylanilin N-Ethylanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		< < < < < < < < < < < < < < < < < < <			< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 13 13 13 13 13</td> <td>< < <</td> <td>< < <</td> <td>< < <</td> <td>< < <</td> <td>< < <</td> <td></td>	13 13 13 13 13 13 13 13 13 13	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	
2,3-Dimethylanilin 87-59-2	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3,4,5-Trichloranilin N,N-Diethylanilin N,Ethylanilin 2,4,6-Trimethylanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <		< < < < < < < < < < < < < < < < < < <			< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 13 13 13 13 13</td> <td>< < <</td> <td>< < <</td> <td>< <!--</td--><td>< < <</td><td>< < <</td><td></td></td>	13 13 13 13 13 13 13 13 13 13	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< </td <td>< < <</td> <td>< < <</td> <td></td>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	
3-Chlor-4-Methylanilin 95-74-9	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3,4,5-Trichloranilin N,N-Diethylanilin N,N-Diethylanilin 2,4,6-Trimethylanilin 2,4,6-Trimethylanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1 95-68-1	+g/l +g/l +g/l +g/l +g/l +g/l +g/l +g/l	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	<td><td><td></td><td>< < <</td><td></td><td></td><td>< < <</td><td><td>< < <</td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13</td><td>< < <</td><td>< < <</td><td>< <!--</td--><td><td>< < <</td><td></td></td></td></td></td></td></td>	<td><td></td><td>< < <</td><td></td><td></td><td>< < <</td><td><td>< < <</td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13</td><td>< < <</td><td>< < <</td><td>< <!--</td--><td><td>< < <</td><td></td></td></td></td></td></td>	<td></td> <td>< < <</td> <td></td> <td></td> <td>< < <</td> <td><td>< < <</td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13</td><td>< < <</td><td>< < <</td><td>< <!--</td--><td><td>< < <</td><td></td></td></td></td></td>		< < < < < < < < < < < < < < < < < < <			< < < < < < < < < < < < < < < < < < <	<td>< < <</td> <td>< < <</td> <td><td>13 13 13 13 13 13 13 13 13 13 13</td><td>< < <</td><td>< < <</td><td>< <!--</td--><td><td>< < <</td><td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 13 13 13 13 13 13</td> <td>< < <</td> <td>< < <</td> <td>< <!--</td--><td><td>< < <</td><td></td></td></td>	13 13 13 13 13 13 13 13 13 13 13	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< </td <td><td>< < <</td><td></td></td>	<td>< < <</td> <td></td>	< < < < < < < < < < < < < < < < < < <	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin 2,4,5-Trichloranilin 3,4,5-Trichloranilin 3,4,5-Trichloranilin 3-Methylanilin N-Ethylanilin N-Ethylanilin 2,4,6-Trimethylanilin 2,4-Dimethylanilin 3,4-Dimethylanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1 95-68-1 95-64-7	Hg/l Hg/l Hg/l Hg/l Hg/l Hg/l Hg/l Hg/l	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	< < < < < < < < < < < < < < < < < < <	<td><td></td><td>< < <</td><td></td><td></td><td><td>< < <</td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td>< <!--</td--><td>< < <</td><td><td>< < <</td><td>< < <</td><td></td></td></td></td></td></td></td>	<td></td> <td>< < <</td> <td></td> <td></td> <td><td>< < <</td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td>< <!--</td--><td>< < <</td><td><td>< < <</td><td>< < <</td><td></td></td></td></td></td></td>		< < < < < < < < < < < < < < < < < < <			<td>< < <</td> <td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td>< <!--</td--><td>< < <</td><td><td>< < <</td><td>< < <</td><td></td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>< < <</td> <td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td>< <!--</td--><td>< < <</td><td><td>< < <</td><td>< < <</td><td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 13 13 13 13 13 13 13</td> <td>< <!--</td--><td>< < <</td><td><td>< < <</td><td>< < <</td><td></td></td></td>	13 13 13 13 13 13 13 13 13 13 13 13	< </td <td>< < <</td> <td><td>< < <</td><td>< < <</td><td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>< < <</td> <td>< < <</td> <td></td>	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	
2-Nitroanilin 88-74-4 µg/l 0.03 <	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3,4-Direthylanilin N,N-Diethylanilin 2,4,6-Trimethylanilin 2,4-Dimethylanilin 3,4-Dimethylanilin 2,3-Dimethylanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1 95-68-1 87-59-2	Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	< < < < < < < < < < < < < < < < < < <	<td></td> <td></td> <td><td></td><td></td><td><td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td></td></td></td></td></td></td></td></td></td>			<td></td> <td></td> <td><td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td></td></td></td></td></td></td></td></td>			<td><td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td></td></td></td></td></td></td></td>	<td><td>< < <</td><td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td></td></td></td></td></td></td>	<td>< < <</td> <td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td><td>< < <</td><td><td><td>< < <</td><td></td></td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>13 13 13 13 13 13 13 13 13 13 13 13</td> <td><td>< < <</td><td><td><td>< < <</td><td></td></td></td></td>	13 13 13 13 13 13 13 13 13 13 13 13	<td>< < <</td> <td><td><td>< < <</td><td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><td>< < <</td><td></td></td>	<td>< < <</td> <td></td>	< < < < < < < < < < < < < < < < < < <	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,3,4-Trichloranilin 2,4,5-Trichloranilin 3,4,5-Trichloranilin 3,4,5-Trichloranilin 3-Methylanilin N,N-Diethylanilin N,N-Diethylanilin 2,4,6-Trimethylanilin 2,4-Dimethylanilin 3,4-Dimethylanilin 3,4-Dimethylanilin 2,3-Dimethylanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1 95-68-1 95-64-7 87-59-2 95-74-9	+9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	<td><td></td><td></td><td><td></td><td></td><td><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< < <</td><td></td></td></td></td></td></td></td></td></td></td></td>	<td></td> <td></td> <td><td></td><td></td><td><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< < <</td><td></td></td></td></td></td></td></td></td></td></td>			<td></td> <td></td> <td><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< < <</td><td></td></td></td></td></td></td></td></td></td>			<td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< < <</td><td></td></td></td></td></td></td></td></td>	<td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< < <</td><td></td></td></td></td></td></td></td>	<td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< < <</td><td></td></td></td></td></td></td>	<td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< < <</td><td></td></td></td></td></td>	<td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td></td><td><td><td>< < <</td><td></td></td></td></td>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td></td> <td><td><td>< < <</td><td></td></td></td>		<td><td>< < <</td><td></td></td>	<td>< < <</td> <td></td>	< < < < < < < < < < < < < < < < < < <	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,4,5-Trichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3-Methylanilin N,N-Diethylanilin N-Ethylanilin 1,4-Frimethylanilin 2,4-Dimethylanilin 2,3-Dimethylanilin 2,3-Dimethylanilin 3-Chlor-4-Methylanilin 4-Methoxy-2-Nitroanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1 95-68-1 95-64-7 87-59-2 95-74-9 96-96-8	+9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	<td><td></td><td></td><td><td></td><td></td><td><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td><td></td></td></td></td></td></td></td></td></td></td></td></td>	<td></td> <td></td> <td><td></td><td></td><td><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td><td></td></td></td></td></td></td></td></td></td></td></td>			<td></td> <td></td> <td><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td><td></td></td></td></td></td></td></td></td></td></td>			<td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td><td></td></td></td></td></td></td></td></td></td>	<td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td><td></td></td></td></td></td></td></td></td>	<td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td><td></td></td></td></td></td></td></td>	<td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td><td></td></td></td></td></td></td>	<td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td></td><td><td><td><td></td></td></td></td></td>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td></td> <td><td><td><td></td></td></td></td>		<td><td><td></td></td></td>	<td><td></td></td>	<td></td>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3,4-Diethylanilin N,N-Diethylanilin N-Ethylanilin 2,4,6-Trimethylanilin 2,4-Dimethylanilin 3,4-Dimethylanilin 3,4-Dimethylanilin 3,4-Dimethylanilin 3,Chlor-4-Methylanilin 4-Methoxy-2-Nitroanilin 2-Nitroanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1 95-68-1 95-64-7 87-59-2 95-74-9 96-96-8 88-74-4	+9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	<td><td></td><td></td><td>< <!--</td--><td></td><td></td><td><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< <!--</td--><td></td></td></td></td></td></td></td></td></td></td></td></td>	<td></td> <td></td> <td>< <!--</td--><td></td><td></td><td><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< <!--</td--><td></td></td></td></td></td></td></td></td></td></td></td>			< </td <td></td> <td></td> <td><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< <!--</td--><td></td></td></td></td></td></td></td></td></td></td>			<td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< <!--</td--><td></td></td></td></td></td></td></td></td></td>	<td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< <!--</td--><td></td></td></td></td></td></td></td></td>	<td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< <!--</td--><td></td></td></td></td></td></td></td>	<td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td><td><td>< <!--</td--><td></td></td></td></td></td></td>	<td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td></td><td><td><td>< <!--</td--><td></td></td></td></td></td>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td></td> <td><td><td>< <!--</td--><td></td></td></td></td>		<td><td>< <!--</td--><td></td></td></td>	<td>< <!--</td--><td></td></td>	< </td <td></td>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3-Methylanilin N,N-Diethylanilin N,P-Ethylanilin N-Ethylanilin 2,4,6-Trimethylanilin 2,4-Dimethylanilin 3,4-Dimethylanilin 2,3-Dimethylanilin 2,3-Dimethylanilin 2,3-Dimethylanilin 2,3-Dimethylanilin 2,3-Dimethylanilin 3,4-Nitroanilin 3-Nitroanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1 95-68-7 95-64-7 87-59-2 95-74-9 96-96-8 88-74-4	+9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	<td><td></td><td></td><td>< <!--</td--><td></td><td></td><td>< <!--</td--><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td></td></td>	<td></td> <td></td> <td>< <!--</td--><td></td><td></td><td>< <!--</td--><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td></td>			< </td <td></td> <td></td> <td>< <!--</td--><td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td>			< </td <td><td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td>	<td><td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td>	<td><td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td>	<td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td>	<td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td></td><td></td><td><td><td></td></td></td></td>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td></td> <td></td> <td><td><td></td></td></td>			<td><td></td></td>	<td></td>	
2,4-und 2,5-Dichloranilin	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3,4,5-Trichloranilin 3,4-Diethylanilin N-Diethylanilin N-Ethylanilin 2,4,6-Trimethylanilin 2,4-Dimethylanilin 2,3-Dimethylanilin 2,3-Dimethylanilin 3-Chlor-4-Methylanilin 3-Chlor-4-Methylanilin 3-Nitroanilin 3-Nitroanilin 3-Nitroanilin 3-Nitroanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1 95-68-7 95-64-7 87-59-2 95-74-9 96-96-8 88-74-4	+9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	<td><td></td><td></td><td><td></td><td></td><td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td></td>	<td></td> <td></td> <td><td></td><td></td><td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td>			<td></td> <td></td> <td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td>			<td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td>	<td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td>	<td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td>	<td></td> <td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td></td><td></td><td><td><td></td></td></td></td>		13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td></td> <td></td> <td><td><td></td></td></td>			<td><td></td></td>	<td></td>	
2-Methoxyanilin 90-04-0 ug// 0.03 < < < < < < < < < < < < < < < < < < <	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3,4,5-Trichloranilin 3,4-Direthylanilin N-Ethylanilin N-Ethylanilin 2,4,6-Trimethylanilin 2,4-Dimethylanilin 3,4-Dimethylanilin 3,4-Dimethylanilin 2,3-Dimethylanilin 3-Chlor-4-Methylanilin 4-Methoxy-2-Nitroanilin 2-Nitroanilin 3-Nitroanilin 3-Nitroanilin 2-(Phenylsulphon)Anilin 4- und 5-Chlor-2-Methylanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1 95-68-1 95-64-7 87-59-2 95-74-9 96-96-8 88-74-4 99-09-2 4273-98-7	+9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	<td><td></td><td></td><td><td></td><td></td><td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td></td>	<td></td> <td></td> <td><td></td><td></td><td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td>			<td></td> <td></td> <td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td>			<td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td>	<td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td>	<td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td>	<td></td> <td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td></td><td></td><td><td><td></td></td></td></td>		13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td></td> <td></td> <td><td><td></td></td></td>			<td><td></td></td>	<td></td>	
2-Methoxyanilin 90-04-0 μg/l 0.03 < < < < < < < < < < < < < < < < < < <	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3,4,5-Trichloranilin N,N-Diethylanilin N,N-Diethylanilin N,C-Ethylanilin 2,4,6-Trimethylanilin 2,4-Dimethylanilin 2,4-Dimethylanilin 3,4-Dimethylanilin 3,4-Dimethylanilin 3,-Chlor-4-Methylanilin 4-Methoxy-2-Nitroanilin 2-Nitroanilin 3-Nitroanilin 2-(Phenylsulphon)Anilin 4- und 5-Chlor-2-Methylanilin N,N-Dimethylanilin (DMA)	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-44-1 91-66-7 103-69-5 88-05-1 95-68-1 95-64-7 87-59-2 95-74-9 96-96-8 88-74-4 99-09-2 4273-98-7	+9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	<td><td></td><td></td><td><td></td><td></td><td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td>< <!--</td--><td></td></td></td></td></td></td></td></td></td></td>	<td></td> <td></td> <td><td></td><td></td><td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td>< <!--</td--><td></td></td></td></td></td></td></td></td></td>			<td></td> <td></td> <td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td>< <!--</td--><td></td></td></td></td></td></td></td></td>			<td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td>< <!--</td--><td></td></td></td></td></td></td></td>	<td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td>< <!--</td--><td></td></td></td></td></td></td>	<td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td>< <!--</td--><td></td></td></td></td></td>	<td></td> <td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td></td><td></td><td><td>< <!--</td--><td></td></td></td></td>		13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td></td> <td></td> <td><td>< <!--</td--><td></td></td></td>			<td>< <!--</td--><td></td></td>	< </td <td></td>	
2- und 4-Methylanilin μg/l 0.03 < < < < < < < < < < < < < 0.032 13 < < < < 0.032 💆	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,4,5-Trichloranilin 2,4,6-Trichloranilin 3,4,5-Trichloranilin 3,4,5-Trichloranilin 3,4-Trichloranilin N-Ethylanilin N-Ethylanilin 2,4,6-Trimethylanilin 2,4-Dimethylanilin 3,4-Dimethylanilin 3,4-Dimethylanilin 3,-Dimethylanilin 3-Chlor-4-Methylanilin 4-Methoxy-2-Nitroanilin 2-Nitroanilin 3-Nitroanilin 2-(Phenysulphon)Anilin 4- und 5-Chlor-2-Methylanilin N,N-Dimethylanilin (DMA) 2,4- und 2,5-Dichloranilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-64-7 103-69-5 88-05-1 95-68-1 95-64-7 87-59-2 95-74-9 96-96-8 88-74-4 99-09-2 4273-98-7	+9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	<td><td></td><td></td><td><td></td><td></td><td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td></td>	<td></td> <td></td> <td><td></td><td></td><td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td>			<td></td> <td></td> <td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td>			<td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td>	<td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td>	<td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td>	<td></td> <td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td></td><td></td><td><td><td></td></td></td></td>		13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td></td> <td></td> <td><td><td></td></td></td>			<td><td></td></td>	<td></td>	
	N-Methylanilin 3-Chloranilin 2,3-Dichloranilin 2,4,5-Trichloranilin 2,4,5-Trichloranilin 2,4,5-Trichloranilin 3,4,5-Trichloranilin 3-Methylanilin N,N-Diethylanilin N,N-Diethylanilin N-Ethylanilin 2,4-Dimethylanilin 2,4-Dimethylanilin 2,3-Dimethylanilin 3-Chlor-4-Methylanilin 3-Chlor-4-Methylanilin 2-Nitroanilin 3-Nitroanilin 3-Nitroanilin 1-Uphenylsulphon)Anilin 1-Uphenylsulphon)Anilin 1-Uphenylsulphon (DMA) 2,4- und 2,5-Dichloranilin 2-Methoxyanilin 2-Methoxyanilin	100-61-8 108-42-9 608-27-5 634-67-3 636-30-6 634-93-5 634-91-3 108-64-7 103-69-5 88-05-1 95-68-1 95-64-7 87-59-2 95-74-9 96-96-8 88-74-4 99-09-2 4273-98-7	+9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1 +9/1	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	<td><td></td><td></td><td><td></td><td></td><td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td></td>	<td></td> <td></td> <td><td></td><td></td><td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td></td>			<td></td> <td></td> <td><td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td></td>			<td><td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td></td>	<td><td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td></td>	<td><td></td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><td></td><td></td><td><td><td></td></td></td></td></td>	<td></td> <td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><td></td><td></td><td><td><td></td></td></td></td>		13 13 13 13 13 13 13 13 13 13 13 13 13 1	<td></td> <td></td> <td><td><td></td></td></td>			<td><td></td></td>	<td></td>	

Industriechemikalien (mit arom. Stickst. Verb.) Nieuwegein (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Ju	ın. Jul	. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
2-(Trifluormethyl)Anilin	88-17-5	μg/l	0.03	<	<	<	<	<		< <	: <	<	<	<	<	13	<	<	<	<	<	<
2,5- und 3,5-Dimethylanilin	00 17 3	μg/l	0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	<
2,4,5-Trimethylanilin	137-17-7		0.03	<	<	<	<	<		< <		<	<	<	<	13	<		<	<	<	<
Pyrazol	288-13-1	10.	0.03	1.4	2.8	2	0.97	0.83	0.1			0.73	0.42	0.32	0.47	13	0.3	0.308	0.73	0.973	2.48	2.8
Pyrazol (Fracht)	200-13-1			1.4	1.57	0.492	0.392	0.03	0.2			0.73	0.0042	0.0032	0.47	12	0.003	0.00306	0.73	0.375	1.49	1.57
	100 40 1	g/s	0.00				0.392											0.00300				
4-Bromoanilin 2-Chloranilin	106-40-1 95-51-2	10.	0.03	<	<	<	<	<		< <		<	<	<	<	13 13	<	<	<	<	<	< <u></u>
4-Chloranilin		1 0	0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	<
	106-47-8	1 3,		<	<	<	<	<		< <	`	<	<	<	<		<	<	<	<	<	<
2,6-Dichloranilin	608-31-1		0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	< >
3,4-Dichloranilin	95-76-1	1 0	0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	< >
3,5-Dichloranilin	626-43-7	1 0	0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	<
2,6-Diethylanilin	579-66-8		0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	< <u>></u>
2,6-Dimethylanilin	87-62-7	μg/l	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																						
Anilin	62-53-3	10.	0.03	<		0.035	<	<		< <		<	<	<	<	13	<	<	<		0.0368	0.038
N-Methylanilin	100-61-8	1 0	0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	<
3-Chloranilin	108-42-9		0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	< =
2,3-Dichloranilin	608-27-5		0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
2,3,4-Trichloranilin	634-67-3	μg/l	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
2,4,5-Trichloranilin	636-30-6	1 0.	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
2,4,6-Trichloranilin	634-93-5	μg/l	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
3,4,5-Trichloranilin	634-91-3	μg/l	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
3-Methylanilin	108-44-1	μg/l	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
N,N-Diethylanilin	91-66-7	μg/l	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
N-Ethylanilin	103-69-5	μg/l	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
2,4,6-Trimethylanilin	88-05-1		0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
2,4-Dimethylanilin	95-68-1		0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
3,4-Dimethylanilin	95-64-7		0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
2,3-Dimethylanilin	87-59-2	1 0.	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
3-Chlor-4-Methylanilin	95-74-9	1 0.	0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	<
4-Methoxy-2-Nitroanilin	96-96-8	1 0.	0.03	<	<	<		<		< <	<	<	<	<	<	13	<	<	<	<	<	< = < >
2-Nitroanilin	88-74-4	1 0.	0.03			<	ì	<		< <						13	<	<	<	<	<	<
3-Nitroanilin	99-09-2	1 3,	0.03	<	<	<	-	<		< <		<	<	<	<	13	<	2	<	<	<	< ▶
2-(Phenylsulphon)Anilin	4273-98-7	1 0.	0.03	<	<	<		<		< <		<		<	<	13		<	<	<	<	< ▶
4- und 5-Chlor-2-Methylanilin	4270 30 7	μg/l	0.03	<	<	<		<		< <		<	<	<	<	13	<	<	<	<	<	< >
N,N-Dimethylanilin (DMA)	121-69-7		0.03	<	<	<				< <		<		<	<	13	<		<	<	<	<
2,4- und 2,5-Dichloranilin	121-03-7	1 0	0.03	<	<	<		<		< <		<			<	13	<	<	<	<	<	<
2-Methoxyanilin	90-04-0	μg/l	0.03	<	<	<				< <		<	<	< <	<	13	<		<	<	<	<
2- und 4-Methylanilin	30-04-0	1 0	0.03		<			<						<		13	<			<	<	<
2- und 4-Metnylanılın 2-(Trifluormethyl)Anilin	88-17-5	μg/l	0.03	<	`	<	<	`		•		<	<	`	<	13	`	<	<	`	`	< <u>\</u>
2-(TrituormetnyI)Aniin 2,5- und 3,5-Dimethylanilin	00-17-5	1 0	0.03	<	<	<	<	<		< <		<	<	<	< <	13	<	<	<	<	<	< <u>\</u>
	107 17 7	μg/l		<	<	<	<	<		< <		<	<	<			<	<	<	<		< 2
2,4,5-Trimethylanilin	137-17-7	10.	0.03	< 0.45	< 0.77	< 1.0	< 1.0	< 0.00		< <		<	> 0.07	< 0.07	< .	13	< 0.07	<	<	< 0.007	< 1.0	1.2
Pyrazol A Boomanniilia	288-13-1		0.00	0.45	0.77	1.2	1.2	0.98	0.1			0.79	0.67	0.37	0.54	13	0.37	0.402	0.79	0.807	1.2	1.2
4-Bromoanilin	106-40-1		0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	< <u></u>
2-Chloranilin	95-51-2	1 0	0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	< ≥
4-Chloranilin	106-47-8	10.	0.03	<	<	<	<	<		< <		<	<	<	<	13	<	<	<	<	<	<
2,6-Dichloranilin	608-31-1		0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
3,4-Dichloranilin	95-76-1	1 0	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	< <u>></u>
3,5-Dichloranilin	626-43-7		0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
2,6-Diethylanilin	579-66-8	1 3	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	< <u>></u>
2,6-Dimethylanilin	87-62-7	μg/l	0.03	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<

Industriechemikalien (mit arom. Stickst. Verb.) Haringvliet	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	 Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Anilin	62-53-3	μg/l	0.03	0.0395		0.074	<		<	<	<	<	0.043	<	0.05	12	<	<	<	0.0311	0.071	0.074
N-Methylanilin	100-61-8	1 0	0.03	<		<	<		<	<	<		<	<	<	12	<	<		0.0011 <	<	<
3-Chloranilin	108-42-9	1 0	0.03	<		<	<		<	<	<				<	12	<	<	<	<	<	<
2,3-Dichloranilin	608-27-5	1 0	0.03	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
2,3,4-Trichloranilin	634-67-3		0.03	<		<	<			<	<					12	<	<	<	<	<	<
2,4,5-Trichloranilin	636-30-6	1 0	0.03							<		,		,	,	12	<					<
2,4,6-Trichloranilin	634-93-5		0.03	<		<	<			<		,		<		12	<			<		< ■
3.4.5-Trichloranilin	634-91-3		0.03			<				<	<					12	<	<		<	<	<
3-Methylanilin	108-44-1	1 3,	0.03	<		<	<			<	<	,				12	<	<		<	<	< ■
N,N-Diethylanilin	91-66-7	μg/l	0.03	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< ■
N-Ethylanilin	103-69-5		0.03			<	<		<	<	<					12	<	<		<	<	<
2,4,6-Trimethylanilin	88-05-1	1 0	0.03	<		<	<		<	<	<	,	2	<	<	12	<	<	,	<	<	< ■
2,4-Dimethylanilin	95-68-1		0.03	<		<	<		<	<	<		2	<	<	12	<	<	,	<	<	⟨ ■
3,4-Dimethylanilin	95-64-7	μg/l	0.03	<		<	<		<	<	<	<	2	<	<	12	<	<	,	<	<	< ■
2,3-Dimethylanilin	87-59-2		0.03	<		<	,		<		<	,	2	<		12	<		,	<		< ■
3-Chlor-4-Methylanilin	95-74-9	1 0	0.03	<		<	<		<	<	<		<	<	<	12	<	<		<	<	< ■
4-Methoxy-2-Nitroanilin	96-96-8	1 0	0.03	<		<			<	<	<			<	<	12	<	<		<	<	< ■
2-Nitroanilin	88-74-4	1 0	0.03	<					<		<			<		12	<			<		⟨ ■
3-Nitroanilin	99-09-2	1 0	0.03	<		<			<	<	<	<		<	<	12	<	<		<	<	< ■
2-(Phenylsulphon)Anilin	4273-98-7		0.03	<		<	<		<	<	<			<	<	12	<	<		<	<	⟨ ■
4- und 5-Chlor-2-Methylanilin	4273-30-7	μg/I	0.03	<		<	<		<	<	<			<	<	12	<	<		<		< ■
N,N-Dimethylanilin (DMA)	121-69-7		0.03	<		<			<	<	<			<	<	12	<	<		<	<	< ■
2,4- und 2,5-Dichloranilin	121-03-7	10	0.03				<		<	<	<	<	<	<		12	<	<		<	<	< ■
2-Methoxyanilin	90-04-0	μg/l	0.03	<		<	<		<	<			<		<	12	<	<	<		-	<
2- und 4-Methylanilin	30-04-0	1 0.	0.03				<			`	<		<	<	0.053	12	`	,	<	< <	0.0416	0.053
2-(Trifluormethyl)Anilin	88-17-5	μg/l	0.03	<		<	<		<	<	<	<	<			12	<	<	<			0.000
2,5- und 3,5-Dimethylanilin	00-17-3	1 0.	0.03	<		<	<		<	<	<	<	<	<	<	12	< <	<	<	<	<	< ■
2,4,5-Trimethylanilin	137-17-7	μg/l	0.03	<		`	<		<	<	<	<	<	<	<	12	`	<	<	<	<	
Pyrazol	288-13-1	1 0	0.03	0.837	2.5	1.14	0.87	0.955	< <	0.635	1.5	1.03	<	<	<	24	< <	<	0.705	0.834	1.7	2.5
4-Bromoanilin	106-40-1		0.03		2.5		0.07	0.900				1.03	<	<	<			<	0.705	0.034		
2-Chloranilin	95-51-2	μg/l	0.03	<		<	<		<	<	<	<	<	<	<	12 12	<	<	<	<	<	
4-Chloranilin		1 0.		<		<	<		<	<	<	<	<	<	<		<	<	<	<	<	
	106-47-8	1 0	0.03	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	
2,6-Dichloranilin 3.4-Dichloranilin	608-31-1	μg/l	0.03	<		<	<		<	<	<	<	<	<	<	12 12	<	<	<	<	<	<
	95-76-1	μg/l	0.03	<		<	<		<	<	<	<	<	<	<		<	<	<	<	<	<
3,5-Dichloranilin	626-43-7		0.03	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
2,6-Diethylanilin	579-66-8	1 0	0.03	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< <u>-</u>
2,6-Dimethylanilin	87-62-7	μg/l	0.03	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Industriechemikalien (mit Conazolen)																						
Lobith																						
Benzotriazol	95-14-7	μg/l		0.385	0.51	0.61	0.64	0.61	0.57	0.83	1	0.78	0.73	1.4	1.2	13	0.3	0.368	0.64	0.742	1.32	1.4
Nieuwegein																						
Benzotriazol	95-14-7	μg/l		0.386	0.388	0.578	0.552	0.583	0.623	0.53	0.69	0.825	0.816	0.84	0.972	53	0.26	0.396	0.61	0.649	0.944	1.1
Nieuwersluis																						
Benzotriazol	95-14-7	μg/l		0.445	0.4	0.64	0.56	0.73	0.68	0.59	0.83	0.94	0.97	0.89	1	13	0.34	0.364	0.68	0.702	0.988	1 😑
Andijk		1 3,																				
Benzotriazol	95-14-7	μg/l		0.4	0.31	0.35	0.34	0.41	0.46	0.37	0.36	0.39	0.44	0.45	0.49	13	0.31	0.314	0.39	0.398	0.486	0.49
Haringvliet		ra,		0.1	0.01	3.00	3.07													2.500		
Benzotriazol	95-14-7	μg/l		0.2		0.37	0.24		0.265	0.33	0.32	0.61	0.76	0.72	0.93	12	0.17	0.188	0.325	0.434	0.879	0.93
5,6-Dimethyl-1H-benzotriazol	4184-79-6		0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	< .0.07	<
5-Chlor-1H-benzotriazol	17422-32-1	μg/I	0.01	<		<	<		<	<		<	<	~	<	12	<	<	<	<	<	< <u>-</u>
o omo santotriator	17 122 32 1	P9/1	0.01	`		`	`		ì	ì	`	ì	ì	`	`	12	`	,	ì	`	`	

Industriechemikalien (mit arom. Kohlenw. Stoffe)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jι	l. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pik
Lobith Chlorbenzen	108-90-7	ua/l	0.01	<	,			<	,		< <	<			<	13		<			<	<
2-Chlormethylbenzen		1 0	0.01		<	<	<		<				<	<		13	<		<	<		< = < =
	95-49-8			<	<	<	<	<	<		< <	<	<	<	<		<	<	<	<	<	\ <u> </u>
3-Chlormethylbenzen	108-41-8	1 0	0.5	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Pentachlorbenzen	608-93-5	μg/l	0.00002	0.00005							< 0.00005	0.00009	0.00009	0.00012	0.00009	7	<	*	* 0.	0000714	*	0.00012
Nieuwegein																						يبسط
Chlorbenzen	108-90-7	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	< = < = < =
2-Chlormethylbenzen	95-49-8	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
3-Chlormethylbenzen	108-41-8	μg/l	0.5	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Pentachlorbenzen	608-93-5		0.02	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1-Methyl-4-isopropylbenzen	99-87-6		0.03	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis		F 3/ ·																				
Chlorbenzen	108-90-7	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
2-Chlormethylbenzen	95-49-8		0.01	<	<			<	` ` ` · · · · · · · · · · · · · · · · ·		< <	<		<	<	13	<	<		<	<	<
,						ζ.	`						`				-		<			
3-Chlormethylbenzen	108-41-8		0.5	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Pentachlorbenzen	608-93-5	1 0	0.02	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	< E
1-Methyl-4-isopropylbenzen	99-87-6	μg/l	0.03	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Andijk																						
Chlorbenzen	108-90-7	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
2-Chlormethylbenzen	95-49-8	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	< ≥
3-Chlormethylbenzen	108-41-8	μg/l	0.5	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Pentachlorbenzen	608-93-5		0.02		<			<			<			<		4	<	*	*	<	*	<
1-Methyl-4-isopropylbenzen	99-87-6		0.03	<	<	<	<	<	<		< <	<		<	<	13	<	<	,	<	<	<
Haringvliet	33 07 0	μ9/1	0.00						,		` `					10						
Chlorbenzen	108-90-7	ua/l	0.05								, ,					17	,					, E
		1 0	0.05	<		<	<		<		< <	<	<	<	<		<	<	<	<	<	<
2-Chlormethylbenzen	95-49-8	1 3,	0.05	<		<	<		<		< <	<	<	<	<	17	<	<	<	<	<	<
3-Chlormethylbenzen	108-41-8	1 0	0.5	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	< = < = < =
Pentachlorbenzen	608-93-5	1 0	0.02	<		<	<		<		< <	<	<	<	<	16	<	<	<	<	<	<
1-Methyl-4-isopropylbenzen	99-87-6	μg/l	0.05	<		<	<		<		< <	<	<	<	<	17	<	<	<	<	<	<
Industriechemikalien (mit fl. halog. Kohlenw. St.)																						
Lobith																						
	74.05.0		0.01													10						
Dibrommethan	74-95-3	1 0	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,1-Dichlorethan	75-34-3	1 0	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,1-Dichlorethen	75-35-4	1 0	0.05	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	< = < = < =
Hexachlorethan	67-72-1	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,1,1-Trichlorethan	71-55-6	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,1,2-Trichlorethan	79-00-5	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,2,3-Trichlorbenzen	87-61-6		0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	< = < = < =
1,2,4-Trichlorbenzen	120-82-1	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,3,5-Trichlorbenzen	108-70-3		0.05	<	<	<		<	` ` ` · · · · · · · · · · · · · · · · ·		< <	<		<	<	13	<	<		<	<) =
Chlorethylen (Vinylchlorid)	75-01-4	1 0	0.05	<	-	<		<						<	<	13	<	<			<	
1,3-Dichlorpropan	142-28-9		0.05		<		<	<	<			<				13				<		< = < = < =
Nieuwegein	142-20-9	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	< <u></u>
	74.05.0		0.01													10						
Dibrommethan	74-95-3		0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,1-Dichlorethan	75-34-3	1 0	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,1-Dichlorethen	75-35-4	1 0	0.05	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Hexachlorethan	67-72-1	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,1,1-Trichlorethan	71-55-6	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,1,2-Trichlorethan	79-00-5		0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,2,3,4-Tetrachlorbenzen	634-66-2		0.01	<		<	<		· · · · · · · · · · · · · · · · · · ·		< <		<		<	13	<		<	<	<	<
1.2.4.5-Tetrachlorbenzen	95-94-3	1 0	0.01	<	<	~	<	<	<		< <	<		<	<	13	<	<		<	<	< = < = < =
1,2,7,3-16114011101111111111	33-34-3	1 3		<	<	<		<	· ·		(<		(((-	\
1,2,3-Trichlorbenzen	87-61-6	μg/l	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<		<	<	<

Industriechemikalien (mit fl. halog. Kohlenw. St.)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein (Fortsetzung) 1.2.4-Trichlorbenzen	120-82-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
1,3,5-Trichlorbenzen	108-70-3		0.01							<			<			13	<		<			
		μg/l		<	<	<	<	<	<		<	<		<	<			<		<	<	
Chlorethylen (Vinylchlorid)	75-01-4	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = < = < =
1,3-Dichlorpropan Nieuwersluis	142-28-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u></u>
	74-95-3	/1	0.01													13						. =
Dibrommethan		μg/l		<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1-Dichlorethan	75-34-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	
1,1-Dichlorethen	75-35-4	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Hexachlorethan	67-72-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,1-Trichlorethan	71-55-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,2-Trichlorethan	79-00-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = < =
1,2,3,4-Tetrachlorbenzen	634-66-2	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,4,5-Tetrachlorbenzen	95-94-3	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,3-Trichlorbenzen	87-61-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,4-Trichlorbenzen	120-82-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	0.01	<	<	13	<	<	<	<	<	0.01
1,3,5-Trichlorbenzen	108-70-3	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorethylen (Vinylchlorid)	75-01-4	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3-Dichlorpropan	142-28-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
Andijk																						
Dibrommethan	74-95-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1-Dichlorethan	75-34-3	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1-Dichlorethen	75-35-4	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Hexachlorethan	67-72-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,1,1-Trichlorethan	71-55-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = < >
1,1,2-Trichlorethan	79-00-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,3,4-Tetrachlorbenzen	634-66-2	μg/l	0.01		<			<			<			<		4	<	*	*	<	*	<
1,2,4,5-Tetrachlorbenzen	95-94-3	μg/l	0.02		<			<			<			<		4	<	*	*	<	*	
1,2,3-Trichlorbenzen	87-61-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2,4-Trichlorbenzen	120-82-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = < =
1,3,5-Trichlorbenzen	108-70-3	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorethylen (Vinylchlorid)	75-01-4	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,3-Dichlorpropan	142-28-9	μg/l	0.01	,		<				,		_		,		13	_	,	,		<	< = < = < = < = < = < = < = < = < = < =
Haringvliet	112 20 0	P 9/ 1	0.01	·	`	`	`		•				`		`			·	`	`		
Dibrommethan	74-95-3	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	(=
1,1-Dichlorethan	75-34-3	μg/l	0.05	<		<			<	2	~		~		<	17			2		<	
1,1-Dichlorethen	75-35-4	μg/l	0.05	<		<			<	<	<		<	<	<	17	<		<	<	<	
1,1-Dichlorpropan	78-99-9	μg/I	0.05	`		`			<	~		<		<	<	14	<	~		<	<	
Hexachlorethan	67-72-1	μg/I	0.03	<						<		<	<	<	<	13		~		<	<	
1,1,1-Trichlorethan	71-55-6		0.01			<									<	17	`		<		<	
1,1,2-Trichlorethan	79-00-5	μg/l	0.05	<		<	<		<	<	<	\$	<	<		17	<		<u> </u>	<	<	<
		μg/l		<		<	<			<	<	<	<	<	<	14	<		<	<		
1,1,2-Trichlorpropan	598-77-6	μg/l	0.05				<		<	<	<	<	<	<	<		<	<	<	<	<	
1,2,2-Trichlorpropan	3175-23-3	μg/l	0.05				<		<	<	<	<	<	<	<	14	<	<	<	<	<	<
1,2,3-Trichlorbenzen	87-61-6	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	< <u>=</u>
1,2,4-Trichlorbenzen	120-82-1	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
1,3,5-Trichlorbenzen	108-70-3	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
1-Chlorpentan	543-59-9	μg/l	0.1				<		<	<	<	<	<	<	<	14	<	<	<	<	<	<
Chlorethylen (Vinylchlorid)	75-01-4	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
2,3-Dichlor-1-propen	78-88-6	μg/l	0.05				<		<	<	<	<	<	<	<	14	<	<	<	<	<	<
1,1,2-Tribromethan	78-74-0	μg/l	0.05				<		<	<	<	<	<	<	<	14	<	<	<	<	<	<
1,2-Dibromethan	106-93-4	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
1,1,2-Trichlor-1,2,2-trifluoroethan (Freon 113)	76-13-1	μg/l	0.05				<		<	<	<	<	<	<	<	14	<	<	<	<	<	<
1,3-Dichlorpropan	142-28-9	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<

Industriechemikalien (mit halog. Säure)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Ju	un. J	ul. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Trifluoracetat (TFA)	76-05-1	μg/l		0.905	1.1	1.9	1.2	2.1	1	1.1	1.1 1.3	1.4	0.85	1.1	1.1	13	0.84	0.844	1.1	1.24	2.02	2.1
Trifluoracetat (TFA) (Fracht)	70 00 1	g/s		4.45	2.35	3.83	2.28	4.15			.22 1.24	1.39	0.756	0.93	1.13	13	0.756	0.826	2.28	2.34	4.48	4.59
Nieuwegein		3,																				
Tetrachlorortho-Phtalsäure	632-58-6	μg/l	0.02	<	<	<	<	<		<	< <	<	0.028	<	0.026	52	<	<	<	<	0.03	0.05
Trifluoracetat (TFA)	76-05-1	1 0.		0.89	1.1	1.6	1.3	1.9		1.4	1 1.1	1.1	1.1	1.1	1.1	13	0.87	0.886	1.1	1.2	1.78	1.9
Trifluoracetat (TFA) (Fracht)		g/s		0.826	0.473	0.411	0.136	0.373	0.48	188 0.	.01 0.0431	0.0224	0.011	0.011	0.011	13	0.01	0.0104	0.136	0.28	0.878	1.09
Monochloressigsäure	79-11-8		0.5	<	<	<	<	<		<	< <	<	<	<	<	52	<	<	<	<	<	<
Dichloressigsäure	79-43-6	10.	0.02	0.048	<	0.0525	<	0.0375		<	< <	0.045	0.028	<	0.025	50	<	<	<	0.0256	0.069	0.1
Monobromessigsäure	79-08-3		0.06	<	<	<	<	<		<	< <	<	<	<	<	52	<	<	<	<	<	0.1
Dibromessigsäure	631-64-1		0.06	<	<	<	<	<		<	< <	<	<	<	<	52	<	<	<	<	<	<
Bromchloressigsäure	5589-96-8	10.	0.02	<	<	<	<	<		<	< <	<	<	<	<	52	<	<	<	<	<	< >
Trichloressigsäure (TCA)	76-03-9	10.		0.05	0.0525	0.08	0.048	0.0425	0.03	0.35	.04 0.035	0.05	0.056	0.07	0.092	52	0.03	0.03	0.05	0.0548	0.09	0.11
2.6-Dichlorbenzoësäure	50-30-6		0.01	<		<	<	<		<	< <	<	<	0.0162	0.018	47	<	<	<	<	0.02	0.05
Andijk		F.97 ·		•																		
Tetrachlorortho-Phtalsäure	632-58-6	μg/l	0.02	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	< = 1.8 =
Trifluoracetat (TFA)	76-05-1			1.15	1.1	1.4	1.1	1.6			1.5 1.3	1.2	1.2	1.2	1.2	13	1.1	1.1	1.2	1.3	1.72	1.8
Monochloressigsäure	79-11-8		0.5	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
Dichloressigsäure	79-43-6	1 0.	0.02	<	<	0.04	<	<			.05 0.02	0.06	<	<		12	<	<	<	0.0208	0.057	0.06
Monobromessigsäure	79-08-3		0.06	<	0.08	<					.12 0.1	0.06	0.12	<	<	13	<		<	<	0.12	0.12
Dibromessigsäure	631-64-1	μg/l	0.06		<	<				<	< <	<	<		<	13	<				<	<
Bromchloressigsäure	5589-96-8		0.02			<				<	< <	<		<	<	13	<	,			<	< ▶
Trichloressigsäure (TCA)	76-03-9		0.02	0.05	0.06	0.05	0.03	0.03			.03 <	<	<	<	0.02	13	<	<	0.03	0.0308	0.056	0.06
2,6-Dichlorbenzoësäure	50-30-6	10.	0.01	0.0125	0.00	<	0.00	<		.02	< <			,	<	12		,	<	<	0.02	0.02
Haringvliet	30 30 0	P9/1	0.01	0.0123					0.0	.02						12					0.02	0.02
Trifluoracetat (TFA)	76-05-1	μg/l		1.08		1.3	1.2	1.3	1	1.2	1.1 1.2	0.96	1.1	1	1	13	0.96	0.96	1.1	1.13	1.3	1.3
Industriechemikalien (mit Phenolen)																						
Lobith																						
3-Chlorphenol	108-43-0	μg/l	0.05	<	<		<			<	<		<		<	7	<	*	*	<	*	<
4-Chlorphenol	106-48-9	μg/l	0.05	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,3-Dichlorphenol	576-24-9	μg/l	0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,6-Dichlorphenol	87-65-0	μg/l	0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
3,4-Dichlorphenol	95-77-2	μg/l	0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
3,5-Dichlorphenol	591-35-5	μg/l	0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,3,4,5-Tetrachlorphenol	4901-51-3	μg/l	0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,3,4,6-Tetrachlorphenol	58-90-2	μg/l	0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,3,5,6-Tetrachlorphenol	935-95-5	μg/l	0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,3,4-Trichlorphenol	15950-66-0	μg/l	0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,3,5-Trichlorphenol	933-78-8		0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,3,6-Trichlorphenol	933-75-5		0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
3,4,5-Trichlorphenol	609-19-8		0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,4- und 2,5-Dichlorphenol		μg/l	0.04	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2-Chlorphenol	95-57-8		0.05	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,4-Dinitrophenol	51-28-5		0.05	<	0.091	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	0.0646	0.091
Pentachlorphenol	87-86-5		0.1	<	<	<	<	<		<	< <	<	<	<	<	13	<	<	<	<	<	<
2,4,5-Trichlorphenol	95-95-4		0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
2,4,6-Trichlorphenol	88-06-2		0.02	<	<		<			<	<		<		<	7	<	*	*	<	*	<
		10.																				
Nieuwegein																						
	51-28-5	μg/l	0.05	<	<	<	<	<		<	< <	<	<	<	<	52	<	<	<	<	<	<
Nieuwegein 2,4-Dinitrophenol Pentachlorphenol	51-28-5 87-86-5	1 0.	0.05 0.1	< <	< <	< <	< <	< <		< <	< < <	< <	< <	< <	< <	52 13	< <	< <	< <	< <	< <	< <u>-</u>
2,4-Dinitrophenol		1 0.					< <											< <				<

Industriechemikalien (mit Phenolen) Nieuwersluis (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
4-Chlorphenol	106-48-9	μg/l	0.05	<		<		<		<		<		<		6	<	*	*	<	*	<
2,3-Dichlorphenol	576-24-9	1 0.	0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
2,6-Dichlorphenol	87-65-0	1 0.	0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
3,4-Dichlorphenol	95-77-2		0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
3,5-Dichlorphenol	591-35-5		0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
2,3,4,5-Tetrachlorphenol	4901-51-3	1 0.	0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
2,3,4,6-Tetrachlorphenol	58-90-2		0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
2,3,5,6-Tetrachlorphenol	935-95-5		0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
2,3,4-Trichlorphenol	15950-66-0	1 0.	0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
2,3,5-Trichlorphenol	933-78-8		0.02	<		<		<		<		<		<		6	<	*	*	<	*	<
2,3,6-Trichlorphenol	933-75-5	1 0.	0.02	<								<				6	<	*	*	<	*	<
3,4,5-Trichlorphenol	609-19-8	1 0.	0.02	<				,		,		<				6		*	*	<	*	<
2,4- und 2,5-Dichlorphenol	000 10 0	μg/l	0.04	<				,		,		<				6		*	*	<	*	<
2-Chlorphenol	95-57-8		0.05	<				,				<				6		*	*	<	*	<
2,4-Dinitrophenol	51-28-5	1 0.	0.05	<				,				0.062				6		*	*	<	*	0.062
Pentachlorphenol	87-86-5		0.1	<	<		,	<	<	<	<	<	_	<	<	13	<	<	_	<	<	<
2,4,5-Trichlorphenol	95-95-4		0.02	<	`	<		<	`	<	`	<	`	<	`	6	<	*	*	<	*	< [
2,4,6-Trichlorphenol	88-06-2	1 0.	0.02	<				<		~				<		6		*	*	2	*	< □
Andijk	00-00-2	μ9/1	0.02													U						
2,4-Dinitrophenol	51-28-5	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pentachlorphenol	87-86-5	1 0.	0.03	<		<			<	<	<	<	<	<	<	13	<	<	<	<	<	< ▶
Haringvliet	07-00-3	μ9/1	0.1													10						
3-Chlorphenol	108-43-0	ua/l	0.05	<	<		,		<						<	7	<	*	*	<	*	<
4-Chlorphenol	106-43-0	1 0.	0.05	<	<		<		<		<		< <		<	7	<	*	*	<	*	
2,3-Dichlorphenol	576-24-9	10.	0.03	<					<		<u> </u>				<	7	<	*	*		*	< [
2,5-Dichlorphenol	583-78-8		0.02	<	<		<		<u> </u>		<u> </u>		<		<	2	*	*	*	< *	*	*
2,6-Dichlorphenol		10.	0.02						<		<			<		3		*	*		*	<
	87-65-0		0.02	<	<		<		<		<		<		<	7	<	*	*	<	*	< [
3,4-Dichlorphenol	95-77-2		0.02	<	<		<		<		<		<		<	7	<	 ¥	*	<	 *	
3,5-Dichlorphenol	591-35-5	10.		<	<		<		<		<		<		<	7	<	 ¥	*	<	 *	< □
2,3,4,5-Tetrachlorphenol	4901-51-3		0.02	<	<		<		<		<		<		<	7	<	*	*	<	*	< [
2,3,4,6-Tetrachlorphenol	58-90-2	10.	0.02	<	<		<		<		<		<		<	1	<	· ·	*	<	· *	
2,3,5,6-Tetrachlorphenol	935-95-5	1 0.	0.02	<	<		<		<		<		<		<	1	<	· ·	*	<	· *	< □
2,3,4-Trichlorphenol	15950-66-0		0.02	<	<		<		<		<		<		<	1	<	· ·	, ×	<	· ·	< [
2,3,5-Trichlorphenol	933-78-8	10.	0.02	<	<		<		<		<		<		<	/	<	× ×	×	<	×	< □
2,3,6-Trichlorphenol	933-75-5	10.	0.02	<	<		<		<		<		<		<	/	<	× ×	×	<	×	← ⊢
3,4,5-Trichlorphenol	609-19-8	1 0.	0.02	<	<		<		<		<		<		<	/	<	*	*	<	*	< *
3-Nitrophenol	554-84-7		0.02						<		<			<		3	Ž	*	*	Ť	*	*
2,5-Dimethylphenol	95-87-4	10.	0.02						<		<			<		3	~	*	*		*	1 1
2,6-Dimethylphenol	576-26-1	1 0.	0.02						<		<			<		3	~	*	*		*	*
3,4-Dimethylphenol	95-65-8		0.02						<		<			<		3	*	*	*	*	*	*
2,3- und 3,5-Dimethylphenol		μg/l	0.04						<		<			<		3	*	*	*	*	*	* -
2,4- und 2,5-Dichlorphenol		μg/l	0.04	<	<		<		<		<		<		<	7	<	*	*	<	*	<
2-Ethylphenol	90-00-6	10.	0.02						<		<			<		3	*	*	*	*	*	*
3-Ethylphenol	620-17-7	1 0.	0.02						<		<			<		3	*	*	*	*	*	*
4-Ethylphenol	123-07-9		0.02						<		<			<		3	*	*	*	*	*	*
2,5-Dinitrophenol	329-71-5	1 0.	0.02						<		<			<		3	*	*	*	*	*	*
2,6-Dinitrophenol	573-56-8		0.02						<		<			<		3	*	*	*	*	*	*
3,4-Dinitrophenol	577-71-9	μg/l	0.02						<		<			<		3	*	*	*	*	*	*
2-Chlorphenol	95-57-8	μg/l	0.05	<	<		<		<		<		<		<	7	<	*	*	<	*	<
2,4-Dichlorphenol	120-83-2	μg/l	0.02						<		<			<		3	*	*	*	*	*	*
2,4-Dinitrophenol	51-28-5	μg/l	0.05	<	<		<		<		<		<		<	7	<	*	*	<	*	<
Pentachlorphenol	87-86-5		0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Industriechemikalien (mit Phenolen) Haringvliet (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
2,4,5-Trichlorphenol	05.05.4	//	0.02													7		*	*		*	<
	95-95-4	μg/l	0.02				<		<		<		<		<	,	<	 v	 v	<	 ¥	` <u> </u>
2,4,6-Trichlorphenol	88-06-2	μg/l	0.02	<	<		<		<		<		<		<	1	<	×		<	*	<
2,3-Dinitrophenol	66-56-8	μg/l	0.02						<		<			<		3	*	*	*	*	*	*
2-Nitrophenol und 4-Nitrophenol		μg/l	0.04						0.063		<			0.042		3	*	*	*	*	*	*
Industriechemikalien (mit PCB)																						
	7010 07 5	//		0.00008	0.00000	0.00000	0.00008	0.00009	0.00012	0.00021	0.00042	0.00050	0.00042	0.00042	0.00044	10	0.00000	0.000068	0.00012	0.000245	0.000534	0.00058
2,4,4'-Trichlorobiphenyl (PCB 28)	7012-37-5	μg/l									0.00042											
2,5,2',5'-Tetrachlorobiphenyl (PCB 52)	35693-99-3	μg/l		0.000065		0.00005		0.00007	0.00009	0.00025	0.00033		0.00034	0.00035			0.00005	0.00005		0.000189		
2,4,5,2',5'-Pentachlorobiphenyl (PCB 101)	37680-73-2	μg/l	0.00003		0.00005	<		0.00008	0.0001	0.00031	0.00035		0.00045		0.00033	13	<	<		0.000217		0.00048
2,4,5,3′,4′-Pentachlorobiphenyl (PCB 118)	31508-00-6	μg/l	0.00002	0.00005	<	<		0.00004	0.00005	0.00012	0.00018	0.00023				13	<	<		0.0000954		0.00023
2,3,4,2',4',5'-Hexachlorobiphenyl (PCB 138)	35065-28-2	μg/l		0.00011	0.00008	0.00006	0.00009	0.00006	0.00011	0.0002	0.00027	0.00032	0.00029	0.00023	0.00015	13	0.00006	0.00006	0.00013	0.00016	0.000308	0.00032
2,4,5,2',4',5'-Hexachlorobiphenyl (PCB 153)	35065-27-1	μg/l		0.00014	0.0001	0.00007	0.00011	0.0001	0.00013	0.00025	0.00035	0.00044	0.00039	0.0003	0.00026	13	0.00007	0.000082	0.00016	0.000214	0.00042	0.00044
2,3,4,5,2',4',5'-Heptachlorobiphenyl (PCB 180)	35065-29-3	μg/l	0.00004	0.000065	0.00005	<	<	0.00007	0.00007	0.0001	0.00015	0.00016	0.00012	0.00011	0.00008	13	<	<	0.00007	0.0000831	0.000156	0.00016
Nieuwegein																						
2,4,4'-Trichlorobiphenyl (PCB 28)	7012-37-5	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,5,2',5'-Tetrachlorobiphenyl (PCB 52)	35693-99-3	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,5,2',5'-Pentachlorobiphenyl (PCB 101)	37680-73-2	μg/l	0.00003	0.00015	0.00018	0.00024	<	0.00013	<	0.00011	0.00025	0.00006	0.00019	0.00026	0.00071	13	<	<	0.00016	0.000189	0.00053	0.00071
2,4,5,3',4'-Pentachlorobiphenyl (PCB 118)	31508-00-6	μg/l	0.00002	0.000085	0.0001	0.00011	<	<	<	0.00005	0.00014	<	0.00014	0.00012	0.00033	13	<	<	0.00009	0.0000923	0.000254	0.00033
2,3,4,2',4',5'-Hexachlorobiphenyl (PCB 138)	35065-28-2	μg/l	0.00005	0.000135	0.00012	0.00019	0.00009	0.00007	<	0.00007	0.00014	<	0.00014	0.00015	0.00039	13	<	<	0.00013	0.000129	0.00031	0.00039
2,4,5,2',4',5'-Hexachlorobiphenyl (PCB 153)	35065-27-1	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,3,4,5,2',4',5'-Heptachlorobiphenyl (PCB 180)	35065-29-3			0.000095		0.00013	0.00007	0.00005			0.00008		0.00007	0.00011	0.00027	13					0.000214	0.00027
Nieuwersluis	00000 20 0	P 97 1	0.00001	0.00000	0.00011	0.00010	0.00007	0.00000		`	0.00000	`	0.00007	0.00011	0.00027			,	0.00000	0.0000077	0.000211	0.00027
2,4,4'-Trichlorobiphenyl (PCB 28)	7012-37-5	μg/l		0.000165	0.0002	0.00018	0.00012	0.00019	0.00012	0.00023	0.00019	0.00022	0.00028	0.00031	0.00044	13	0.00012	0.00012	0.00019	0.000216	0.000388	0.00044
2,5,2',5'-Tetrachlorobiphenyl (PCB 52)	35693-99-3	μq/l		0.000115	0.00014	0.00013	0.0001	0.00015	0.00008	0.00019	0.00013	0.00015	0.00019	0.00021	0.00031	13	0.00008	0.000088	0.00014	0.000155	0.00027	0.00031
2,4,5,2',5'-Pentachlorobiphenyl (PCB 101)	37680-73-2	μq/l		0.000105	0.00014	0.00012	0.00008	0.00014	0.00009	0.00018	0.00013	0.00014	0.00017	0.00018	0.00021	13	0.00008	0.000084	0.00014	0.000138	0.000198	0.00021
2,4,5,3',4'-Pentachlorobiphenyl (PCB 118)	31508-00-6	μq/l	0.00002	0.000075		<	<	<		0.00008	0.00007		0.00009	0.00009	0.00011	13	<	<		0.0000592		0.00011
2,3,4,2',4',5'-Hexachlorobiphenyl (PCB 138)	35065-28-2	μq/l		0.000095		0.00006	0.00007	0.00012		0.00014	0.00009	0.00012		0.00014	0.00011	13	<			0.0000996		0.00014
2,4,5,2',4',5'-Hexachlorobiphenyl (PCB 153)	35065-27-1	μq/l	0.0000	0.000145				0.00015	0.00011	0.00018	0.00016	0.00016	0.0002	0.00022	0.00021			0.000098		0.000158		0.00022
2,3,4,5,2',4',5'-Heptachlorobiphenyl (PCB 180)	35065-29-3	μg/l	0.00004	0.00006				0.00012		0.00008	0.00009		0.00007		0.00007	13	<			0.0000646		0.00012
Andiik	03003 20 0	μ9/1	0.00004	0.00000	0.00007	0.00003		0.00012		0.00000	0.00003	0.00000	0.00007	0.00007	0.00007	10			0.00007	0.0000040	0.000100	0.00012
2,4,4'-Trichlorobiphenyl (PCB 28)	7012-37-5	μg/l	0.00004	0.0000495	0.00011	<	<	<	<	<	<	<	0.00004	0.00005	0.00005	13	<	<	<	<	0.000098	0.00011
2,5,2',5'-Tetrachlorobiphenyl (PCB 52)	35693-99-3	μq/l	0.00003		0.00004	<	<	<	<	0.00003	<	<	<	<	<	13	<	<	<		0.000036	0.00004
2,4,5,2',5'-Pentachlorobiphenyl (PCB 101)	37680-73-2	μq/l	0.00003	<	0.00008	<	<	<	<	<	<	<	<	0.00004	<	13	<	<	<	<	0.000064	0.00008
2,4,5,3',4'-Pentachlorobiphenyl (PCB 118)	31508-00-6	1 0.	0.00002		0.00006	<	,	<			<	0.00002			<	13	<				0.000044	0.00006
2,3,4,2',4',5'-Hexachlorobiphenyl (PCB 138)	35065-28-2	μg/l	0.00005		0.00009	<			<	<	<	<	<	0.00002	<	13	<		<		0.000074	0.00009
2,4,5,2',4',5'-Hexachlorobiphenyl (PCB 153)	35065-27-1	μg/l			0.00003		0.00002	0.00002	<		0.00003		0.00003	0.00004	0.00003	13	<	,		0.0000392		0.00003
2,3,4,5,2',4',5'-Heptachlorobiphenyl (PCB 180)	35065-29-3		0.00004		0.000012	0.00003	0.00002	0.00002		0.00003	0.00003	0.00000	0.00003	0.00004	0.00003	13	<		0.00003			0.00005
Haringvliet	33003-23-3	μ9/1	0.00004		0.00003											10						0.00003
2.4.4'-Trichlorobiphenyl (PCB 28)	7012-37-5	μq/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
2,5,2',5'-Tetrachlorobiphenyl (PCB 52)	35693-99-3	μg/l	0.02	<					<	<		<	<		<	16	<		<		<	< ■
2,4,5,2',5'-Pentachlorobiphenyl (PCB 101)	37680-73-2	μg/l	0.00003		0.00005	` `	0.0001	0.00005	0.00011	0.00006	0.00009		0.00007	0.00008	0.00007	13	<			0.0000823		0.00024
2,4,5,3',4'-Pentachlorobiphenyl (PCB 118)	31508-00-6	μg/l	0.00003		<			0.00003 <		0.00000	0.00003	0.000012	0.00007	0.00000 <	0.00007	13	<			0.0000423		0.00024
2,3,4,2',4',5'-Hexachlorobiphenyl (PCB 138)	35065-28-2	μg/I	0.00002		<				0.00008		0.00004	0.00003	3.00002	<	0.00003	13	<	<				0.00013
2,4,5,2',4',5'-Hexachlorobiphenyl (PCB 153)	35065-27-1	μg/l	0.00003	0.00022		<	0.00011		0.00000	<	0.00000	0.00003	<	<	<	16	<			0.0000733	0.000222	<
2,3,4,5,2',4',5'-Heptachlorobiphenyl (PCB 180)	35065-29-3	μg/I μg/I		0.000185	<	<	`	<		,	0.00004	0.00005	<	<	<	13						0.00019
2/2/./3/2/./3 Hoptdomorouphon// (1 00 100)	20000 20 0	P9/1	3.00004	0.000100	`	`	5.00007	`	`	ì	3.00007	3.00000		`	ì	10	`	`	`	0.000001	0.000100	0.30010
Industriechemikalien (Vorläufer und Zwischenprodukte) Lobith																						
Methenamin	100-97-0	μg/l						1	1.5	1.5	1.6	1.4	1.9	2.4	2.3	8	1	*	*	1.7	*	2.4
2,2,5,5-Tetramethyltetrahydrofuran	15045-43-9	μq/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
		F 3/ 1			· ·			·			· ·										,	

Industriechemikalien (Vorläufer und Zwischenprodukte)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	. Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein Methenamin	100-97-0	μg/l		0.545	1.1		1.1	1.4	1.4	1.5	1.7	1.8	1.2	1.5	2.5	13	0.43	0.522	1.4	1.34	2.22	2.5
2,2,5,5-Tetramethyltetrahydrofuran	15045-43-9	μg/l	0.05	0.343	1.1	<	1.1	1.4	1.4		1.7	1.0	1.2	1.0	Z.3 <	13	0.43	0.322	1.4	1.54	<.2.22	<
Nieuwersluis	13043-43-3	μу/1	0.03	<	<	<	<	<		· ·	<	<	<	<	<	13	<	<	<	<	<	\
2,2,5,5-Tetramethyltetrahydrofuran	15045-43-9	μg/l	0.05		<		<	<		< <	,	,				13	<				<	<
Andijk	13043-43-3	μу/1	0.03	<	<	<	<	<	<	· ·	<	<	<	<	<	13	<	<	<	<	<	\ <u></u>
Methenamin	100-97-0	ua/l		0.725	0.78		1 2	0.97	1.3	3 1.1	1.2	1.2	1.1	1.1	1.3	13	0.5	0.612	1.1	1.07	1.3	1.3
2,2,5,5-Tetramethyltetrahydrofuran	15045-43-9	μg/l	0.05	0.723	0.70		1.2	0.37	1.3			1.2	1.1		1.5	13	0.0	0.012	1.1			1.5
Haringvliet	10040-43-9	μg/l	0.05	<	<	<	<	<	<	< <	<	<	<	<	<	13	<	<	<	<	<	<
Benzothiazol	95-16-9	ua/l		0.045		0.06	0.14		0.07	7 0.03	0.05	0.04	0.06	0.06	0.07	12	0.03	0.033	0.055	0.0617	0.125	0.14
Methenamin	100-97-0	μg/l		0.043		0.00	0.14	1.3	1.45		1.6	1.4	1.2	1.3	2.8	13	0.03	0.64	1.3	1.34	2.36	2.8
2(3H)-Benzothiazolon	934-34-9	μg/l	0.03				0.03	1.3					0.04	0.04	0.04	12					0.04	0.04
4-7		μg/l		<		<			<		<	<					<	<	<	<		0.04
2-Aminobenzothiazol	136-95-8	μg/l	0.03	<		<	<		<		<	<	<	<	<	12 14	<	<	<	<	<	< = < = <
1,2,3,5-Tetramethylbenzol (Isodurol)	527-53-7	μg/l					<		<		<	<	<	<	<		<	<	<	<	<	* =
1,2,4,5-Tetramethylbenzol (Durol)	95-93-2	μg/l	0.05				<		<		<	<	<	<	<	14 14	<	<	<	<	<	
Cyclohexen	110-83-8	μg/l	0.05				<		<		<	<	<	<	<		<	<	<	<	<	< = < = <
2,2,5,5-Tetramethyltetrahydrofuran	15045-43-9	μg/l	0.05	<	<	<	<	<	<		<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
1,2-Diethylbenzol	135-01-3	μg/l	0.05				<		<		<	<	<	<	<	14	<	<	<	<	<	<
1,3-Diethylbenzol	141-93-5	μg/l	0.05				<		<	`	<	<	<	<	<	14	<	<	<	<	<	<
1,4-Diethylbenzol	105-05-5	μg/l	0.05				<		<		<	<	<	<	<	14	<	<	<	<	<	< = < = < = < = < = < = < = < = < = < =
1-Brom-3-Chlorpropan	109-70-6	μg/l	0.05				<		<		<	<	<	<	<	14	<	<	<	<	<	<
2-Chlorpropen	557-98-2	μg/l	0.05				<		<		<	<	<	<	<	14	<	<	<	<	<	<
4-Methyl-1-penten	691-37-2	μg/l	0.05				<		<	< <	<	<	<	<	<	14	<	<	<	<	<	< = <
Acrylnitril	107-13-1	μg/l	0.05				<		<	< <	<	<	<	<	<	14	<	<	<	<	<	<
Nicht-eingeteilte Industriechemikalien																						
Lohith																						
Lobith	77 70 6	//	0.01													10						
Dicyclopentadien	77-73-6	μg/l	0.01	<	<	<	<	<	<		<	<	<	<	< 0.01	13	<	<	<	<	<	<
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen)	95-47-6	μg/l	0.01	<	<	<	< <	<	<	< <	<	<	<	<	0.01	13	<	<	<	<	<	0.01
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen	95-47-6 100-42-5	μg/l μg/l	0.01 0.01	< <	< <	< <	< < <	< <	<	< <	< <	< <	< <	< <	0.01	13 13	< <	< <	< <	< <	< <	< = 0.01 = < = = = = = = = = = = = = = = = = =
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen	95-47-6 100-42-5 100-41-4	µg/I µg/I µg/I	0.01 0.01 0.01	< < <	< < <	< < <	< < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < <	< < <	< < <	< < <	0.01	13 13 13	< < <	<	< < <	< < <	< < <	< =
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen	95-47-6 100-42-5 100-41-4 98-82-8	μg/l μg/l μg/l μg/l	0.01 0.01 0.01 0.01	< < <	< < <	< < < < 0.0144	< < < < < < < < < < < < < < < < < < <	< < <	< < <	< < < < < < < < < < < < < < < < < < <	< < <	< < <	< < <	< < <	0.01 < < <	13 13 13 13	< < <	< <	< < <	< < <	< < < < < 0.0106	<
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4	µg/I µg/I µg/I µg/I µg/I	0.01 0.01 0.01 0.01 0.01	< < < <	< < <	< < < < < < 0.0144 <	< < < < < < < < < < < < < < < < < < <	< < < <		< < < < < < < < < < < < < < < < < < <	< < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.01 < < <	13 13 13 13 13	< < < <	< < < < < < < < < < < < < < < < < < <	< < < <	< < < < < < < < < < < < < < < < < < <	< < < < < 0.0106 <	<
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8	µg/I µg/I µg/I µg/I µg/I	0.01 0.01 0.01 0.01 0.01 0.01	< < < < < <	< < < < < <	<	< < < < < < < < < < < < < < < < < < <	< < < <		<	< < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.01 < < < <	13 13 13 13 13 13	< < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < <	< < < < < < < < < < < < < < < < < < <	<	<
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 2-Ethylmethylbenzen	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3	hā\l hā\l hā\l hā\l hā\l hā\l	0.01 0.01 0.01 0.01 0.01 0.01	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <			< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.01	13 13 13 13 13 13 13	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<	<
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 2-Ethylmethylbenzen Tertiär-Butylbenzen	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6	ha\l ha\l ha\l ha\l ha\l ha\l	0.01 0.01 0.01 0.01 0.01 0.01 0.01	< < < < < <	< < < < < <	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <			< < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.01	13 13 13 13 13 13 13 13	< < < < < < < < < < < < < < < < < < <		< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< c c c c c c c c c c c c c c c c c c c	< 0.0144
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethylbenzen	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	<	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <			< < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.01	13 13 13 13 13 13 13 13 13	< < < < < < < < < < < < < < < < < < <		< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< c c c c c c c c c c c c c c c c c c c	< 0.0144
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethyclenzen Methylmethyclenzen Methylmethyclenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid)	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1	49/I 49/I 49/I 49/I 49/I 49/I 49/I 49/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< c c c c c c c c c c c c c c c c c c c	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <			< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.01	13 13 13 13 13 13 13 13 13 13	< < < < < < < < < < < < < < < < < < <		< < < < < < < < < < < < < < < < < < <	< < < < < < < < <	< c c c c c c c c c c c c c c c c c c c	0.0144
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 2-Ethylmethylbenzen Methylmethylbenzen Methylmethylbenzen Methylmethylbenzen Methylmethylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM)	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0	49/I 49/I 49/I 49/I 49/I 49/I 49/I 49/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < < <	0.0144	<td>< < <</td> <td><td>< < <</td><td><td><pre></pre></td><td><pre></pre></td><td><</td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13</td><td><</td><td></td><td><</td><td>< < <</td><td><!--</td--><td>0.0144</td></td></td></td>	< < < < < < < < < < < < < < < < < < <	<td>< < <</td> <td><td><pre></pre></td><td><pre></pre></td><td><</td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13</td><td><</td><td></td><td><</td><td>< < <</td><td><!--</td--><td>0.0144</td></td></td>	< < < < < < < < < < < < < < < < < < <	<td><pre></pre></td> <td><pre></pre></td> <td><</td> <td>0.01 <</td> <td>13 13 13 13 13 13 13 13 13 13 13</td> <td><</td> <td></td> <td><</td> <td>< < <</td> <td><!--</td--><td>0.0144</td></td>	<pre></pre>	<pre></pre>	<	0.01 <	13 13 13 13 13 13 13 13 13 13 13	<		<	< < <	<!--</td--><td>0.0144</td>	0.0144
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 2-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-1H-Benzotriazol (Tolyltriazol)	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	<	<	<<0.0144<<<<<<!--</td--><td><td>< < <</td><td><pre> </pre> <pre> </pre> <pre> <pre< td=""><td>< < <</td><td><pre></pre></td><td><td><</td><td><pre> <</pre></td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td><pre></pre></td><td><td>< < <</td><td><pre> <</pre></td><td><pre></pre></td><td>0.0144</td></td></td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></td></td>	<td>< < <</td> <td><pre> </pre> <pre> </pre> <pre> <pre< td=""><td>< < <</td><td><pre></pre></td><td><td><</td><td><pre> <</pre></td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td><pre></pre></td><td><td>< < <</td><td><pre> <</pre></td><td><pre></pre></td><td>0.0144</td></td></td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></td>	< < <	<pre> </pre> <pre> </pre> <pre> <pre< td=""><td>< < <</td><td><pre></pre></td><td><td><</td><td><pre> <</pre></td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13 13</td><td><pre></pre></td><td><td>< < <</td><td><pre> <</pre></td><td><pre></pre></td><td>0.0144</td></td></td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	< < < < < < < < < < < < < < < < < < <	<pre></pre>	<td><</td> <td><pre> <</pre></td> <td>0.01 <</td> <td>13 13 13 13 13 13 13 13 13 13 13 13</td> <td><pre></pre></td> <td><td>< < <</td><td><pre> <</pre></td><td><pre></pre></td><td>0.0144</td></td>	<	<pre> <</pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13	<pre></pre>	<td>< < <</td> <td><pre> <</pre></td> <td><pre></pre></td> <td>0.0144</td>	< < <	<pre> <</pre>	<pre></pre>	0.0144
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 2-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-1H-Benzotriazol (Tolyltriazol) 4-Methylbenzenriazol	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6 29878-31-7	Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	<	<	0.0144 < < < < < < < < < 0.27 0.11	<td><pre> <</pre></td> <td><td></td><td><td><pre> < < < < < < < < < <</pre></td><td><pre> <</pre></td><td><pre></pre></td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><pre></pre></td><td><td>< < <</td><td><pre> <</pre></td><td><pre></pre></td><td> < 0.0144 < < < < < 0.8 0.6 </td></td></td></td>	<pre> <</pre>	<td></td> <td><td><pre> < < < < < < < < < <</pre></td><td><pre> <</pre></td><td><pre></pre></td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13 13 13</td><td><pre></pre></td><td><td>< < <</td><td><pre> <</pre></td><td><pre></pre></td><td> < 0.0144 < < < < < 0.8 0.6 </td></td></td>		<td><pre> < < < < < < < < < <</pre></td> <td><pre> <</pre></td> <td><pre></pre></td> <td>0.01 <</td> <td>13 13 13 13 13 13 13 13 13 13 13 13 13</td> <td><pre></pre></td> <td><td>< < <</td><td><pre> <</pre></td><td><pre></pre></td><td> < 0.0144 < < < < < 0.8 0.6 </td></td>	<pre> < < < < < < < < < <</pre>	<pre> <</pre>	<pre></pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13	<pre></pre>	<td>< < <</td> <td><pre> <</pre></td> <td><pre></pre></td> <td> < 0.0144 < < < < < 0.8 0.6 </td>	< < <	<pre> <</pre>	<pre></pre>	 < 0.0144 < < < < < 0.8 0.6
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 2-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-1H-Benzotriazol (Tolyltriazol) 4-Methylbenzentriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin)	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	<pre> <</pre>	<pre></pre>	0.0144 < < < < < < < < < < 0.27 0.11 0.22 1.3	<pre></pre>	<pre> <</pre>	<td></td> <td><pre> <</pre></td> <td><pre> < < < < < < < < < <</pre></td> <td><pre></pre></td> <td><pre></pre></td> <td>0.01 <</td> <td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><pre></pre></td> <td><pre></pre></td> <td>< < <</td> <td><pre></pre></td> <td><pre></pre></td> <td> < 0.0144 < < < < 0.8 0.28 0.6 5.3 </td>		<pre> <</pre>	<pre> < < < < < < < < < <</pre>	<pre></pre>	<pre></pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	< < <	<pre></pre>	<pre></pre>	 < 0.0144 < < < < 0.8 0.28 0.6 5.3
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 2-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-1H-Benzotriazol (Tolyltriazol) 4-Methylbenzotriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin)	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6 29878-31-7 108-78-1	Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	<	<	0.0144 < < < < < < < < < 0.27 0.11	<td><pre> <</pre></td> <td><td></td><td><td><pre> < < < < < < < < < <</pre></td><td><pre> <</pre></td><td><pre></pre></td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><pre></pre></td><td><td>< < <</td><td><pre> <</pre></td><td><pre></pre></td><td> < 0.0144 < < < < 0.8 0.28 0.6 5.3 5.26 5.26 </td></td></td></td>	<pre> <</pre>	<td></td> <td><td><pre> < < < < < < < < < <</pre></td><td><pre> <</pre></td><td><pre></pre></td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><pre></pre></td><td><td>< < <</td><td><pre> <</pre></td><td><pre></pre></td><td> < 0.0144 < < < < 0.8 0.28 0.6 5.3 5.26 5.26 </td></td></td>		<td><pre> < < < < < < < < < <</pre></td> <td><pre> <</pre></td> <td><pre></pre></td> <td>0.01 <</td> <td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><pre></pre></td> <td><td>< < <</td><td><pre> <</pre></td><td><pre></pre></td><td> < 0.0144 < < < < 0.8 0.28 0.6 5.3 5.26 5.26 </td></td>	<pre> < < < < < < < < < <</pre>	<pre> <</pre>	<pre></pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<td>< < <</td> <td><pre> <</pre></td> <td><pre></pre></td> <td> < 0.0144 < < < < 0.8 0.28 0.6 5.3 5.26 5.26 </td>	< < <	<pre> <</pre>	<pre></pre>	 < 0.0144 < < < < 0.8 0.28 0.6 5.3 5.26 5.26
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 2-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-IH-Benzotriazol (Tolyltriazol) 4-Methylbenzotriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,1,5-Triazin-2,4,6-Triamin (Melamin)	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6 29878-31-7 108-78-1	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.1 0.13	<pre> <</pre>	<pre></pre>	COUNTY CO	<pre></pre>	<pre></pre>	<td></td> <td>< < <</td> <td><pre></pre></td> <td><pre></pre></td> <td><pre></pre></td> <td>0.01 <</td> <td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><pre></pre></td> <td><pre></pre></td> <td>< < <</td> <td><pre></pre></td> <td><pre></pre></td> <td>CONTRACTOR OF THE CONTRACTOR O</td>		< < < < < < < < < < < < < < < < < < <	<pre></pre>	<pre></pre>	<pre></pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	< < <	<pre></pre>	<pre></pre>	CONTRACTOR OF THE CONTRACTOR O
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 2-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-IH-Benzotriazol (Tolyltriazol) 4-Methylbenzetriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1;5-Methyl-IH-Benzenen (3 Isomere) 3-Methylpyridin (3-Picolin)	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6 29878-31-7 108-78-1	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	<pre> <</pre>	<pre></pre>	C.0144 C.0.0144 C.0.0144 C.0.0144 C.0.0141 C.00141 C.	<pre></pre>	<pre> <</pre>	<td></td> <td>< < <</td> <td><pre></pre></td> <td><pre> <</pre></td> <td><pre> <</pre></td> <td>0.01 <</td> <td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td><pre></pre></td> <td><pre></pre></td> <td><pre></pre></td> <td><pre></pre></td> <td> <</td> <td> < 0.0144 < < < < 0.8 0.28 5.3 5.26 </td>		< < < < < < < < < < < < < < < < < < <	<pre></pre>	<pre> <</pre>	<pre> <</pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	 <	 < 0.0144 < < < < 0.8 0.28 5.3 5.26
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 4-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-IH-Benzotriazol (Tolyltriazol) 4-Methylbenzen 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1richlorbenzenen (3 Isomere) 3-Methylpyridin (3-Picolin) Nieuwegein	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6 29878-31-7 108-78-1	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.1 0.13	<	<pre> <</pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre< td=""><td>< < <</td><td>< < <</td><td><pre></pre></td><td><pre> <</pre></td><td><pre> <</pre></td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><pre> < < < < < < < < < <</pre></td><td><pre></pre></td><td><pre></pre></td><td><pre></pre></td><td><pre></pre></td><td>CONTRACTOR OF THE CONTRACTOR O</td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	< < < < < < < < < < < < < < < < < < <	< < <	<pre></pre>	<pre> <</pre>	<pre> <</pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre> < < < < < < < < < <</pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	CONTRACTOR OF THE CONTRACTOR O
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 4-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-1H-Benzotriazol (Tolyltriazol) 4-Methylbenzotriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3-Triazin-2,4,6-Triamin (Melamin) 1,3-Methylpyridin (3-Picolin) Nieuwegein Dicyclopentadien	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6 29878-31-7 108-78-1 12002-48-1 108-99-6	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.1 0.13	<	<pre></pre>	COUNTY CO	<pre></pre>	<pre></pre>	<pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>		<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.0144
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 4-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-1H-Benzotriazol (Tolyltriazol) 4-Methylbenzotriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin)	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 107-05-1 3089-11-0 136-85-6 29878-31-7 108-78-1 12002-48-1 108-99-6	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.1 0.13	<pre></pre>	<pre></pre>	C.0144 C.0.0144 C.0.0144 C.0.0145 C.0.0185 C.0.0185	<pre></pre>	<pre></pre>	<pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <td></td><td><pre></pre></td><td><pre></pre></td><td><pre></pre></td><td><pre></pre></td><td>0.01 <</td><td>13 13 13 13 13 13 13 13 13 13 13 13 13 1</td><td><pre></pre></td><td><pre></pre></td><td><pre></pre></td><td><pre></pre></td><td><pre></pre></td><td>0.0144</td></pre></pre></pre></pre></pre></pre>		<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.0144
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 4-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-1H-Benzotriazol (Tolyltriazol) 4-Methylbenzotriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) N-3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,2,5-Triazin-2,4,6-Triamin (Melamin) 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 107-05-1 3089-11-0 136-85-6 29878-31-7 108-78-1 12002-48-1 108-99-6	H9/I H9/I H9/I H9/I H9/I H9/I H9/I H9/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.1 0.13	<pre></pre>	<pre></pre>	0.0144 <	<pre></pre>	<pre></pre>	<pre></pre>		<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.0144
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 4-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-1H-Benzotriazol (Tolyltriazol) 4-Methylbenzotriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,7-Triazin-2,4,6-Triamin (Melamin) 1,1 Trichlorbenzenen (al slomere) 3-Methylpyridin (3-Picolin) Nieuwegein Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6 29878-31-7 108-78-1 12002-48-1 108-99-6 77-73-6 95-47-6 100-42-5 100-41-4	H9/I H9/I H9/I H9/I H9/I H9/I H9/I H9/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.1 0.13	<pre></pre>	<pre></pre>	C.0144 C.0.0144 C.0.0144 C.0.0145 C.0.0185 C.0.0185	<pre></pre>	<pre></pre>	<pre></pre>		<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	C. 10.0144
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 2-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-IH-Benzotriazol (Tolyltriazol) 4-Methylbenzotriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) Trichlorbenzenen (3 Isomere) 3-Methylpyridin (3-Picolin) Nieuwegein Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6 29878-31-7 108-78-1 12002-48-1 108-99-6 77-73-6 95-47-6 100-42-5 100-41-4 98-82-8	Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I	0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.1 0.03 0.075 0.01	<pre></pre>	<pre></pre>	0.0144 <	<pre></pre>	<pre></pre>	<pre></pre>		<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	C. 10.0144
Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen Ethylbenzen Iso-Propylbenzen 3-Ethylmethylbenzen 4-Ethylmethylbenzen 4-Ethylmethylbenzen Tertiär-Butylbenzen Methylmethacrylat (MMA) 3-Chlorpropen (Allylchlorid) Hexa(Methoxymethyl) Melamin (HMMM) 5-Methyl-1H-Benzotriazol (Tolyltriazol) 4-Methylbenzotriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,3,5-Triazin-2,4,6-Triamin (Melamin) 1,7-Triazin-2,4,6-Triamin (Melamin) 1,1 Trichlorbenzenen (al slomere) 3-Methylpyridin (3-Picolin) Nieuwegein Dicyclopentadien 1,2-Dimethylbenzen (o-Xylen) Ethenylbenzen	95-47-6 100-42-5 100-41-4 98-82-8 620-14-4 622-96-8 611-14-3 98-06-6 80-62-6 107-05-1 3089-11-0 136-85-6 29878-31-7 108-78-1 12002-48-1 108-99-6 77-73-6 95-47-6 100-42-5 100-41-4	H9/I H9/I H9/I H9/I H9/I H9/I H9/I H9/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.1 0.13	<pre></pre>	<pre></pre>	0.0144 <	<pre></pre>	<pre></pre>	<pre></pre>		<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.01 <	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.0144

Nicht-eingeteilte Industriechemikalien Nieuwegein (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	. J	ul. Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pik
2-Ethylmethylbenzen	611-14-3	μg/l	0.01	<	<	<	<	<	<	,	< <			<	<	13	<	<		<	<	<
Tertiär-Butylbenzen	98-06-6	1 3,	0.01	<	<		<	<			< <			<	<	13	<			<		< <u>-</u>
Iso-Butylbenzen	538-93-2		0.03	<				<			< <			<	<	13	<			<		<
4-Methyl-3-Nitroanilin	119-32-4		0.03	<	<			<			< <				<	13	<	<		<	<	<
2'-Aminoacetofenon	551-93-9	1 0	0.03	<		0.03	0.037	0.031	0.041			0.031	0.033	0.037		13	<	<	0.031	<	0.0422	0.043
n-Butylbenzen	104-51-8		0.03	<	<	0.03	0.037	0.031	0.04		< <.	0.031	0.033	0.037	<	13	<	<	0.031	<	0.0422	<
Methylmethacrylat (MMA)		1 0	0.05	<		<									<	13	<	<		<		<
3-Chlorpropen (Allylchlorid)	80-62-6 107-05-1		0.03		<		<	<				<		<		13	<			<u> </u>	<	<
Hexa(Methoxymethyl) Melamin (HMMM)		μg/l	0.1	0.15	0.25	0.00	0.20	0.22	0.01		< <	0.50	0.40	0.38	< .	13	0.15	0.170	0.3	0.220	0.550	0.56
	3089-11-0	1 3,	0.05	0.15	0.25	0.26	0.28		0.35			0.56	0.49		0.55			0.178		0.338	0.556	0.56
5-Methyl-1H-Benzotriazol (Tolyltriazol)	136-85-6	1 0	0.05	0.0574	0.0745	0.106	0.106	0.113	0.114			0.138	0.13	0.135	0.16	53	<	0.0752	0.11	0.111	0.16	
4-Methylbenzotriazol	29878-31-7	μg/l		0.121	0.18	0.223	0.226	0.253	0.285			0.433	0.436	0.383	0.44	53	0.083	0.148	0.27	0.296	0.466	0.53
1,3,5-Triazin-2,4,6-Triamin (Melamin)	108-78-1	μg/l		0.515	0.89		1.14	1.3	1.4		.4 2.2	3	3.1	2.7	2.6	13	0.45	0.502	1.4	1.68	3.06	3.1
1,3,5-Triazin-2,4,6-Triamin (Melamin) (Fracht)		g/s		0.461	0.382		0.264	0.256	0.488		14 0.0862	0.0612	0.031	0.027	0.026	13	0.014	0.0188	0.136	0.217	0.533	0.563
Trichlorbenzenen (3 Isomere)	12002-48-1	μg/l	0.075	<	<	<	<	<			< <	<	<	<	<	13	<	<	<	<	<	<
Chlordeconehydrat		μg/l	0.005	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis																						
Dicyclopentadien	77-73-6	1 0	0.01	<	0.0141	<	<	<	<	(< <	<	0.0106	<	<	13	<	<	<	<	0.0127	0.0141
1,2-Dimethylbenzen (o-Xylen)	95-47-6	μg/l	0.01	<	<	<	<	<	<	<	< <	<	<	0.0115	<	13	<	<	<	<	<	0.0115
Ethenylbenzen	100-42-5	μg/l	0.03	<	<	<	<	<	<	(< 0.03	<	<	<	<	13	<	<	<	<	<	0.03
Ethylbenzen	100-41-4	μg/l	0.01	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	< ≥
Iso-Propylbenzen	98-82-8		0.01	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
3-Ethylmethylbenzen	620-14-4		0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
4-Ethylmethylbenzen	622-96-8	1 0.	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
2-Ethylmethylbenzen	611-14-3	1 0	0.01	<			<	<			< <	<		<	<	13	<	<		<	<	< <u>-</u>
Tertiär-Butylbenzen	98-06-6	1 0	0.01	<	<			<			< <			<	<	13	<			<		` =
Iso-Butylbenzen	538-93-2	1 3,	0.03	<		<					< <			<	<	13	<	<		<		<
n-Butylbenzen	104-51-8		0.03												<	13	<	<		<		<
Methylmethacrylat (MMA)		1 0.	0.05	<	<	<						· ·		<		13	-				· ·	
	80-62-6	1 0		<	<	<	<	<	<		< <	<	<	<	<		<	<	<	<	<	
3-Chlorpropen (Allylchlorid)	107-05-1	μg/l	0.1	<	<	< .	< .	<	0.16	•	< <	<	<	< .	<	13	<	<	< <	< 100	<	
5-Methyl-1H-Benzotriazol (Tolyltriazol)	136-85-6	1 0		0.073	0.085	0.13	0.11	0.17	0.13		12 0.21	0.19	0.17	0.17	0.16	13	0.053	0.0658	0.13	0.138	0.202	0.21
4-Methylbenzotriazol	29878-31-7	μg/l		0.13	0.14	0.24	0.2	0.29	0.27			0.49	0.47	0.31	0.46	13	0.11	0.122	0.27	0.292	0.482	0.49
Trichlorbenzenen (3 Isomere)	12002-48-1	μg/l	0.075	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
Andijk																						يجسا
Dicyclopentadien	77-73-6	1 0	0.01	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
1,2-Dimethylbenzen (o-Xylen)	95-47-6	μg/l	0.01	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Ethenylbenzen	100-42-5	μg/l	0.01	<	<	<	<	<	<	<	< <	<	<	<	0.0253	13	<	<	<	<	0.0172	0.0253
Ethylbenzen	100-41-4	μg/l	0.01	<	<	<	<	<	<	(< <	<	<	<	<	13	<	<	<	<	<	<
Iso-Propylbenzen	98-82-8	μg/l	0.01	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
3-Ethylmethylbenzen	620-14-4	μg/l	0.01	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
4-Ethylmethylbenzen	622-96-8	μg/l	0.01	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
2-Ethylmethylbenzen	611-14-3		0.01	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Tertiär-Butylbenzen	98-06-6		0.01	<	<	<	<	<	<	<	< <	<	<	<	<	13	<	<	<	<	<	<
Iso-Butylbenzen	538-93-2		0.03	<	<	<	<	<	<		< <	<	<	<	<	13	<	<	<	<	<	<
4-Methyl-3-Nitroanilin	119-32-4	1 0	0.03	<	<	<	<	<			< <	<		<	<	13	<	<	(<	<	<
2'-Aminoacetofenon	551-93-9		0.03	<	<	0.033	0.055	0.037	0.047		< <	<	,	0.034	<	13	<	<		<	0.0518	0.055
n-Butylbenzen	104-51-8		0.03	<	<	0.000	0.000	0.037	0.047		< <	<		0.034	<	13	<	<			0.0310	<
Methylmethacrylat (MMA)	80-62-6	1 0.	0.05	<	•	<						<			<	13	-	<				<
3-Chlorpropen (Allylchlorid)				`	<	`	<	<	• • • • • • • • • • • • • • • • • • •		,	`		<	`		<	,	<			
	107-05-1	μg/l	0.1	< 0.0	< 0.17	0.10	< 0.24E	< 0.0	0.00		< <	< 0.22	< .	< 0.2	< 0.27	13	0.10	0.164	0.01	0.010	< .	
Hexa(Methoxymethyl) Melamin (HMMM)	3089-11-0	1 3,	0.05	0.2	0.17	0.16	0.245	0.2	0.21			0.23	0.22	0.2	0.27	13	0.16	0.164	0.21	0.212	0.262	
5-Methyl-1H-Benzotriazol (Tolyltriazol)	136-85-6		0.05	<	0.056	0.059	0.06	<	0.076			0.066	0.075	0.069	0.074	13	<	<	0.066	0.06	0.0756	0.076
4 Mathylhopaotricael	29878-31-7	μg/l		0.145	0.1	0.13	0.13	0.15	0.16	. 0	16 0.16	0.18	0.2	0.2	0.22	13	0.1	0.104	0.16	0.16	0.212	0.22
4-Methylbenzotriazol 1,3,5-Triazin-2,4,6-Triamin (Melamin)	108-78-1	μg/l		0.685	0.56	0.10	0.13	0.76	0.94			0.73	0.93	1.2	1.3	13	0.49	0.518	0.78	0.836	1.26	1.3

Nicht-eingeteilte Industriechemikalien Andijk (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	J	lun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pik
Trichlorbenzenen (3 Isomere)	12002-48-1	μg/l	0.075	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlordeconehydrat		μg/l	0.005	<		<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet		F 3/ ·		•															•				
Dicyclopentadien	77-73-6	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
1,2-Dimethylbenzen (o-Xylen)	95-47-6	1 3,	0.01	<	<	0.0466	<	0.012		<	<	<	<		<	<	13	<	<	,	<		0.0466
Ethenylbenzen	100-42-5	1 0-	0.01	0.015	0.0116	0.014	<	<			0.0182	<	<		0.011	<	13	<	<	<	<	0.0223	0.0251
Ethylbenzen	100-41-4		0.01	<	0.0110	0.0297	<	<		<	<	<	<	<	<	<	13	<	<	<	<	0.0198	0.0297
Triphenylphosphinoxid (TPPO)	791-28-6	1 3,	0.05	<	`	0.0237		`	0.0		0.0872	0.115	0.14	0.12	0.12	0.1	17	<	<	0.087	0.0801	0.132	0.14
Iso-Propylbenzen	98-82-8		0.03	<	<	<	<	<	0.0	<	0.0072	0.113	0.14	0.12	0.12	V.1 <	13	<	<	< 0.007	0.0001	0.0109	0.0148
3-Ethylmethylbenzen	620-14-4	1 0	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	0.0103	<
4-Ethylmethylbenzen	622-96-8	1 0	0.01	<	<	<				<	<		<		<	<	13	<	<			<	<
2-Ethylmethylbenzen		10.	0.01		`	`	ζ.	· ·			`	<	`				13	`	`	<	<	`	
, ,	611-14-3	1 0		<	<	<	<	<		<	<	<	<	<	<	<	17	<	<	<	<	<	<
4-chlormethylbenzen	106-43-4	1 0	0.05	<		<	<			<	<	<	<	<	<	<		<	<	<	<	<	< E
Tertiär-Butylbenzen	98-06-6		0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Brombenzen	108-86-1	10.	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Iso-Butylbenzen	538-93-2	1 0-	0.05				<			<	<	<	<	<	<	<	14	<	<	<	<	<	<
4-Methyl-3-Nitroanilin	119-32-4		0.03	<		<	<			<	<	<	<	<	<	<	12	<	<	<	<	<	<
2'-Aminoacetofenon	551-93-9	1 0	0.03	<		0.032	<		0	0.05	0.048	0.049	0.045	0.034	0.036	<	12	<	<	0.035	0.0337	0.0567	0.06
sec-Butylbenzen	135-98-8	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
n-Butylbenzen	104-51-8	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Methylmethacrylat (MMA)	80-62-6	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
3-Chlorpropen (Allylchlorid)	107-05-1	μg/l	0.1	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
5-Methyl-1H-Benzotriazol (Tolyltriazol)	136-85-6			0.045		0.08	0.05		0.0	065	0.08	0.06	0.11	0.12	0.13	0.16	12	0.03	0.036	0.075	0.0842	0.151	0.16
4-Methylbenzotriazol	29878-31-7	1 0-		0.09		0.16	0.11			165	0.21	0.21	0.32	0.38	0.38	0.49	12	0.07	0.082	0.195	0.231	0.457	0.16 0.49
1,3,5-Triazin-2,4,6-Triamin (Melamin)	108-78-1			0.52		0.92	0.96	1.1		1.45	1.4	2	2.5	2.5	2.7	2.7	13	0.44	0.504	1.4	1.59	2.7	27
Trichlorbenzenen (3 Isomere)	12002-48-1	μg/l	0.075	<		<	<			<	<	<	<	<	<	<	11	<	<	<	<	<	2.7
		10																					
Kühlmittel																							
Haringvliet																							
Dichlor-difluormethan (Freon 12)	75-71-8	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
Trichlorfluormethan (Freon 11)	75-69-4	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	< <u>-</u>
Desinfektionsmittel Lobith																							
	100 10 7		0.01														10						<
1,4-Dichlorbenzen	106-46-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwegein	400 40 7																40						<
1,4-Dichlorbenzen	106-46-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis																							
1,4-Dichlorbenzen	106-46-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																							
1,4-Dichlorbenzen	106-46-7	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																							_
1,4-Dichlorbenzen	106-46-7	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	17	<	<	<	<	<	<
2-Methylphenol	95-48-7	μg/l	0.02							<		<			<		3	*	*	*	*	*	*
4-Methylphenol	106-44-5		0.02							<		<			<		3	*	*	*	*	*	*
3-methylphenol (m-Cresol)	108-39-4		0.02							<		<			<		3	*	*	*	*	*	* * *
4-Chlor-3-Methylphenol	59-50-7	1 0	0.02							<		<			<		3	*	*	*	*	*	*
Desinfektionsnebenprodukte (mit Halogenen)																							
Lobith																							
Bromdichlormethan	75-27-4	ug/l	0.01														13			,			, =
		1 0-	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Dibromchlormethan	124-48-1	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<

Desinfektionsnebenprodukte (mit Halogenen) Lobith (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Tribrommethan	75-25-2	μg/l	0.01	<	<	<	<	<		0.0105	0.0116	0.0216	0.0234	0.0118	<	13	<	<	<	<	0.0227	0.0234
Nieuwegein	13-23-2	μ9/1	0.01							0.0103	0.0110	0.0210	0.0234	0.0110		10					0.0227	
Bromdichlormethan	75-27-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = 0.0206 = 0.0206
Dibromchlormethan	124-48-1	μg/I	0.01	<	<	<		<	<	<	<	<	<	<	<	13	<		<	<	<	
Tribrommethan	75-25-2		0.01	<	<	<	<	<	<	<	<	0.0206		<	<	13	<	<	<	<	0.0144	0.0206
Dibromessigsäure	631-64-1	μg/I	0.01	<	<	<	<	<	<	<	<	0.0200	<	<	<	52	<	<	<	<	0.0144	<
Bromchloressigsäure	5589-96-8		0.00	<	<	<		<	<	<	<	<	<	<	<	52	<	<	<	<	<	<
Nieuwersluis	3303-30-0	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	32	<	<	<	<	<	< 2
Bromdichlormethan	75-27-4	/1	0.01													13						
		μg/l		<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	< <u> </u>
Dibromchlormethan	124-48-1	μg/l	0.01	<	<	<	<	<	<	<	<	> > > >	<	<	<	13	<	<	<	<	<	<
Tribrommethan	75-25-2	μg/l	0.01	<	<	<	<	<	<	<	<	0.0117	<	<	<	13	<	<	<	<	<	0.0117
Andijk	75.07.4		0.04													40						
Bromdichlormethan	75-27-4	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dibromchlormethan	124-48-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tribrommethan	75-25-2		0.01	<	<	<	<	0.0102	<	0.042	0.0297	<	0.0297	0.0113	<	13	<	<	<	0.0125	0.0371	0.042
Dibromessigsäure	631-64-1		0.06	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Bromchloressigsäure	5589-96-8	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Bromdichlormethan	75-27-4	μg/l	0.01	<	<	<	<	<	<	<	<	0.0193	0.0282	<	<	13	<	<	<	<	0.0246	0.0282
Dibromchlormethan	124-48-1	μg/l	0.01	<	<	<	<	<	<	<	<	0.0213	0.0275	<	<	13	<	<	<	<	0.025	0.0275
Tribrommethan	75-25-2	μg/l	0.01	<	0.0192	<	<	<	0.0103	<	0.0598	0.102	0.0292	0.0118	<	13	<	<	<	0.0206	0.0851	0.102
Desinfektionsnebenprodukte (Nitrosoverbindungen	,																					
Nieuwegein	,																					
	00.75.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.000			_						_		_		10				_		<
N-Nitrosodimethylamin (NDMA)	62-75-9	μg/l	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	0.0035
N-Nitrosomorpholin (NMOR)	59-89-2		0.003	<	<	<	<	<	<	<	<	<	<	<	0.0035	13	<	<	<		0.00338	0.0035
N-Nitrosopiperidin (NPIP)	100-75-2	1 0	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
N-Nitrosopyrrolidin (NPYR)	930-55-2		0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< = < >
N-Nitrosomethylethylamin (NMEA)	10595-95-6	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
N-Nitrosodiethylamin (NDEA)	55-18-5	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	0.0013	13	<	<	<	<	0.00126	0.0013
N-Nitrosodipropylamin (NDPA)	621-64-7	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
N-Nitrosodibutylamin (NDBA)	924-16-3	μg/l	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis																						
N-Nitrosodimethylamin (NDMA)	62-75-9	μg/l	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
N-Nitrosomorpholin (NMOR)	59-89-2	μg/l	0.003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
N-Nitrosopiperidin (NPIP)	100-75-2		0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
N-Nitrosopyrrolidin (NPYR)	930-55-2	1 0	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
N-Nitrosomethylethylamin (NMEA)	10595-95-6	1 0	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u></u>
N-Nitrosodiethylamin (NDEA)	55-18-5	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< N
N-Nitrosodipropylamin (NDPA)	621-64-7	μg/l	0.001			<	,	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
N-Nitrosodibutylamin (NDBA)	924-16-3		0.002		ì	,	,				<			<	<	13				<	<	< = < >
Haringvliet	021 10 0	P9/1	0.002							`		`				10				`		
N-Nitrosodimethylamin (NDMA)	62-75-9	μg/l	0.002						<		<			<		3	*	*	*	*	*	*
N-Nitrosomorpholin (NMOR)	59-89-2		0.002						<					<		3	*	*	*	*	*	*
N-Nitrosopiperidin (NPIP)	100-75-2		0.003						<		`			`		3	*	*	*	*	*	*
											<			<		3	*	*	*	*	*	*
N-Nitrosopyrrolidin (NPYR)	930-55-2	μg/l	0.001						<		<			<		-	*	*	*	*	*	*
N-Nitrosomethylethylamin (NMEA)	10595-95-6	μg/l	0.001						<		<			<		3	Ŷ				*	*
N-Nitrosodiethylamin (NDEA)	55-18-5	μg/l	0.001						<		<			<		3	*	*	*	*	*	*
N-Nitrosodipropylamin (NDPA)	621-64-7	μg/l	0.001						<		<			<		3	*	*	*	*	*	* 📙
N-Nitrosodibutylamin (NDBA)	924-16-3	μg/l	0.002						<		<			<		3	*	*	*	*	*	*

Flammschutzmittel Lobith	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Pentachlorbenzen	608-93-5	μg/l	0.00002	0.00005							0.00005	0.00009	0.00009	0.00012	0 00009	7	<	*	* 0	0000714	*	0.00012
Triphenylphosphat (TPP)	115-86-6	1 0.	0.05	<	<	<	<	<	<		<	<	<	<	<	13	<	<	ζ.	<	<	<
2,2',4,4'-Tetrabromdiphenylether (PBDE-47)	5436-43-1	μg/l	0.001	<				<	~							13	<			~		< ▶
2,2',4,5'-Tetrabromdiphenylether (PBDE-49)	243982-82-3		0.001	<				<						<		13	<			<		<
2,2',3,4,4'-Pentabromdiphenylether (PBDE-85)	182346-21-0		0.001	<				<						<		13						<
2,2',4,4',5-Pentabromdiphenylether (PBDE-99)	60348-60-9	1 0	0.001	<				<						~	_	13	<			~	<	<
2,2',4,4',6-Pentabromdiphenylether (PBDE-100)	189084-64-8		0.001											`		13						<
2,2',4,4',5,5'-Hexabromdiphenylether (PBDE-153)	68631-49-2	10.	0.001	<		<								< <	<	13	<	<		<		<
2,2',4,4',5,6'-Hexabromdiphenylether (PBDE-154)		10.	0.001		< .			<	<u> </u>	<	<		<u> </u>			13	<	<u> </u>	<			<
2,4,4'-Tribromdiphenylether (PBDE-134)	207122-15-4 41318-75-6		0.001	<	< .			<	<u> </u>	<	<		<u> </u>	<	<	13	<	<u> </u>	<	<		
		10.		<	< .			<	<u> </u>	<	<		<u> </u>	<	<	13	<	<u> </u>	<	<		
2,2',3,4,4',5'-Hexabromdiphenylether (PBDE-138)	182677-30-1	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	
2,2',3,3',4,4',5,5',6,6'-Decabromdiphenylether (PBDE-209)	1163-19-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwegein	000 00 5	/1	0.00													10						<
Pentachlorbenzen	608-93-5	1 0.	0.02	< 0.045	<	<	<	<	<	<	<	<		<	<	13	<	<	<	<	<	<
Triethylphosphat (TEP)	78-40-0	10.	0.02	0.045	0.09	<	0.03	0.07	0.07	0.04	0.09	<	0.14	<	0.2	13	<	<	0.05	0.0654	0.176	0.2
Triphenylphosphat (TPP)	115-86-6		0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4'-Tetrabromdiphenylether (PBDE-47)	5436-43-1	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,5'-Tetrabromdiphenylether (PBDE-49)	243982-82-3		0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4'-Pentabromdiphenylether (PBDE-85)	182346-21-0		0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5-Pentabromdiphenylether (PBDE-99)	60348-60-9	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',6-Pentabromdiphenylether (PBDE-100)	189084-64-8		0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,5'-Hexabromdiphenylether (PBDE-153)	68631-49-2	μg/l	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,6'-Hexabromdiphenylether (PBDE-154)	207122-15-4	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,4'-Tribromdiphenylether (PBDE-28)	41318-75-6	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4',5'-Hexabromdiphenylether (PBDE-138)	182677-30-1	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
2,2',3,3',4,4',5,5',6,6'-Decabromdiphenylether (PBDE-209)	1163-19-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Nieuwersluis																						
Pentachlorbenzen	608-93-5	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triethylphosphat (TEP)	78-40-0	μg/l	0.02	0.07	<	0.04	0.04	0.06	0.06	0.06	0.24	<	0.1	0.45	0.17	13	<	<	0.06	0.106	0.366	0.45
Triphenylphosphat (TPP)	115-86-6	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
2,2',4,4'-Tetrabromdiphenylether (PBDE-47)	5436-43-1	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,5'-Tetrabromdiphenylether (PBDE-49)	243982-82-3	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4'-Pentabromdiphenylether (PBDE-85)	182346-21-0	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5-Pentabromdiphenylether (PBDE-99)	60348-60-9	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',6-Pentabromdiphenylether (PBDE-100)	189084-64-8		0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,5'-Hexabromdiphenylether (PBDE-153)	68631-49-2	1 0.	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,6'-Hexabromdiphenylether (PBDE-154)	207122-15-4	1 0	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,4'-Tribromdiphenylether (PBDE-28)	41318-75-6		0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4',5'-Hexabromdiphenylether (PBDE-138)	182677-30-1	μg/l	0.001	<		<		<	<		<	<		<	<	13	<	<	_	<		<
2,2',3,3',4,4',5,5',6,6'-Decabromdiphenylether (PBDE-209)	1163-19-5		0.01	<		,	,		,		,	<	,	,	<	13	`	<	,	,		<
Andijk	1100 10 0	P9/1	0.01							ì			`			10						
Pentachlorbenzen	608-93-5	μg/l	0.02		<			<			<			<		4	<	×	*	<	*	<
Triethylphosphat (TEP)	78-40-0	10.	0.02	0.055	0.05	0.02	0.04	0.04	0.05	0.05	0.04		0.07	<	0.09	13	<	<	0.05	0.0446	0.082	0.09
Triphenylphosphat (TPP)	115-86-6	10.	0.02	0.033	0.03	0.02	0.04	v.u+ <	0.03	0.03	0.04		0.07	<	< .03	13	<		0.03	0.0440	0.002	<
2,2',4,4'-Tetrabromdiphenylether (PBDE-47)	5436-43-1	μg/l μg/l	0.001	<				<								13	<					<
2,2',4,5'-Tetrabromdiphenylether (PBDE-47)			0.001					<								13	<	<				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2,2',3,4,4'-Pentabromdiphenylether (PBDE-49)	243982-82-3			<	<			-				<		<	<	13	-	,		<		·
	182346-21-0	10.	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
2,2',4,4',5-Pentabromdiphenylether (PBDE-99)	60348-60-9	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	
2,2',4,4',6-Pentabromdiphenylether (PBDE-100)	189084-64-8		0.001	<	<	<	0.004	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
2,2',4,4',5,5'-Hexabromdiphenylether (PBDE-153)	68631-49-2	10.	0.001	<	<	<	0.001	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
2,2',4,4',5,6'-Hexabromdiphenylether (PBDE-154)	207122-15-4		0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,4'-Tribromdiphenylether (PBDE-28)	41318-75-6	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Flammschutzmittel Andijk (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
2,2',3,4,4',5'-Hexabromdiphenylether (PBDE-138)	182677-30-1	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
2,2',3,3',4,4',5,5',6,6'-Decabromdiphenylether (PBDE-209)	1163-19-5	μg/l	0.01	<	<	<		<		<	<	<	<	<	<	13	<		<	<	<	< <u>-</u>
Haringvliet	1100 10 0	P 97 1	0.01	`	`	·	•	`	`	,	•	•	`	`	,	.0	,	`	`	·		
Pentachlorbenzen	608-93-5	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	16	<	<	<	<	<	<
Triphenylphosphat (TPP)	115-86-6	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4'-Tetrabromdiphenylether (PBDE-47)	5436-43-1	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,5'-Tetrabromdiphenylether (PBDE-49)	243982-82-3	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4'-Pentabromdiphenylether (PBDE-85)	182346-21-0	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5-Pentabromdiphenylether (PBDE-99)	60348-60-9	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',6-Pentabromdiphenylether (PBDE-100)	189084-64-8	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,5'-Hexabromdiphenylether (PBDE-153)	68631-49-2	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',4,4',5,6'-Hexabromdiphenylether (PBDE-154)	207122-15-4	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,4,4'-Tribromdiphenylether (PBDE-28)	41318-75-6	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,4,4',5'-Hexabromdiphenylether (PBDE-138)	182677-30-1	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,2',3,3',4,4',5,5',6,6'-Decabromdiphenylether (PBDE-209)	1163-19-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
		10																				
Röntgenkontrastmittel																						
Lobith																						
Amidotrizoesäure	117-96-4	μg/l		0.055	0.12	0.15	0.1	0.1	0.13	0.27	0.34	0.29	0.32	0.45	0.71	13	0.05	0.054	0.15	0.238	0.606	0.71
lohexol	66108-95-0	μg/l		0.155	0.012	0.42	0.47	0.36	0.17	0.19	0.32	0.25	0.29	0.3	0.57	13	0.012	0.0592	0.29	0.282	0.53	0.57
lomeprol	78649-41-9	μg/l		0.141	0.28	0.59	0.46	0.42	0.38	0.47	0.52	0.41	0.46	0.62	1.5	13	0.021	0.117	0.46	0.492	1.15	1.5
lopamidol	60166-93-0	μg/l		0.051	0.12	0.15	0.15	0.16	0.19	0.25	0.32	0.32	0.32	0.4	0.71	13	0.036	0.048	0.19	0.246	0.586	0.71
lopromid	73334-07-3	μg/l		0.108	0.2	0.26	0.15	0.12	0.18	0.24	0.4	0.26	0.25	0.34	0.89	13	0.075	0.093	0.24	0.27	0.694	0.89
Nieuwegein																						
Amidotrizoesäure	117-96-4	μg/l		0.0705	0.13	0.16	0.16	0.17	0.15	0.097	0.12	0.21	0.18	0.25	0.31	13	0.058	0.068	0.16	0.16	0.286	0.31
lodipamid	606-17-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
lohexol	66108-95-0	μg/l		0.11	0.19	0.25	0.21	0.18	0.14	0.073	0.059	0.094	0.069	0.086	0.15	13	0.059	0.063	0.12	0.132	0.234	0.25
lomeprol	78649-41-9	μg/l		0.29	0.44	0.56	0.66	0.57	0.39	0.22	0.22	0.28	0.25	0.41	0.38	13	0.22	0.22	0.38	0.382	0.624	0.66
lopamidol	60166-93-0	μg/l		0.0795	0.14	0.16	0.15	0.16	0.14	0.096	0.13	0.13	0.15	0.22	0.26	13	0.079	0.0794	0.14	0.146	0.244	0.26
lopromid	73334-07-3	μg/l		0.185	0.29	0.38	0.4	0.31	0.22	0.2	0.15	0.19	0.21	0.27	0.43	13	0.15	0.162	0.22	0.263	0.418	0.43
lotalaminsäure	2276-90-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
loxaglinsäure	59017-64-0	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
loxitalaminsäure	28179-44-4	μg/l		0.018	0.026	0.033	0.032	0.028	0.022	0.024	0.016	0.019	0.02	0.028	0.051	13	0.016	0.016	0.024	0.0258	0.0438	0.051
Nieuwersluis																						
Amidotrizoesäure	117-96-4	μg/l		0.0635	0.099	0.21	0.13	0.19	0.16	0.11	0.17	0.23	0.22	0.35	0.35	13	0.063	0.0634	0.17	0.18	0.35	0.35
lodipamid	606-17-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
lohexol	66108-95-0	μg/l		0.104	0.48	0.55	0.26	0.2	0.14	0.085	0.1	0.086	0.091	0.12	0.18	13	0.085	0.0854	0.12	0.192	0.522	0.55
lomeprol	78649-41-9	μg/l		0.485	0.61	1	1.1	0.85	0.56	0.38	0.38	0.7	0.47	0.53	0.59	13	0.38	0.38	0.56	0.626	1.06	1.1
lopamidol	60166-93-0	μg/l		0.058	0.084	0.15	0.15	0.15	0.13	0.11	0.11	0.12	0.16	0.26	0.3	13	0.05	0.0564	0.13	0.142	0.284	0.3
lopromid	73334-07-3	μg/l		0.47	0.38	0.53	0.82	0.87	0.41	0.43	0.32	0.61	0.38	0.44	0.46	13	0.32	0.344	0.44	0.507	0.85	0.87
lotalaminsäure	2276-90-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
loxaglinsäure	59017-64-0	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	> > > > >	< <	0.06
loxitalaminsäure Andiik	28179-44-4	μg/l		0.0245	0.036	0.049	0.06	0.036	0.033	0.038	0.036	0.042	0.03	0.038	0.038	13	0.02	0.0236	0.036	0.0373	0.0556	0.06
	117.00.4	/1		0.0705	0.07	0.000	0.11	0.001	0.077	0.057	0.045	0.051	0.055	0.007	0.10	10	0.045	0.0474	0.077	0.0762	0.110	0.12
Amidotrizoesäure	117-96-4 606-17-7	μg/l	0.01	0.0705	0.07	0.096	0.11	0.081	0.077	0.057	0.045	0.051	0.055	0.087	0.12	13 13	0.045	0.0474	0.077	0.0762	0.116	
lodipamid		μg/l	0.01	0.0025	0.1	0.12	0.12	0.11	< 0.1	0.002	0.050	0.051	0.063	0.054	0.065	13	0.051	0.0522	0.001	0.000	0.13	0.13
lohexol	66108-95-0	μg/l		0.0825		0.13	0.13		0.1	0.093	0.058	0.051	0.062	0.054	0.065		0.051	0.0522	0.091	0.086		
lomeprol	78649-41-9	μg/l		0.25	0.26	0.32	0.44	0.33 0.075	0.33 0.091	0.3	0.28	0.26 0.063	0.19 0.062	0.27	0.2 0.11	13	0.19	0.194	0.28 0.078	0.283	0.396	0.44
lopamidol	60166-93-0	μg/l			0.078	0.093	0.1			0.076	0.068			0.09		13	0.062	0.0624	0.078	0.0845	0.116	0.12
lopromid	73334-07-3	μg/l	0.01	0.115	0.15	0.21	0.25	0.18	0.15	0.14	0.1	0.077	0.089	0.095	0.1	13 13	0.077	0.0818		0.136	0.234	0.25
lotalaminsäure loxaglinsäure	2276-90-6 59017-64-0	μg/l	0.01 0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
IUAAYIIIISAUI E	33017-04-0	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	

Röntgenkontrastmittel Andijk (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
loxitalaminsäure	28179-44-4	μg/l	0.01	0.019	0.024	0.023	0.025	0.019	0.018	0.015	0.011	<	<	<	<	13	<	<	0.015	0.0148	0.0246	0.025
Haringvliet	20173 44 4	μ9/1	0.01	0.013	0.024	0.020	0.023	0.013	0.010	0.013	0.011					10			0.013	0.0140	0.0240	0.023
Amidotrizoesäure	117-96-4	μg/l		0.04		0.06	0.04		0.1	0.08	0.11	0.06	0.05	0.17	0.29	12	0.02	0.026	0.07	0.095	0.254	0.29
lohexol	66108-95-0	1 0	0.1	< .0.04		0.18	0.13		0.125	< .00	<	0.00	0.03	0.17 <	0.15	12	0.02	0.020	0.07 <	0.102	0.171	0.18
lomeprol	78649-41-9	1 3,	0.1	0.19		0.33	0.13		0.38	0.18	0.26	0.18	0.25	0.25	0.51	12	0.16	0.166	0.25	0.278	0.492	0.51
lopamidol	60166-93-0	1 0.		0.065		0.05	0.25		0.30	0.10	0.20	0.10	0.23	0.23	0.31	12	0.10	0.043	0.115	0.105	0.432	0.2
lopansäure	96-83-3		0.01	0.003		0.03	< 0.03		0.13	0.11	< .12	0.00	0.1Z <	0.14	<	12	0.04	0.043	0.113	0.103	0.102	<
lopromid	73334-07-3	1 0	0.01	0.145		0.24	0.14		0.15	0.08	0.1	0.1	0.13	0.14	0.19	12	0.08	0.086	0.14	0.143	0.225	0.24
lotalaminsäure	2276-90-6		0.01	0.143							U.1 <	U.1 <			0.15	12	0.00			0.143		<
loxaglinsäure loxaglinsäure		1 0				<	<		<	<			<	<		12		<	<	<	<	
ů .	59017-64-0	1 0	0.1	< 0.005		< 0.05	< 0.00		< 0.00	< 0.00	<	<	<	<	< 0.04	12	<	<	< 0.00	0.0050	< 0.047	0.05
loxitalaminsäure	28179-44-4	μg/l	0.02	0.035		0.05	0.03		0.03	0.02	<	<	<	<	0.04	12	<	<	0.03	0.0258	0.047	0.05
Zytostatika																						
Nieuwegein																						
Cyclofosfamid	50-18-0	μg/l	0.0001	<	<	<		<	<	<	<	<	<			9	<	*	*	<	*	<
Ifosfamid	3778-73-2	1 0	0.0002	<	<	<	<	<	<	<	<	2		<	<	13	<	<	,	<	<	⟨ ■
Nieuwersluis	3770-73-2	μ9/1	0.0002													10						
Cyclofosfamid	50-18-0	μg/l	0.0001	<	<	<		<	<	<	<	<	<			9	<	*	*	<	*	<
Ifosfamid	3778-73-2	1 0	0.0001	<	<		<	<		0.0002	0.0003	0.0003	<		0.0002	13	<	<	<		0.0003	0.0003
Andiik	3770-73-2	μy/i	0.0002							0.0002	0.0003	0.0003			0.0002	10					0.0003	0.0003
Cyclofosfamid	50-18-0	μg/l	0.0001		<	<				<						9	<	*	*	<	*	
Ifosfamid	3778-73-2	1 3,		<				<	<		<	<	<			13	<					<
	3//8-/3-2	μg/l	0.0002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u></u>
Haringvliet	F0 40 0		0.01			_				_				_		10						
Cyclofosfamid	50-18-0	1 0.	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Ifosfamid	3778-73-2	1 3,	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Gemcitabin	95058-81-4	1 0.	0.1	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Methotrexat (MTX)	59-05-2	1 0	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Tamoxifen (TMX)	10540-29-1	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< =
5-Fluoruracil (5-FU)	51-21-8		1	<		<	<		<	<		<	<	<	<	11	<	<	<	<	<	<
Etoposid	33419-42-0	μg/l	0.1	<		<	<		<	<		<	<	<	<	11	<	<	<	<	<	<
Antihintika																						
Antibiotika Lobith																						
	01100 11 0		0.01		0.001	0.004				_		0.011		0.00	0.005	10				0.0110	0.0000	0.035
Clarithromycin	81103-11-9	1 3,	0.01	<		0.024	< 0.010	< 0.010	<	> > > >	> > > >	0.011	> > > >	0.02	0.035	13	<	<	<	0.0116	0.0306	0.035
Sulfamethoxazol	723-46-6		0.01	<		0.019	0.018	0.013	0.023	0.037	0.037	0.046	0.047	0.048	0.065	13	<	<	0.023	0.0294	0.0582	0.065
Acetyl-Sulfamethoxazol	21312-10-7	μg/l	0.01	<	0.011	0.01	<	<	<	<	<	<	<	0.013	0.028	13	<	<	<	<	0.022	0.028
Nieuwegein	FC 75 7	/1	0.000													10						<
Chloramphenicol	56-75-7		0.002	< 0.004	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	< *	
Clarithromycin	81103-11-9	1 0.	0.02	0.021	<	0.045	0.025	<	<		<	<				9	<	^	*	<		0.045
Oxacillin	66-79-5	1 3,	0.011	<	<	<	<	<	<	<		<		<	<	11	<	<	<	<	<	<
Sulfamethoxazol	723-46-6			0.009	0.015	0.012	0.014	0.015	0.012	0.011	0.016	0.013	0.015	0.017	0.022	13	0.008	0.0088	0.014	0.0138	0.02	0.022
Trimethoprim	738-70-5	1 3,	0.002	0.0035	0.005	0.006	0.005	0.002	<	<	<	<	<	0.002	0.004	13	<	<	0.002	0.00277	0.0056	0.006
Azithromycin	83905-01-5	1 0	0.02	<	<	<	<	<				<				7	<	*	*	<	*	<
Lincomycin	154-21-2	1 0.	0.0001	<	0.0001	0.0001	0.0001	0.0002	0.0001	0.0005	0.0001	<	<	0.0002	0.0002	13	<	<	0.0001	0.000138	0.00038	0.0005
Tiamulin	55297-95-5	1 0	0.002	<												2	*	*	*	*	*	*
Sulfaquinoxalin	59-40-5	1 3,	0.0002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Theophyllin	58-55-9	μg/l	0.015	<	<	<	0.018	<	0.028	<	<	0.02	<	0.015	<	13	<	<	<	<	0.0248	0.028
Acetyl-Sulfamethoxazol	21312-10-7	μg/l	0.01	<	0.01		<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	0.01
Nieuwersluis																						
Chloramphenicol	56-75-7	μg/l	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Clarithromycin	81103-11-9		0.02	<	<	0.065	0.051	0.036	0.024		<	0.048				9	<	*	*	0.0316	*	0.065
Oxacillin	66-79-5		0.011	<	<	<	<	<	<	<		<		<	<	11	<	<	<	<	<	<
		13.																				

Antibiotika	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwersluis (Fortsetzung) Sulfamethoxazol	723-46-6	ua/l		0.009	0.015	0.015	0.016	0.018	0.013	0.013	0.019	0.015	0.019	0.018	0.022	13	0.005	0.0082	0.015	0.0155	0.0208	0.022
		1 0	0.000		0.015																	0.022
Trimethoprim	738-70-5	1 0	0.002	0.008		0.012	0.012	0.005	0.002	<	0.006	0.008	0.003	0.007	0.009	13 7	<	<	U.UU/	0.00708	0.012	
Azithromycin	83905-01-5	1 0	0.02	< 0.0010	> > > >	0.028	0.028	0.022	0.0000	0.0007	0.0000	0.0004		0.0000	0.0004	,	<		0.0000	<	0.00010	0.028
Lincomycin	154-21-2		0.0001	0.0019	0.0007	0.0006	0.0002	0.0004	0.0002	0.0007	0.0003	0.0001	<	0.0002	0.0001	13	<	<	0.0003	0.000565	0.00212	
Tiamulin	55297-95-5		0.002	<												2	*	*	*	*	*	*
Sulfaquinoxalin	59-40-5	1 0	0.0002	<	<	<	<	<	<	0.0004	<	<	<	<	<	13	<	<	<	<	0.00028	0.0004
Theophyllin	58-55-9		0.015	<	0.018	0.02	0.025	<	0.032	0.024	0.018	0.028	0.016	0.022	0.019	13	<	<	0.019	0.0196	0.0304	0.032
Acetyl-Sulfamethoxazol	21312-10-7	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk			0.000													40						<
Chloramphenicol	56-75-7	μg/l	0.002	<		<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	< *	
Clarithromycin	81103-11-9	1 0	0.02	<	<	0.058	0.075	<	0.073		0.022	0.041				9	<	*	*	0.0343		0.075
Oxacillin	66-79-5		0.011	<	<	<	<	<	<	<		<		<	<	11	<	<	<	<	<	<
Sulfamethoxazol	723-46-6		0.004	0.0075	0.009	0.007	0.01	0.008	0.007	0.006	0.008	<	0.005	0.005	0.008	13	<	<	0.007	0.00692	0.0096	0.01
Trimethoprim	738-70-5	1 0	0.002	<	0.003	0.003	0.004	<	<	<	<	<	<	<	<	13	<	<	<	<	0.0036	0.004
Azithromycin	83905-01-5	1 0	0.02	<	0.024	0.21	0.17	0.038				0.17				7	<	*	*	0.0921	*	0.21
Lincomycin	154-21-2		0.0001	<	0.0001	0.0002	0.0001	0.0002	0.0001	0.0004	<	<	<	<	<	13	<	<	0.0001	0.000115	0.00032	0.0004
Tiamulin	55297-95-5	μg/l	0.002	<												2	*	*	*	*	*	*
Sulfaquinoxalin	59-40-5	μg/l	0.0002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Theophyllin	58-55-9	μg/l	0.015	<	<	<	0.018	<	<	<	<	<	<	<	<	13	<	<	<	<	<	0.018
Acetyl-Sulfamethoxazol	21312-10-7	μg/l	0.01	<	<		<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Chloramphenicol	56-75-7	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Clindamycin	18323-44-9		0.01	<		<	<		0.01	<	<	<	<	<	<	12	<	<	<	<	0.01	0.01
Cloxacillin	61-72-3	1 0	0.03	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Dicloxacillin	3116-76-5	1 0	0.03	<		<	<		<	<	<	<		<	<	12	<	<		<	<	<
Furazolidon	67-45-8	1 0	0.01	<		<			<	0.02				<	<	12	<	<			0.0155	0.02
Metronidazol	443-48-1	μg/l	0.01	<					<	0.02	`					11					0.0133	0.02 <u> </u>
Nafcillin	147-52-4	μg/l	0.01	<		<	<		<	<	<	<		<	<	12	<	<		<		< <u>-</u>
Oleandomycin	7060-74-4		0.02	<					<							12				<		<
Oxacillin		1 3	0.05			<				<	<	<		<	<	12	<	<	<	•		. 🚆
	66-79-5			<		<	<		<	<	<	<	<	<	<		<	<	<	<	<	<
Ronidazol	7681-76-7	μg/l	0.01	<		<	<		<	<		<	<	<	<	11	<	<	<	<	<	
Roxithromycin	80214-83-1	μg/l	0.1	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Sulfamethoxazol	723-46-6		0.01	<		0.01	<		<	0.01	<	<	0.01	0.04	0.04	12	<	<	<	0.0125	0.04	0.04
Trimethoprim	738-70-5	1 0	0.002	0.003		0.006	0.003		<	<	<	<	<	<	0.003	12	<	<	<	0.00217	0.0054	0.006
Tylosin	1401-69-0	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Indomethacin	53-86-1	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Azithromycin	83905-01-5	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Lincomycin	154-21-2	μg/l	0.0001	0.0001		0.0003	0.0004		0.0002	0.0005	0.0001	<	<	<	0.0001	12	<	<	0.0001	0.000179	0.00047	0.0005
Monensin	17090-79-8	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Tiamulin	55297-95-5	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Sulfaquinoxalin	59-40-5		0.0002	<		<	<		<	<	<	<	<	<	0.0002	12	<	<	<	<	<	0.0002 = 0.024 =
Theophyllin	58-55-9	μg/l	0.015	<		0.016	0.024		0.0157	0.017	<	<	<	<	0.015	12	<	<	<	<	0.024	0.024
Spiramycin I	24916-50-5		0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Spiramycin II	24916-51-6	1 0	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Spiramycin III	24916-52-7	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< ■
Cefuroxim	55268-75-2		1.5	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< ■
Antibiotika aus der Sulphamid-Gruppe		7 3																				
Haringvliet																						
Dapson	80-08-0	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Sulfadiazin	68-35-9		0.1	<		<	<		<	<	<		<	<	<	12	<	<	<		<	<
Sulfadimidin	57-68-1	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<		<	<	< ▶
Valladillidill	37 00-1	μ9/1	0.01						`	`	•	`	`	`	`	12		,	•			_

Antibiotika aus der Sulphamid-Gruppe Haringvliet (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt
Sulfamerazin	127-79-7	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< =
Sulfachlorpyridazin	80-32-0		0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Sulfadimethoxin	122-11-2		0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Betablocker und Diuretika																						
Lobith																						
Atenolol	29122-68-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	0.013	0.023	13	<	<	<	<	0.019	0.023
Betaxolol	63659-18-7	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Bisoprolol	66722-44-9	μg/l	0.01	<	0.013	0.016	<	<	<	<	0.017	0.014	0.016	0.028	0.057	13	<	<	0.013	0.0147	0.0454	0.057
Metoprolol	37350-58-6	μg/l		0.041	0.059	0.077	0.038	0.045	0.055	0.069	0.16	0.078	0.12	0.19	0.31	13	0.038	0.0384	0.069	0.0987	0.262	0.31
Pindolol	13523-86-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Propranolol	525-66-6	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Sotalol	3930-20-9	μg/l	0.01	<	<	0.012	<	<	<	<	0.011	0.011	0.025	0.034	0.042	13	<	<	<	0.0131	0.0388	0.042
Hydrochlorothiazid	58-93-5	μg/l		0.075	0.08	0.08	0.06	0.04	0.04	0.04	0.08	0.05	0.08	0.14	0.28	13	0.04	0.04	0.08	0.0862	0.224	0.28
Valsartan	137862-53-4	μg/l		0.135	0.24	0.28	0.18	0.14	0.08	0.08	0.07	0.04	0.06	0.08	0.24	13	0.04	0.048	0.13	0.135	0.264	0.28
Telmisartan	144701-48-4	μg/l		0.015	0.02	0.03	0.03	0.03	0.02	0.03	0.05	0.05	0.05	0.06	0.08	13	0.01	0.014	0.03	0.0369	0.072	0.08
Valsartansäure	164265-78-5			0.045	0.15	0.06	0.16	0.43	0.21	0.57	0.66	0.16	0.28	0.21	0.22	13	0.03	0.042	0.21	0.246	0.624	0.66
Nieuwegein		1 0-																				
Atenolol	29122-68-7	μg/l		0.0035	0.004	0.004	0.003	0.001	0.002	0.001	0.0008	0.001	0.0008	0.004	0.007	13	0.0008	0.0008	0.003	0.00274	0.0058	0.007
Bisoprolol	66722-44-9	μg/l		0.0035	0.003	0.005	0.005	0.001	0.008	0.0004	0.0008	0.0009	0.001	0.004		12	0.0004	0.00052	0.002	0.00301	0.0074	0.008
Metoprolol	37350-58-6	μg/l		0.021	0.014	0.025	0.028	0.016	0.046	0.01	0.016	0.016	0.017	0.056	0.052	13	0.007	0.0082	0.017	0.026	0.0544	0.056
Propranolol	525-66-6	μg/l	0.0003	0.00135	0.001	0.002	0.002	0.0005	0.002	0.0006	0.0004	<	<	0.002	0.004	13	<	0.0002	0.001	0.00135	0.0032	0.004
Sotalol	3930-20-9	μg/l	0.0000	0.01	0.018	0.018	0.017	0.012	0.011	0.021	0.014	0.02	0.026	0.11	0.1	13	0.008	0.0092	0.018	0.0298	0.106	0.11
Hydrochlorothiazid	58-93-5	μg/l	0.004	0.08	0.069	0.062	0.031	0.006	0.019	0.004	< 0.014	0.019	0.020	0.055	0.093	13	< .000	0.0032	0.010	0.0408	0.0972	0.1
Valsartan	137862-53-4	μg/I	0.004	0.12	0.003	0.002	0.031	0.000	0.013	0.004	0.02	0.013	0.011	0.033	0.033	13		0.011	0.031	0.106	0.0372	0.28
Valsartansäure	164265-78-5	μg/I	0.01	0.12	0.13	0.20	0.213	0.12	0.07	0.04	0.38	0.49	0.44	0.02	0.47	13	0.04	0.056	0.07	0.272	0.486	0.49
Nieuwersluis	104203-70-3	ру/1		0.04	0.00	0.1	0.13	0.23	0.23	0.27	0.50	0.40	0.44	0.40	0.47	10	0.04	0.030	0.23	0.272	0.400	0.43
Atenolol	29122-68-7	μg/l		0.007	0.009	0.011	0.009	0.005	0.004	0.004	0.004	0.007	0.002	0.007	0.007	13	0.002	0.0028	0.007	0.00638	0.0102	0.011
Bisoprolol	66722-44-9	μg/I		0.007	0.005	0.009	0.003	0.003	0.004	0.004	0.004	0.007	0.002	0.007	0.007	12	0.002	0.0020	0.007	0.00408	0.0102	0.009
Metoprolol	37350-58-6	μg/I		0.0023	0.068	0.068	0.058	0.002	0.064	0.038	0.053	0.062	0.003	0.069	0.066	13	0.001	0.0013	0.063	0.0568	0.0004	0.003
Propranolol	525-66-6	μg/I		0.005	0.006	0.006	0.006	0.041	0.004	0.002	0.006	0.002	0.074	0.003	0.000	13	0.002	0.0332	0.002	0.00492	0.072	0.008
Sotalol	3930-20-9	1 0		0.0665	0.000	0.000	0.000	0.002	0.002	0.002	0.000	0.007	0.003	0.000	0.008	13	0.002	0.0502	0.000	0.00432	0.0076	0.008
		μg/l												0.13		13						0.10
Hydrochlorothiazid Andiik	58-93-5	μg/l		0.12	0.13	0.093	0.066	0.031	0.023	0.016	0.073	0.1	0.054	0.1	0.22	13	0.016	0.0188	0.093	0.0882	0.188	0.22
Atenolol	20122 60 7	/1	0.0001	0.002	0.000	0.002	0.002	0.0004					0.0002	<	0.0002	10			0.0002	0.000005	0.002	0.002
	29122-68-7	μg/l	0.0001	0.002	0.002	0.002	0.002	0.0004	> 0,000	<	< 0.0002	<	0.0003	`	0.0003	13	<	<		0.000865	0.002	0.002
Bisoprolol	66722-44-9	μg/l	0.0002	0.00155	0.002	0.003	0.005	0.0004	0.0009	<	0.0003	<	<	<	0.010	12	<	<	0.00035	0.00126	0.0044	_
Metoprolol	37350-58-6	μg/l	0.005	0.022	0.011	0.022	0.026	0.005	0.009	<	<	<	<	<	0.013	13	<	<	0.009	0.011	0.0296	0.032
Propranolol	525-66-6	μg/l	0.0003	0.0008	0.0008	0.001	0.001	<	0.0005	0.0006	<	<	<	<	<	13	<	<		0.000492	0.001	0.001 = 0.016 1
Sotalol	3930-20-9	μg/l	0.0001	0.0135	0.016	0.016	0.0002	<	<	0.0006	<	<	<	<	<	13	<	<	<	0.00463	0.016	0.016
Hydrochlorothiazid	58-93-5	μg/l	0.004	0.0575	0.04	0.024	<	<	<	<	<	<	0.004	<	0.008	13	<	<	<	0.0158	0.0584	0.062
Valsartan	137862-53-4	μg/l	0.01	0.07	0.12	0.07	0.135	0.06	0.03	<	<	<	<	<	<	13	<	<	0.03	0.05	0.136	0.14
Valsartansäure	164265-78-5	μg/l		0.11	0.07	0.09	0.13	0.17	0.2	0.32	0.29	0.3	0.32	0.33	0.33	13	0.07	0.078	0.2	0.215	0.33	0.33
Haringvliet	00400																					
Atenolol	29122-68-7	μg/l	0.05			<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< = 0.01 =
Bisoprolol	66722-44-9	μg/l		0.003		0.01	0.004			0.0009	0.0009	0.001	0.003	0.003		11	0.0009	0.0009	0.003	0.0038	0.0094	0.01
Metoprolol	37350-58-6	μg/l	0.1	<		<	<		<	<	<	<	<	<	0.1	12	<	<	<	<	<	0.1
Propranolol	525-66-6	μg/l	0.0003	0.002		0.003	0.001			0.0006	<	<	<	<	0.004	12	<	<	0.001	0.00135	0.0037	0.004
Sotalol	3930-20-9	μg/l	0.0001	0.015		0.03	0.011		0.01	0.003	0.003	0.003	<	0.008	0.033	12	<	0.000935	0.0095	0.0118	0.0321	0.033
Hydrochlorothiazid	58-93-5	μg/l	0.004	0.0695		0.042	0.008		0.0065	<	<	<	<	<	0.071	12	<	<	0.005	0.0236	0.0801	0.084
Valsartan	137862-53-4	μg/l	0.05	0.102		<	<		0.095	<	<	<	<	<	<	12	<	<	<	<	0.162	0.18

Schmerzstillende und fiebersenkende Mittel	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Lidocain	137-58-6	μg/l	0.01	<	<	<	0.01	<	<	<	0.01	0.01	0.02	0.02	0.03	13	<	<	<	0.0104	0.026	0.03
Diclofenac	15307-86-5	1 3	0.01	0.042	0.052	0.049	0.036	0.017	0.034	0.024	0.053	0.029	0.02	0.02	0.03	13	0.017	0.0198	0.044	0.0104	0.020	0.03
Ibuprofen	15687-27-1	μg/I	0.01	0.042	0.032	0.043	0.000	0.017	0.034	0.024	0.033	0.023	0.00	0.11	0.23	13	0.017	0.0130	0.044	0.0014	0.134	0.23
Naproxen	22204-53-1		0.01	0.0123	0.00	0.02	<	<	<	<	<	<		0.014	0.00	13	<	,		0.0173	0.072	0.035
Phenazon	60-80-0	μg/l	0.01				-	0.01	0.01		0.03	0.01	0.02	0.014	0.033	13		<	0.01	0.0111	0.0316	0.033
		10		<	<	<	<			< 0.01						13	<	<	0.01			
Primidon	125-33-7	μg/l	0.01	0.015	0.00	0.00	< 0.00	< 0.00	< 0.00	0.01	0.02	0.03	0.02	0.03	0.04		0.01	< 0.014	0.00	0.0142	0.036	0.04
Tramadol	27203-92-5	10		0.015	0.02	0.02	0.02	0.02	0.02	0.03	0.04	0.02	0.05	0.05	0.06	13	0.01	0.014	0.02	0.0292	0.056	
N-Acetyl-4-Aminoantipyrin (AAA)	83-15-8	1 0		0.084	0.11	0.11	0.075	0.072	0.14	0.27	0.22	0.15	0.2	0.19	0.29	13	0.072	0.0724	0.14	0.153	0.282	0.29
N-Formyl-4-Aminoantipyrin (FAA)	1672-58-8	μg/l		0.09	0.12	0.11	0.1	0.09	0.15	0.38	0.28	0.18	0.28	0.29	0.39	13	0.06	0.072	0.15	0.196	0.386	0.39
Nieuwegein	407.50.0			0.00405	0.004	0.004							0.004		0.004	40			0.000			0.009
Lidocain	137-58-6	μg/l	0.001	0.00125	0.001	0.001	0.003	0.003	0.009	<	0.004	0.002	0.001	0.007	0.004	13	<	<	0.002	0.00292	0.0082	0.009
Diclofenac	15307-86-5	1 3	0.004	<	0.02	0.008	<	<	<	<	<	<	<	<	<	13	<	<	<	0.00408	0.0152	0.02
Ibuprofen	15687-27-1	μg/l	0.032	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ketoprofen	22071-15-4	μg/l	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Naproxen	22204-53-1	μg/l	0.0006	<	0.001	0.002	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.0016	0.002
Phenazon	60-80-0	μg/l		0.0025	0.01	0.005	0.007	0.009	0.007	0.009	0.009	0.01	0.009	0.011	0.011	13	0.002	0.0024	0.009	0.00785	0.011	0.011
Propyphenazon	479-92-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Primidon	125-33-7	μg/l	0.001	0.00125	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.004	<	0.004	0.004	13	<	<	0.003	0.00269	0.004	0.004
Paracetamol	103-90-2		0.001	0.006	0.039	0.015	0.013	0.011	<	<	0.004	<	0.012	0.012	0.004	13	<	<	0.008	0.0095	0.0294	0.039
Salicylsäure	69-72-7		0.011	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
N-Acetyl-4-Aminoantipyrin (AAA)	83-15-8	1 0		0.12	0.16		0.2	0.15	0.14	0.09	0.11	0.17	0.15	0.16	0.19	13	0.09	0.098	0.15	0.151	0.202	0.21
N-Formyl-4-Aminoantipyrin (FAA)	1672-58-8	1 0		0.11	0.14		0.2	0.2	0.17	0.13	0.19	0.27	0.22	0.22	0.28	13	0.09	0.106	0.19	0.188	0.276	0.28
1-Hydroxy-Ibuprofen	53949-53-4	μg/l	0.02	· · · · · · · · · · · · · · · · · · ·	<	<	<	<	<	<	0.10	0.27	0.22	0.22	<	12	0.00	0.100	0.10	0.100	0.270	<
Nieuwersluis	33343-33-4	μ9/1	0.02													12						
Lidocain	137-58-6	μg/l		0.002	0.005	0.006	0.006	0.013	0.011	0.006	0.012	0.009	0.004	0.008	0.008	13	0.001	0.0018	0.006	0.00708	0.0126	0.013
Diclofenac	15307-86-5	1 3	0.004	0.002	0.003	0.006	0.000				0.012	0.003	0.004	0.000	0.006	13	0.001	0.0010	0.000	0.00708	0.0120	0.013
		10	0.004					<	<	<	`			`		13	`		<	0.00440		
Ibuprofen	15687-27-1	μg/l		<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	
Ketoprofen	22071-15-4	1 0	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	< 0.00100	<	
Naproxen	22204-53-1	μg/l	0.0006	0.0025	0.005	0.005	0.003	<	<	<	<	0.0009	<	<	<	13	<	<	<	0.00162	0.005	
Phenazon	60-80-0	10		0.005	0.008	0.008	0.008	0.009	0.01	0.01	0.01	0.009	0.009	0.012	0.012	13	0.004	0.0048	0.009	0.00885	0.012	0.012
Primidon	125-33-7	μg/l	0.001	<	0.002	0.003	0.002	0.003	0.003	0.003	0.003	0.003	<	0.004	0.004	13	<	<	0.003	0.00246	0.004	0.004
Paracetamol	103-90-2		0.001	0.0165	0.062	0.044	0.02	0.016	0.012	<	<	0.012	0.009	<	0.029	13	<	<	0.012	0.0183	0.0548	0.062
Salicylsäure	69-72-7	1 0	0.011	0.0577	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	0.0135	0.0682	0.11
1-Hydroxy-Ibuprofen	53949-53-4	μg/l	0.02	<	<	<	<	<	<	<		<	<	<	<	12	<	<	<	<	<	<
Andijk																						
Lidocain	137-58-6	μg/l	0.001	0.00125	<	0.001	0.003	0.001	0.003	<	0.002	<	<	0.002	0.003	13	<	<	0.001	0.0015	0.003	0.003
Diclofenac	15307-86-5	μg/l	0.004	<	0.006	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.0044	0.006
Ibuprofen	15687-27-1	μg/l	0.032	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Ketoprofen	22071-15-4	μg/l	0.002	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Naproxen	22204-53-1	μg/l	0.0006	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenazon	60-80-0			0.002	0.003	0.003	0.004	0.004	0.005	0.004	0.004	0.004	0.004	0.005	0.006	13	0.002	0.002	0.004	0.00385	0.0056	0.006
Propyphenazon	479-92-5	1 0	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Primidon	125-33-7	μg/l	0.001	<	0.001	0.001	0.002	0.001	0.002	0.002	0.001	0.002	0.001	0.002	0.002	13			0.001	0.00138	0.002	0.002
Paracetamol	103-90-2		0.001	0.00125	0.011	0.005	0.002	<	<	<	<	0.002	0.00.	<	<	13	<	<	· · · · ·	0.00177	0.0086	0.011
Salicylsäure	69-72-7	μg/I	0.001	< 0.00123	0.011	0.003		<	<		<				<	13		<		0.00177	0.0000	<
N-Acetyl-4-Aminoantipyrin (AAA)	83-15-8		0.011	0.09	0.08	,	0.125	0.09	0.1	0.08	0.07	0.07	0.08	0.09	0.11	13	0.07	0.07	0.09	0.0923	0.126	0.13
N-Formyl-4-Aminoantipyrin (FAA)	1672-58-8	1 0		0.09	0.08		0.125	0.03	0.1	0.00	0.07	0.07	0.00	0.03	0.11	13	0.07	0.07	0.09		0.120	0.13
· · · · · · · · · · · · · · · · · · ·			0.00								0.1	0.09	0.09						0.1	0.107		
1-Hydroxy-Ibuprofen	53949-53-4	μg/l	0.02	<	<	<	<	<	<	<		<	<	<	<	12	<	<	<	<	<	<
Haringvliet																						
Lidocain	107 50 0		0.004	0.00105		0.004	0.004		0.0075	0.000	0.000	0.000	0.000	0.004	0.000	10			0.004	0.00400	0.0007	0.000
D: 1 (137-58-6	1 3	0.001	0.00125		0.004	0.004		0.0075	0.002	0.003	0.002	0.006	0.004	0.009	12	<	<	0.004	0.00429	0.0087	0.009
Diclofenac Fenoprofen	137-58-6 15307-86-5 31879-05-7	μg/l	0.001 0.01 0.1	0.00125 0.035		0.004 0.02	0.004 0.01		0.0075 <	0.002	0.003	0.002	0.006	0.004	0.009 0.03	12 12 12	< <	< < <	0.004	0.00429 0.0137	0.0087 0.037	0.009

Section Sect	Schmerzstillende und fiebersenkende Mittel Haringvliet (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Segretary 1964 1965 19		15687-27-1	ua/l	0.032													12						/ 🖃
Mary Stand 1904 1906 1907 1	·																						
Paragram Paragram	•							-							`								0 003
According with plant Spring Sprin	•																						0.003
The second continue								0.004					0.000						0.00037		0.00404		0.003
Processor 1965 1966 1975 1966 1975 1976 19					,			<			`		<	,	<				<	`	<	-	< <u>-</u>
Parentam 1948 29 19 10 10 10 10 10 10 1								<							0.04				<				
Sakopathon								0.010							0.04				<	-			0.04
Transfer 1978 197															<				`	`			0.014
Property Property	,							<				<											<
Proper P					<		<	<			<	<	<	<	<	0.06		<	<	-	<	-	0.06
Content	Benzocain	94-09-7	μg/l	0.01	<		<	<		<	<		<	<	<	<	11	<	<	<	<	<	<
Description Substant Substa																							
Validation Val																							
Changes (Changes)	•				0.0125					<	,							<	<				0.03
Manufact Manufact	Venlafaxin	93413-69-5	μg/l	0.01	<	0.02	0.03	0.02	0.01	<	0.02	0.02	0.03	0.02	0.03	0.04	13	<	<	0.02	0.0196	0.036	
New	O-Desmethylvenlafaxin	93413-62-8	μg/l		0.03	0.05	0.05	0.03	0.03	0.03	0.03	0.04	0.05	0.07	0.09	0.09	13	0.02	0.024	0.04	0.0477	0.09	0.09
Darsyman 1931-84 194 1	Didesmethylvenlafaxin		μg/l	0.01	<	<	<	<	<	<	<	0.01	0.02	0.02	0.02	0.02	13	<	<	<	<	0.02	0.02
Dazepam Self-751 Mg Mg Mg Mg Mg Mg Mg M	Nieuwegein																						
Dazepam Self-751 Mg Mg Mg Mg Mg Mg Mg M	Diazapam	439-14-5	μg/l	0.0002	<	<	<	<	<	<	0.0003	<	<	<	<	<	13	<	<	<	<	0.00022	0.0003
Temparage May May	Oxazepam	604-75-1		0.001	0.00125	0.001	0.002	0.002	0.003	0.003	0.002	0.003	0.002	0.001	0.007	0.007	13	<	<	0.002	0.00273	0.007	0.007
Paragina 1888 1987 1988 198	·	846-50-4		0.0004	<	<	<	0.0005	0.0008	0.001	0.001	0.001	0.0006	0.0005	0.004	0.003	13	<	<	0.0006	0.00103	0.0036	0.004
New part New part	·				<		0.004										7	<	*	*			
Dataspam		01000 00 7	P9/1	0.000	`		0.001	0.000									,						0.000
Dazapam		439-14-5	un/l	0.0002		,	0.0002	0.0002			0.0004	0.0002	0.0002		0.0002		13		,	,		0 00032	0.0004
Temset pame				0.0002															,				0.0004
Properigh 1889-087 1991 1003	•		1 0.																				0.003
Part	·			0.002		0.003					0.000		0.000	0.004	0.004	0.004	7		0.0020 *				
Diazapam		01003-00-7	μу/і	0.003	0.0337		<	<	<	 <		0.003					1	<			0.0112		0.000
0.00		420 14 5	//	0.0002							0.0002						10					0.00000	0.0002
Temate Mark Mark	•														,				<				0.0003
Parciagn	·										,								<				0.003
Harmogylet Diazapam	•					0.0004					0.0006		0.0004	<	0.001	0.001			<				
Diazapam		61869-08-7	μg/l	0.003	0.00375		0.054	0.048	0.004	0.048		0.052					7	<	*	*	0.0305	*	0.054
Caracepam G04-75-1 yg/ 0.01 c 0.01 c 0.01 c 0.00 0.001 c c 0.00 c c c c c c c c c																							
Temazepam	•				<			<			0.0003	<	<	<	<			<	<	<	<		0.0003
Fluoxetin 54910-89-3 yg/l 0.05 < < < < < < < < <	Oxazepam	604-75-1	μg/l	0.01	<		0.01			0.01	<	<	<	<	<	0.02		<	<	<			0.02
Paroxetin Paro	Temazepam	846-50-4	μg/l	0.0004	0.00045		0.001	0.001		0.002	0.0006	0.0004	0.0005	0.001	0.001	0.002	12	<	<	0.001	0.00103	0.002	0.002
Cholesterinsenkende Mittel Cholith Chol	Fluoxetin	54910-89-3	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	
Colith C	Paroxetin	61869-08-7	μg/l	0.003	<		<	<		<		<					6	<	*	*	<	*	<
Colith C	Cholesterinsenkende Mittel																						
Rezafibrat 1859-67-0 yg/l 0.01 < 0.01 < < <																							
Nieuwegin Nie		41859-67-0	ua/l	0.01	,	0.01	,	,	,	,	,	,	,	0.032	0.011	0.019	12		,	,	,	0.0268	0.032
Bezafibrat 41859-67-0 µg/l 0.0007 0.001 0.003 0.001 < < < < < 0.0009		41000-07-0	μ9/1	0.01		0.01					,		,	0.032	0.011	0.013	13		_		_	0.0200	0.002
Clofibrinsäure 882-09-7 \(\begin{array}{c c c c c c c c c c c c c c c c c c c	•	A1950 67 0	ua/l	0.0007	0.00167	0.002	0.002	0.002	0.001	0.001		,			0.0000	0.001	12			0.001	0.00120	0.002	0.002
Fenofibrat 49562-28-9 µg/l 0.002 < < < < < < < < < < < < < < < < < < <								0.003			`		,	<	0.0009				<		0.00128		0.003
Fenofibrinsäure 42017-89-0 \(\begin{array}{c ccccccccccccccccccccccccccccccccccc								<		<	<		<	<	<	<	13		< *	<	<		
								<				`					15			*			< <u> </u>
						<		<	<		<			<	<			<					<
					<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
									<								1	*	*	*	*	*	*
			μg/l		<	<		<	<	<		<	<		<	<		<	<	<	<	<	<
	Pravastatin	81093-37-0	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

Cholesterinsenkende Mittel	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Bezafibrat	41859-67-0	μg/l	0.0007	0.0015	0.003	0.005	0.003	0.002	0.0009	<	<	<	<	0.001	0.002	13	<	<	0.001	0.00164	0.0042	0.005
Clofibrinsäure	882-09-7	μg/I	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenofibrat	49562-28-9	μg/l	0.002	<	<	<	<	<			<					7	<	*	*	<	*	<
Fenofibrinsäure	42017-89-0	μg/l	0.004	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Gemfibrozil	25812-30-0	μg/l	0.006	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Atorvastatin	134523-00-5	μg/l	0.005	<	<		<	<	<		<	<		<	<	10	<	<	<	<	<	<
Pravastatin	81093-37-0	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																						
Bezafibrat	41859-67-0	μg/l	0.0007	<	0.001	0.002	0.002	<	<	<	<	<	<	<	<	13	<	<	<	0.000704	0.002	0.002
Clofibrinsäure	882-09-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenofibrat	49562-28-9	μg/l	0.002	<	<	0.003	<	<			0.003					7	<	*	*	<	*	0.003
Fenofibrinsäure	42017-89-0	μg/l	0.004	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Gemfibrozil	25812-30-0	μg/l	0.006	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< =
Atorvastatin	134523-00-5	μg/l	0.005	<	<		<	<	<		<	<		<	<	10	<	<	<	<	<	<
Pravastatin	81093-37-0	μg/l	0.05	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Pentoxifyllin	6493-05-6	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Bezafibrat	41859-67-0	μg/l	0.0007	0.002		0.004	0.002		<	<	<	<	<	<	0.002	12	<	<	<	0.00126	0.0034	0.004
Clofibrinsäure	882-09-7	μg/l	0.005	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Fenofibrat	49562-28-9	μg/l	0.03	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Fenofibrinsäure	42017-89-0	μg/l	0.004	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Gemfibrozil	25812-30-0	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Atorvastatin	134523-00-5	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Pravastatin	81093-37-0	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Sonstige Arzneimittel Lobith														_								
Carbamazepin	298-46-4	μg/l	0.01	0.0115	0.021	0.024	0.016	0.023	0.029	0.063	0.078	0.066	0.068	0.088	0.12	13	<	<	0.029	0.0476	0.107	0.12
Metformin	657-24-9	μg/l		0.605	0.69	0.85	0.47	0.44	0.38	0.39	0.57	0.46	0.4	0.38	0.99	13	0.38	0.38	0.47	0.556	0.934	0.99
Metformin (Fracht)		g/s		2.96	1.47	1.71	0.892	0.87	0.792	0.433	0.543	0.457	0.356	0.321	1.02	13	0.321	0.335	0.87	1.14	2.97	3.02
Furosemid	54-31-9	μg/l	0.01	0.02	0.01	0.01	<	<	<	<	<	<	<	0.01	0.03	13	<	<	<	0.0104	0.026	0.03
Guanylharnstoff	141-83-3	μg/l	0.05	1.12	2.1	2.1	<	0.98	0.84	0.94	1.9	1.7	2	2.4	3.2	13	<	0.351	1.7	1.57	2.88	3.2
Gabapentin	60142-96-3	μg/l		0.15	0.25	0.32	0.27	0.21	0.14	0.18	0.21	0.18	0.19	0.23	0.47	13	0.14	0.14	0.21	0.227	0.41	0.47
Levetiracetam	102767-28-2	μg/l	0.01	0.015	<	0.01	<	<	<	<	<	<	<	<	0.02	13	<	<	<	<	0.02	0.02
10,11-Dihydro-10,11-Dihydroxycarbamazepin	58955-93-4	μg/l		0.028	0.043	0.045	0.035	0.022	0.056	0.08	0.096	0.11	0.11	0.12	0.13	13	0.022	0.022	0.056	0.0695	0.126	0.13
Lamotrigin	84057-84-1	μg/l	0.01	0.0125	0.03	0.03	0.04	0.03	0.03	0.06	0.07	0.08	0.08	0.08	0.08	13	<	0.011	0.04	0.0488	0.08	0.08
Cetirizin	83881-51-0	μg/l	0.01	<	<	<	0.02	0.02	0.02	<	0.01	0.01	0.01	0.01	0.02	13	<	<	0.01	0.0112	0.02	0.02
Sitagliptin	486460-32-6	μg/l		0.08	0.47	0.12	0.12	0.11	0.1	0.12	0.13	0.09	0.16	0.19	0.25	13	0.07	0.078	0.12	0.155	0.382	0.47
Oxipurinol	2465-59-0	μg/l		1.07	0.54	0.63	0.92	0.92	0.31	1.1	1.1	1.3	1.3	1.6	2.4	13	0.31	0.318	1.1	1.1	2.16	2.4
Atenololsäure	56392-14-4	μg/l		0.0655	0.094	0.1	0.09	0.057	0.041	0.052	0.06	0.047	0.069	0.084	0.17	13	0.041	0.0434	0.069	0.0765	0.142	0.17
Candesartan	139481-59-7	μg/l		0.03	0.06	0.06	0.08	0.07	0.04	0.09	0.16	0.12	0.16	0.18	0.24	13	0.03	0.03	0.08	0.102	0.216	0.24
Nieuwegein																						
Koffein	58-08-2	μg/l	0.015	0.165	0.19	0.11	0.19	<	0.26	0.045	0.047	0.23	0.053	0.072	0.079	13	<	0.0225	0.11	0.124	0.248	0.26
Carbamazepin	298-46-4	μg/l	0.005	0.00625	0.006	0.009	0.013	0.012	0.022	0.011	0.019	0.017	0.007	0.028	0.023	13	<	<	0.012	0.0138	0.026	0.028
Losartan	114798-26-4	μg/l		0.0045	0.004	0.007	0.009	0.009	0.007	0.004	0.005	0.003	0.005	0.012	0.016	13	0.002	0.0024	0.007	0.00692	0.0144	0.016
Enalapril	75847-73-3	μg/l	0.0002	<	<	0.0003	<	<	<	<	<	<	<	<	<	13	<	<	<	<	0.00022	0.0003
Flunisolid	3385-03-3	μg/l	0.015	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Desoximetason	382-67-2	μg/l	0.003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ▶
Fluorometholon	426-13-1	μg/l	0.015	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Dexamethason	50-02-2	μg/l	0.015	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Amcinonid	51022-69-6	μg/l	0.03	<	<	<	<	<	<	0.051	<			<	<	11	<	<	<	<	0.0438	0.051
Metformin	657-24-9	μg/l		0.57	0.63		0.695	0.41	0.41	0.29	0.25	0.37	0.27	0.29	0.36	13	0.25	0.258	0.41	0.447	0.704	0.74

Sonstige Arzneimittel	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	J	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein (Fortsetzung)																							
Metformin (Fracht)		g/s		0.53	0.271		0.184	0.0806	0.	.143 0	0.0029	0.0098	0.00755	0.0027	0.0029	0.0036	13	0.0027	0.00278	0.0682	0.15	0.564	0.701
Furosemid	54-31-9	μg/l	0.003	0.0147	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	0.00354	0.0174	0.028
Guanylharnstoff	141-83-3	μg/l	0.05	0.925	1.2		0.56	<	0	0.45	0.19	0.18	0.51	0.52	0.68	1.3	13	<	0.063	0.52	0.617	1.26	1.3
Gabapentin	60142-96-3	μg/l		0.17	0.2		0.345	0.27	0	0.21	0.2	0.2	0.19	0.21	0.24	0.31	13	0.14	0.16	0.21	0.235	0.364	0.4
Irbesartan	138402-11-6	μg/l	0.01	0.02	0.04	0.05	0.035	0.02	0	0.02	0.01	<	0.02	0.02	0.04	0.07	13	<	<	0.02	0.0296	0.062	0.07
Pinoxaden	243973-20-8	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,3-bis(sulfanyl)butandisäure (DMSA)	304-55-2	μg/l	0.005	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
10,11-Dihydro-10,11-Dihydroxycarbamazepin	58955-93-4	μg/l	0.02		<	0.022	0.022	0.024	0.1	.025	0.022	0.03	0.029	<	0.042	0.052	11	<	<	0.024	0.0262	0.05	0.052
Lamotrigin	84057-84-1	μg/l	0.03	<	0.05		0.055	0.08		0.07	0.07	0.09	0.11	0.11	0.12	0.13	13	<		0.07	0.0765	0.126	0.13
Sitagliptin	486460-32-6	μg/l	0.00	0.04	0.07	0.09	0.085	0.06		0.06	0.04	0.05	0.05	0.04	0.06	0.09	13	0.04	0.04	0.06	0.0631	0.096	0.1
Oxigurinol	2465-59-0	μg/l	0.5	<	0.55	0.81	0.83	0.83		0.94	0.86	0.68	0.98	1.7	1.3	1.3	13	<	0.01	0.85	0.912	1.54	1.7
Candesartan	139481-59-7	μg/l	0.05	<	0.05	0.07	0.065	0.07		0.07	0.05	0.07	0.11	0.1	0.1	0.15	13	<		0.03	0.0765	0.134	0.15
Carbamazepin-10,11-epoxid	36507-30-9		0.03	<	0.03	0.07	0.003	0.07	Ü	<	0.03	< .0.07	V.11	0.1 <	0.1	0.13 <	13	<		< .0.07	0.0703	0.134	<
Gabapentin-lactam	64744-50-9	μg/l	0.01	0.01	0.03	0.04	0.04	0.06	0	0.05	0.05	0.06	0.07	0.06	0.06	0.07	13	0.01	0.018	0.05	0.0492	0.07	0.07
Nieuwersluis	04/44-30-9	μg/l		0.01	0.03	0.04	0.04	0.00	U	ບ.ບວ	0.05	0.00	0.07	0.00	0.00	0.07	13	0.01	0.010	0.00	0.0492	0.07	0.07
	F0 00 0		0.015	0.105	0.15	0.15	0.01		0.4	000	0.05	0.11	0.10	0.050	0.04		10			0.11	0.110	0.000	0.24
Koffein	58-08-2	μg/l	0.015	0.165	0.15	0.15	0.21	< 0.00		.088	0.05	0.11	0.13	0.056	0.24	> 0.000	13	< 0.000	0.0000	0.11	0.118	0.232	0.24
Carbamazepin	298-46-4	μg/l		0.01	0.015	0.02	0.02	0.02			0.022	0.026	0.023	0.017	0.03	0.026	13	0.008	0.0096	0.02	0.0205	0.0288	
Losartan	114798-26-4	μg/l		0.025	0.025	0.03	0.03	0.027	0.		0.014	0.014	0.02	0.017	0.016	0.016	13	0.014	0.014	0.02	0.0212	0.03	0.03
Enalapril	75847-73-3	μg/l	0.0002	0.00025	0.0003	0.0003	<	<		<	<	<	<	<	<	<	13	<	<	<		0.00036	0.0004
Metformin	657-24-9	μg/l	0.07	0.595	0.21	0.75	0.35	0.12	0	0.42	0.097	0.084	0.1	0.25	<	<	13	<	<	0.21	0.28	0.786	0.81
Furosemid	54-31-9	μg/l	0.003	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
2,3-bis(sulfanyl)butandisäure (DMSA)	304-55-2	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
10,11-Dihydro-10,11-Dihydroxycarbamazepin	58955-93-4	μg/l			0.032	0.036	0.033	0.034	0.0	.034	0.034	0.039	0.036	0.021	0.042	0.056	11	0.021	0.0232	0.034	0.0361	0.0532	0.056
Andijk																							
Koffein	58-08-2	μg/l	0.015	0.1	0.12	0.12	0.13	<	0.1	.053	0.047	0.057	0.085	0.034	0.062	0.056	13	<	0.0181	0.062	0.0747	0.126	0.13
Carbamazepin	298-46-4	μg/l	0.005	0.008	<	0.008	0.012	0.008	0.	.014	0.007	0.011	0.008	0.005	0.015	0.015	13	<	<	0.008	0.00935	0.015	0.015
Losartan	114798-26-4	μg/l	0.0003	0.006	0.004	0.006	0.007	0.003	0.1	.003	0.002	0.002	<	0.001	0.002	0.002	13	<	0.00049	0.003	0.0034	0.007	0.007
Enalapril	75847-73-3	μg/l	0.0002	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metformin	657-24-9	μg/l		0.345	0.44		0.44	0.36	0	0.37	0.28	0.28	0.26	0.18	0.2	0.21	13	0.18	0.188	0.34	0.319	0.44	0.44
Furosemid	54-31-9	μg/l	0.003	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	<
Guanylharnstoff	141-83-3	μg/l	0.05	0.635	0.63		0.685	0.07	0	0.09	<	<	<	<	0.09	0.17	13	<		0.09	0.292	0.792	0.84
Gabapentin	60142-96-3	μg/l	0.00	0.17	0.15		0.255	0.19		0.21	0.19	0.17	0.16	0.17	0.17	0.18	13	0.15	0.15	0.18	0.188	0.262	0.29
Irbesartan	138402-11-6	μg/l	0.01	0.02	0.02	0.02	0.015	<		<	<	<	<	<	<	<	13	<	00	<	<	0.02	0.02
Pinoxaden	243973-20-8	μg/l	0.005	<	<	< .02	<	<		<	<	<	<		<	<	13			<	<	<	<
2,3-bis(sulfanyl)butandisäure (DMSA)	304-55-2	μg/l	0.005			<				~				<	~	<	13			<	2	<	< >
10,11-Dihydro-10,11-Dihydroxycarbamazepin	58955-93-4	μg/l	0.003	`		<		<	0	.021	<		<	<	0.023	0.028	11			<		0.027	0.028
Lamotrigin	84057-84-1		0.02	0.035	<		0.04	0.04		0.05	0.05	0.05	0.06	0.06	0.023	0.028	13	<		0.05	0.0473	0.027	0.028
3		μg/l	0.03			0.02													0.01				
Sitagliptin	486460-32-6	μg/l	0.5	0.03	0.03	0.02	0.035 0.785	0.02		0.03 0.83	0.02	0.01	0.01	0.01	0.01	0.02 0.69	13 13	0.01	0.01	0.02	0.0215	0.036 0.814	0.04
Oxipurinol	2465-59-0	μg/l	0.5	<	<	<		<	U		<	<	<	0.65				<	<	<	<		
Candesartan	139481-59-7	μg/l	0.05	<	<	<	<	<		<	<	<	<	<	0.05	0.07	13	<	<	<	<	0.062	0.07
Carbamazepin-10,11-epoxid	36507-30-9	μg/l	0.01	<	<	<	<	<		<	<	<	<	<	<	<	13	<	<	<	<	<	0.04
Gabapentin-lactam	64744-50-9	μg/l		0.02	0.01	0.02	0.03	0.02	U	0.04	0.04	0.04	0.04	0.04	0.04	0.04	13	0.01	0.014	0.04	0.0315	0.04	0.04
Haringvliet	50.00.0		0.045	0.475		0.40	0.007					0.004				0.4	40						
Koffein	58-08-2	μg/l	0.015	0.175		0.19	0.027		0.1	.064	0.036	0.031	<	0.036	0.035	0.1	12	<	<	0.045	0.0784	0.204	0.21
2,5-Dihydroxybenzoesäure (DHB) (Gentisinsäure)	490-79-9		1	<		<	<			<	<		<	<	<	<	11	<	<	<	<	<	<
Carbamazepin	298-46-4	μg/l		0.015		0.02	0.04		0	0.05	0.03	0.04	0.03	0.05	0.06	0.06	12	0.01	0.013	0.04	0.0383	0.06	0.06
Salbutamol	18559-94-9	μg/l	0.05	<		<	<			<	<	<	<	<	<	<	12	<	<	<	<	<	<
Terbutalin	23031-25-6	μg/l	0.01	<		<	<			<	<	<	<	<	<	<	12	<	<	<	<	<	< <u>-</u>
Fenoterol	13392-18-2	μg/l	0.1	<		<	<			<	<	<	<	<	<	<	12	<	<	<	<	<	<
Losartan	114798-26-4	μg/l		0.0065		0.015	0.009		0.0	095	0.004	0.003	0.002	0.006	0.004	0.01	12	0.002	0.0023	0.007	0.00708	0.0135	0.015
Enalapril	75847-73-3	μg/l	0.0002	<		<	<			<	<	<	<	<	<	<	12	<	<	<	<	<	< =
Dexamethason	50-02-2	μg/l	0.01	<		<	<			<	<	<	<	<	<	<	12	<	<	<	<	<	<

Sonstige Arzneimittel	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Haringvliet (Fortsetzung)																						
Metformin	657-24-9	μg/l	0.07	0.555		0.81	<		0.34	<	<	0.14	0.15	<	<	12	<	<	0.145	0.255	0.741	0.81 = < = 1.7 =
Furosemid	54-31-9	μg/l	0.003	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Guanylharnstoff	141-83-3	μg/l	0.05	0.75		1.1	<	<	0.185	0.29	0.31	0.38	0.73	0.76	1.7	13	<	<	0.38	0.553	1.46	1.7
Clozapin	5786-21-0	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Dipyridamol	58-32-2		0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Gabapentin	60142-96-3	μg/l	0.1	0.125		<			0.2	0.2	0.2	0.2	0.2	0.2	0.2	12	<	<	0.2	0.162	0.2	0.2
Pipamperon	1893-33-0	μg/l	0.05	<		<			<	<	<	<	<	<	<	12	<	2	<	<	<	<
Quetiapin	111974-69-7		0.05											`		12					-	<
·		μg/l		<		<	ζ.		<	<	<	<	<	<	<		<		<	<	<	
Vigabatrin	60643-86-9	μg/l	0.5	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Irbesartan	138402-11-6	1 0	0.01	0.02		0.03	0.02		0.015	<	<	<	<	<	0.02	12	<	<	0.015	0.0137	0.027	0.03
Levetiracetam	102767-28-2	μg/l	0.01	0.015		0.02	0.01		<	<	<	<	<	<	<	12	<	<	<	<	0.02	0.02
Mebendazol	31431-39-7	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Warfarin	81-81-2	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
loxynil	1689-83-4	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Körperpflegeartikel																						
Nieuwegein																						
Climbazol	38083-17-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk																						
Climbazol	38083-17-9	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Haringvliet																						
Triclocarban	101-20-2	μg/l	0.05	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
Veterinärstoffe Lobith																						
		_																				
Chlorfonyinghas	470 Q0 G	ua/l	0.001	,	,	,	,						,	,		12			,	,	,	_
Chlorfenvinphos	470-90-6	μg/l	0.001	<	<		<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenthion	55-38-9	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <u>-</u>
Phenthion Heptenophos	55-38-9 23560-59-0	μg/l μg/l	0.001 0.0003	< <	<	< <	< <	< <	< <	< <	< <	< <	< <	< <	< <	13 13	< <	< <	< <	< <	< <	< = < = < = < = < = < = < = < = < = < =
Phenthion Heptenophos gamma-HCH	55-38-9	μg/l	0.001 0.0003	< <	<	<	< <	< <	<	< <	< <	<	< <	< <	< <	13 13	< <	< <	< <	< <	< <	< = 0.00035 S
Phenthion Heptenophos gamma-HCH Nieuwegein	55-38-9 23560-59-0 58-89-9	µg/I µg/I µg/I	0.001 0.0003	< c	0.00014	< c	< c	< c	< c	< < c	< c	< c	< c	< < < 0.00022	< < 0.00028	13 13 13	< c	< < 0.000122	< c	< c	< < 0.000322	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz	55-38-9 23560-59-0 58-89-9 33089-61-1	µg/l µg/l µg/l µg/l	0.001 0.0003 0.01	< <	<	< c	< c	< 0.00035	< c	< <	< <	< <	< <	< <	< <	13 13 13	< <	< <	< <	< <	< colored	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein	55-38-9 23560-59-0 58-89-9	µg/I µg/I µg/I	0.001 0.0003	< c	0.00014	< c	< c	< c	< c	< < c	< c	< c	< c	< < < 0.00022	< < 0.00028	13 13 13	< c	< < 0.000122	< c	< c	< < 0.000322	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz	55-38-9 23560-59-0 58-89-9 33089-61-1	µg/l µg/l µg/l µg/l	0.001 0.0003 0.01	< c 0.000185	0.00014	< c c c c c c c c c c c c c c c c c c c	< c	< 0.00035	< c	< c	< c 0.00021	< c	< c	<	< c	13 13 13	< c 0.00011	< < 0.000122	< 0.00018 (< c c c c c c c c c c c c c c c c c c c	< colored	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3	µg/l µg/l µg/l µg/l µg/l	0.001 0.0003 0.01 0.005	< c 0.000185	0.00014 <	< 0.00018	< c	<0.00035	0.00021 (< c c c c c c c c c c c c c c c c c c c	< c 0.00021	0.00015	< c	<	< c 0.00028	13 13 13 13	< c 0.00011	< < 0.000122	0.00018 (0.000196 0	< c	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos Chlorfenvinphos	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6	48/1 h8/1 h8/1 h8/1 h8/1	0.001 0.0003 0.01 0.005 0.001	< c 0.000185	0.00014 <	< 0.00018 < < < < < <	< c c c c c c c c c c c c c c c c c c c	<0.00035<<<	<pre></pre>	<<	< c 0.00021	< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	< c 0.00022	< c c c c c c c c c c c c c c c c c c c	13 13 13 13 13 13	< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	0.00018 (< < < <	2	< c	0.00035 ×
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos Chlorfenvinphos Phenthion	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9	ha\l ha\l ha\l ha\l ha\l	0.001 0.0003 0.01 0.005 0.001 0.005	< c 0.000185	< 0.00014 < < < < < < < < < < < < < < < < < < <	< 0.00018< < < < < < < < <	< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	0.00021 (< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	< c 0.00022	< c c c c c c c c c c c c c c c c c c c	13 13 13 13 13 13 13	< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	2.000196 0 2.000196 0	<	0.00035
Phenthion Heptenophos gamma-HCH Nieuvvegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.001 0.0003 0.01 0.005 0.001 0.005 0.09	< c c c c c c c c c c c c c c c c c c c	< 0.00014 < < < < < < < < < < < < < < < < < < <	< 0.00018 < < < < < < < < < < < < < < < < < < <	< c c c c c c c c c c c c c c c c c c c	<0.00035<<<<	0.00021 (< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	0.00016 < < < < < < < < <	< c c c c c c c c c c c c c c c c c c c	<	13 13 13 13 13 13 13 13	< c c c c c c c c c c c c c c c c c c c	< c c c c c c c c c c c c c c c c c c c	<pre></pre>	2.000196 0 3.000196 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< c c c c c c c c c c c c c c c c c c c	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0	ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.001 0.0003 0.005 0.001 0.005 0.009 0.005 0.0003	0.000185 < < < < < <	< c c c c c c c c c c c c c c c c c c c	<pre></pre>	< c c c c c c c c c c c c c c c c c c c	<pre></pre>	<pre></pre>	<pre></pre>	<!--</td--><td><pre></pre></td><td><pre></pre></td><td><</td><td><pre></pre></td><td>13 13 13 13 13 13 13 13 13 13</td><td><pre></pre></td><td><pre></pre></td><td><pre></pre></td><td><pre></pre></td><td><pre></pre></td><td>0.00035</td>	<pre></pre>	<pre></pre>	<	<pre></pre>	13 13 13 13 13 13 13 13 13 13	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalii	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	0.001 0.0003 0.005 0.001 0.005 0.009 0.005 0.0003 0.0003	<pre></pre>	<pre></pre>	<pre></pre>	< c c c c c c c c c c c c c c c c c c c	<pre></pre>	0.00021	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13	<pre></pre>	<pre></pre>	<pre></pre>	C.000196 0	<pre></pre>	0.00035 M
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalil gamma-HCH	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.001 0.0003 0.005 0.001 0.005 0.009 0.005 0.0003 0.0003 0.005	<pre></pre>	<pre></pre>	<pre></pre>	< c c c c c c c c c c c c c c c c c c c	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13	<pre></pre>	<pre></pre>	<pre></pre>	C.000196 0	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalii gamma-HCH Piperonylbutoxid	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	0.001 0.0003 0.001 0.005 0.001 0.005 0.009 0.005 0.0003 0.005 0.002	<pre></pre>	<pre></pre>	<pre></pre>	< c c c c c c c c c c c c c c c c c c c	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalil gamma-HCH Piperonylbutoxid Tetrachlorvinphos	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	0.001 0.0003 0.001 0.005 0.001 0.005 0.009 0.005 0.0003 0.005 0.0003 0.005	<pre></pre>	<pre></pre>	<pre></pre>	< c c c c c c c c c c c c c c c c c c c	<pre></pre>	0.00021 (<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13	<pre></pre>	<pre></pre>	<pre></pre>	COUNTY CO	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalii gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9 103055-07-8	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.001 0.0003 0.001 0.005 0.001 0.005 0.005 0.0005 0.0005 0.0005 0.0005 0.002	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00021 (<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	0.00011	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuvvegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalil gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron Flucycloxuron	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9 103055-07-8 113036-88-7	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.001 0.0003 0.001 0.005 0.005 0.005 0.0003 0.005 0.002 0.003 0.002 0.003	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00021 (<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	COUNTY CO	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuvvegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalil gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron Flucycloxuron Fenthion-sulphoxid	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9 103055-07-8	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.001 0.0003 0.001 0.005 0.001 0.005 0.005 0.0005 0.0005 0.0005 0.0005 0.002	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00021 (<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	0.00011	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuvvegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalil gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron Flucycloxuron	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9 103055-07-8 113036-88-7	49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1	0.001 0.0003 0.001 0.005 0.005 0.005 0.0003 0.005 0.002 0.003 0.002 0.003	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuvvegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalil gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron Flucycloxuron Fenthion-sulphoxid	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9 103055-07-8 113036-88-7 3761-41-9	рд/I рд/I	0.001 0.0003 0.001 0.005 0.005 0.009 0.005 0.0003 0.005 0.002 0.003 0.002 0.005 0.005	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00021 (< < < < < < < < < < < < < < < < < <	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuvvegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalil gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron Flucycloxuron Fenthion-sulphoxid Fenthion-sulphoxid Fenthion-sulphon	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9 103055-07-8 113036-88-7 3761-41-9	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	0.001 0.0003 0.001 0.005 0.001 0.005 0.009 0.005 0.003 0.005 0.002 0.003 0.002 0.005 0.0005	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00021 (<	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuvegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalil gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron Flucycloxuron Fenthion-sulphoxid Fenthion-sulphoxid Fenthion-sulphon Cythioat	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9 103055-07-8 113036-88-7 3761-41-9 3761-42-0 115-93-5		0.001 0.0003 0.001 0.005 0.001 0.005 0.009 0.005 0.003 0.005 0.002 0.003 0.002 0.005 0.005	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00021	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	COLORD CO	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuvvegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalil gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron Flucycloxuron Fenthion-sulphoxid Fenthion-sulphon Cythioat Famphur (Famofos) Metaflumizon	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9 103055-07-8 113036-88-7 3761-41-9 3761-42-0 115-93-5 52-85-7 139968-49-3		0.001 0.0003 0.001 0.005 0.001 0.005 0.009 0.005 0.002 0.002 0.005 0.005 0.005 0.005 0.005	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00021	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	C. C	<pre></pre>	0.00035 M
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalii gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron Flucycloxuron Fenthion-sulphoxid Fenthion-sulphoxid Fenthion-sulphon Cythioat Famphur (Famofos) Metaflumizon Phosmet-oxon	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9 103055-07-8 113036-88-7 3761-41-9 3761-42-0 115-93-5 52-85-7 139968-49-3 3735-33-9		0.001 0.0003 0.001 0.005 0.009 0.005 0.005 0.005 0.002 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00021	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	C. C	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuvvegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalii gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron Flucycloxuron Fenthion-sulphoxid Fenthion-sulphon Cythioat Famphur (Famofos) Metaflumizon Phosmet-oxon Pyraclofos	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 103055-07-8 113036-88-7 3761-41-9 3761-42-0 115-93-5 52-85-7 139968-49-3 3735-33-9 77458-01-6		0.001 0.0003 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00021 (<	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	C. C	<pre></pre>	0.00035
Phenthion Heptenophos gamma-HCH Nieuwegein Amitraz Azamethiphos Chlorfenvinphos Phenthion Fenvalerat Phosmet Heptenophos Imazalii gamma-HCH Piperonylbutoxid Tetrachlorvinphos Lufenuron Flucycloxuron Fenthion-sulphoxid Fenthion-sulphoxid Fenthion-sulphon Cythioat Famphur (Famofos) Metaflumizon Phosmet-oxon	55-38-9 23560-59-0 58-89-9 33089-61-1 35575-96-3 470-90-6 55-38-9 51630-58-1 732-11-6 23560-59-0 35554-44-0 58-89-9 51-03-6 22248-79-9 103055-07-8 113036-88-7 3761-41-9 3761-42-0 115-93-5 52-85-7 139968-49-3 3735-33-9		0.001 0.0003 0.001 0.005 0.009 0.005 0.005 0.005 0.002 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	0.00021	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	<pre></pre>	13 13 13 13 13 13 13 13 13 13 13 13 13 1	<pre></pre>	<pre></pre>	<pre></pre>	C. C	<pre></pre>	0.00035

Veterinärstoffe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Nieuwegein (Fortsetzung)	14000 05 0	/1	0.005													10						<
Fenthion-oxon-sulphon Nieuwersluis	14086-35-2	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	470.00.0	/1	0.001													13						<
Chlorfenvinphos	470-90-6	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	< =
Phenthion	55-38-9	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Fenvalerat	51630-58-1	μg/l	0.09	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Heptenophos	23560-59-0	μg/l	0.0003	>	> 000010	> 000004	> 000010	> ~ ~ ~	> 000000	> > > > >	< 0.00010	> > > > > > > > > > > > > > > > > > > >	> 000010	> > > > > > > > > > > > > > > > > > > >	<	13	> 000000	> 000100	> > > > > > > > > > > > > > > > > > > >	> 0000100	> 0000000	<
gamma-HCH	58-89-9	μg/l	0.00	0.00017	0.00013			0.00037	0.00009	0.00012		0.00014		0.00014	0.0002		0.00009				0.000306	
Piperonylbutoxid	51-03-6	μg/l	0.03	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrachlorvinphos	22248-79-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Andijk	00000 04 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.01													10						
Amitraz	33089-61-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Azamethiphos	35575-96-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Chlorfenvinphos	470-90-6	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phenthion	55-38-9	μg/l	0.001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenvalerat	51630-58-1	μg/l	0.09	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phosmet	732-11-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Heptenophos	23560-59-0	μg/l	0.0003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Imazalil	35554-44-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
gamma-HCH	58-89-9	μg/l	0.00008	0.00015	0.00013	0.00016	0.00013	0.00011	<	<	0.00009	<	<	<	0.00008	13	<	<	0.00009	0.0000923	0.00016	
Piperonylbutoxid	51-03-6	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tetrachlorvinphos	22248-79-9	μg/l	0.02	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Lufenuron	103055-07-8	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Flucycloxuron	113036-88-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-sulphoxid	3761-41-9	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-sulphon	3761-42-0	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Cythioat	115-93-5	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Famphur (Famofos)	52-85-7	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Metaflumizon	139968-49-3	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Phosmet-oxon	3735-33-9	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Pyraclofos	77458-01-6	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-oxon	6552-12-1	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-oxon-sulphoxid	6552-13-2	μg/l	0.01	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Fenthion-oxon-sulphon	14086-35-2	μg/l	0.005							` <	<					13					,	< ■
Haringvliet	11000 00 2	P 97 ·	0.000	Ì		·				`		`		`	,	.0		`	Ì	`		
Florfenicol	76639-94-6	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12		<	<	-	<	<
Carbadox	6804-07-5	μg/l	0.01			` <			,	,		,		,	<	12	,	,	,	,	,	< ■
Dimetridazol	551-92-8	μg/l	0.05	<		<	<				<	,	<		<	12	,	<	<	,	-	< ■
Chlorfenvinphos	470-90-6	μg/l	0.001	<		<		,					<			13						< ▶
Fenchlorphos	299-84-3	μg/l	0.001	<												16		<	<			<
Phenthion	55-38-9	μg/I	0.02	<							<		<	<	<	16						<
Heptenophos	23560-59-0	μg/I μg/I	0.02	<		<	<						<	<	<	16		<	<			⟨ ■
gamma-HCH	58-89-9		0.02										<	`	<	16		,	<			<
Methoxychlor		μg/l	0.02	<			<u> </u>				<u> </u>			<		16	<	<				⟨ ■
•	72-43-5	μg/l		<		<	<		ζ.	۲	<	· ·	<	<	<	16		<	<		<	⟨ ■
Tetrachlorvinphos	22248-79-9	μg/l	0.02	<		<	<		<	<	<	<	<	<	<	10	<	<	<	<	<	< □
Geruchs-, Farb- und Geschmacksstoffe																						
	604.00.0	/!	0.01	0.0000	0.0150	0.0105				0.0141	0.0004				0.0105	10			0.0105	0.0110	0.0057	0.0270
Dimethyldisulfid (DMDS) Nieuwegein	624-92-0	μg/l	0.01	0.0208	0.0158	0.0105	<	<	<	0.0141	0.0234	<	<	<	0.0185	13	<	<	0.0105	0.0118	0.0257	0.0273
Dimethyldisulfid (DMDS)	624-92-0	//	0.01	0.0105	0.0140	0.0122	0.0000	0.0258	0.014	0.0166	0.0001	0.0183	0.0124		0.0147	13			0.0148	0.0179	0.0000	0.0361
Nieuwersluis	024-92-0	μg/l	0.01	0.0165	0.0148	0.0133	0.0282	0.0236	0.014	0.0166	0.0361	0.0163	0.0124	<	0.0147	13	<	<	0.0148	0.0179	0.0329	0.0301
Dimethyldisulfid (DMDS)	624-92-0	μg/l		0.0469	0.0379	0.0246	0.0159	0.0143	0.0135	0.0127	0.0474	0.0399	0.0128	0.0146	0.0145	13	0.0127	0.0127	0.0159	0.0263	0.0566	0.0628

Geruchs-, Farb- und Geschmacksstoffe	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun	. Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Dimethyldisulfid (DMDS)	624-92-0	μg/l	0.01	<	0.0149	0.0172	0.0183	0.0104	0.0110	6 <	0.0115	<	<	<	<	13	<	: <	0.0104	<	0.0179	0.0183
Haringvliet Dimethyldisulfid (DMDS)	624-92-0	μg/l	0.01	0.0227	0.017	0.0167	0.0123	0.0214	0.023	9 0.0199	0.0149	<	<	<	<	13	<	<	0.0167	0.0147	0.0236	0.0239
, , ,	024 32 0	μ9/1	0.01	0.0227	0.017	0.0107	0.0120	0.0214	0.020	0.0133	0.0143	`				10			0.0107	0.0147	0.0200	0.0203
Hormonell wirksame Stoffe (EDC)																						
Di(2-Ethylhexyl)Phtalat (DEHP)	117-81-7	μg/l	1	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
4-TertOctylphenol	140-66-9	μg/l	0.005	<	<	<	<	<	4	< <	<	<	<	<	0.0362	13	<	<	<	0.00509	0.0227	0.0362
Tributylzinn-Kation	36643-28-4	μg/l		0.00005	0.00006	0.00005	0.0001	0.00008	0.00000	0.00013	0.00021	0.00014	0.00017	0.00016	0.00019	13	0.00005	0.00005	0.0001	0.000112	0.000202	
Tetrabutylzinn	1461-25-2	μg/l	0.0003	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Triphenylzinn	892-20-6	μg/l	0.0001	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
Dibutylzinn	1002-53-5	μg/l		0.00018	0.00018	0.00022	0.00014	0.00011	0.0001	0.00019	0.00171	0.00025	0.0003	0.00029	0.0005	13	0.00011	0.00011	0.00022	0.000335	0.00123	0.00171
Diphenylzinn	1011-95-6	μg/l	0.00009	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
4-Nonylphenol Isomere		μg/l	0.1	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	
Nieuwegein		10-																				
Butylbenzylphtalat (BBP)	85-68-7	μg/l	0.1	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Dibutylphtalat (DBPH)	84-74-2	μg/l	0.1	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Diethylphthalat (DEPH)	84-66-2	μg/l	0.1	<	<	<	<	<			<	<	<	<	<	13	<	<	<	<	<	<
Di(2-Ethylhexyl)Phtalat (DEHP)	117-81-7	μg/l	1	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<
Dimethylphtalat (DMP)	131-11-3	μg/l	0.1	<	<	<	<	<		< <	<	<		<	<	12	<	<	<	<	<	<
Di(N-Octyl)Phalat (DOP)	117-84-0	μg/l	0.1	<		<	<	<			<	<	<	<	<	13	<		<		<	<
4-Octylphenol	1806-26-4	μg/l	0.1									` <			<	13					<	⟨ 🌽
Bisphenol A	80-05-7	μg/l	0.03	0.0325		0.06	0.04	0.04	0.04			0.04	0.03	<	<	13			0.04		0.056	0.06
Progesteron	57-83-0	μg/l	0.006	0.0023		< .00	0.04	< .0.0	0.0			0.04 <	<	<	<	13	<		0.04		< 0.030	<
4-TertOctylphenol	140-66-9	μg/l	0.005	<		<					<	<	<		<	13			<		<	⟨ ■
Tributylzinn-Kation	36643-28-4	μg/I	0.003	0.000105			0.00022	,	0.0000			0.00081	0.00076	0.00076	0.002	13	`	,	0.00023		0.00152	
4-Isononylphenol	26543-97-5	μg/l	0.1	0.000103	0.00023	0.00026	0.00022	0.00010	0.0000		0.00047	0.00001	0.00070	0.00070	0.002	13	0.00007		0.00023		0.00132	<
Di-(2-methylpropyl)phtalat (DIBP)	84-69-5	μg/I	0.5			<		<				<	<	<	<	13	<				<	
Tetrabutylzinn	1461-25-2		0.0003	<	`							,				13			<	,		< >
Triphenylzinn	892-20-6	μg/l	0.0003	<	`	<	<	<			<	<	<	<	< <	13	<		<	,	<	< >
Dibutylzinn	1002-53-5	μg/l	0.0001	0.00017			0.00016		0.000			0.00052		0.00047	0.00098	13		0.000094	0.00022			_
Diphenylzinn	1002-33-3	μg/l	0.00009	0.00017			0.00010	0.00012				0.00032	0.00044	0.00047		13			0.00022	0.000313	0.000730	<
· ·		μg/l		۲	<	<		· ·	•		<	ζ.	· ·	ζ.	<	13	<		ζ.	`	,	
Dipropylphthalat	131-16-8	μg/l	0.1	<		<	<	<	•		<	<	<	<	<	13	<		<		<	< Z
Diheptylphtalat	3648-21-3	μg/l	0.1	<		<	<	<	•		<	<	<	<	<		<		<	<	<	< 2
Norethisteron	68-22-4	μg/l	0.003	<	`	<		<	•			<	<	<	<	12	<	`	<		<	< =
Triamcinolon	124-94-7	μg/l	0.007	<		<	<	<	•			<		<	<	12	<		<		<	< <u></u>
Rimexolon	49697-38-3	μg/l	0.015	<		<	<	<	•				<	<	<	12	<		<	,	<	< >
Prednisolon	50-24-8	μg/l	0.015	<		<	<	<	•			<	<	<	<	13	<		<		<	< <u>M</u>
Aldosteron	52-39-1	μg/l	0.015	<		<	<	<	•		<	<	<	<	<	13	<		<		<	< <u>M</u>
Prednison	53-03-2	μg/l	0.015	<		<	<	<	•		<	<	<	<	<	13	<		<		<	
Cortison	53-06-5	μg/l	0.006	<	<	<	<	<	•		<	<	<	<	<	13	<		<		<	<
Prednicarbat	73771-04-7	μg/l	0.015	<		<	<	<	•			<	<	<	<	13	<		<		0.0234	0.034
Triamcinolonacetonid	76-25-5	μg/l	0.015	<	<	<	<	<	•			<	<	<	<	13	<		<		<	<
Methylprednisolon	83-43-2	μg/l	0.015	<	<	<		<	•	< <	<	<	<	<	<	12	<	<	<	<	<	<
4-Nonylphenol Isomere		μg/l	0.1	<		<	<	<	•			<	<	<	<	13	<		<		<	< = < >
Androsteendion	63-05-8	ng/l	3	<	<	<	<	<	•		<	<	<	<	<	13	<	<	<	<	<	<
Budesonid	51333-22-3	ng/l	3	<	<	<	<	<	4	` `	<	<	<	<	<	13	<	<	<	<	<	< No. 1
Clobetasolpropionat	25122-46-7	ng/l	15	<	<	<	<	<	<	< <	<	<	<	<	<	13	<	<	<	<	<	<
Cyproteronacetat	427-51-0	ng/l	15	<	<	<	<	<	•	< <	<	<	<	<	<	13	<	<	<	<	<	<
d-(-)-Norgestrel	797-63-7	ng/l	12	<	<	<	<	<	•	< <	<	<	<	<	<	13	<	<	<	<	<	< ≥
Dihydrotestosteron	521-18-6	ng/l	15	<	<	<	<	<	•	< <	<	<	<	<	<	13	<	<	<	<	<	< =
Phluticasonpropionat	80474-14-2	ng/l	25	<	<	<	<	<		< <	<	<	<	<	<	13	<	<	<	<	<	<

Hormonell wirksame Stoffe (EDC) Nieuwegein (Fortsetzung)	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. I
Gestoden	60282-87-3	ng/l	15	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	-
Medroxyprogesteron	520-85-4	ng/l	4	<		<		<	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `			<	<	<	<	13	<		<	<	<	
Testosteron	58-22-0	ng/l	3	` `		`	Ì	<				,		` <		12	`		`		<	
Nieuwersluis	00 22 0	9/1		`	,	`		`		`	•	`	•	`	`		`	`	`	`	`	
Di(2-Ethylhexyl)Phtalat (DEHP)	117-81-7	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< <
4-TertOctylphenol	140-66-9	μg/l	0.005	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Tributylzinn-Kation	36643-28-4	μg/l		0.000125	0.00014	0.00014	0.00015	0.00014	0.00015	0.00016	0.0001	0.00015	0.00021	0.0003	0.00044	13	0.0001	0.000104	0.00015	0.000179	0.000384	
Tetrabutylzinn	1461-25-2	μg/l	0.0003	<	<	<	<	<	<	<	<	<	<	<	<	13	<		<	<	<	<
Triphenylzinn	892-20-6	μg/l	0.0001	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Dibutylzinn	1002-53-5	μg/l		0.0002			0.00013	0.00012	0.0003				0.00019	0.00025	0.00031	13		0.000124	0.00019	0.000196		
Diphenylzinn	1011-95-6	μg/l	0.00009	<	<	<	<	<	<			<	<	<	<	13	<		<	<	<	<
4-Nonylphenol Isomere	1011 00 0	μg/l	0.1				` <									13						
Andijk		P9/-	0	`	,		,	`		`	`	`	`	`	`		`	`	`	`	`	`
Di(2-Ethylhexyl)Phtalat (DEHP)	117-81-7	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
4-TertOctylphenol	140-66-9	μg/l	0.005			<	<	<	`			<	<	<	<	13	<		<	<	<	<
Tributylzinn-Kation	36643-28-4	μg/l	0.00001	0.00007		0.00005		0.00002	`			0.00004	0.00007	0.00007	0.00004	13	<		0.00004 (
Tetrabutylzinn	1461-25-2	μg/l	0.0003	0.00007	0.00011	0.00003	0.00004	J.00002	· ·		0.00003	0.00004	0.00007	0.00001	0.00004	13	<		0.00004 (/ /	<.000100	<
Triphenylzinn	892-20-6	μg/I	0.0003					<	· ·			<	<	<	<	13	<			<	<	
Dibutylzinn	1002-53-5	μg/l	0.00005	,	0.00008	<		<	<	,	`		0.00007	0.00023	0.00015	13	<		,		0.000202	
Diphenylzinn	1011-95-6	μg/I	0.00003	<		<		<	· ·			0.00010	0.00007	0.00023	0.00013	13	<		<	0.0000713	0.000202	
4-Nonylphenol Isomere	1011-33-0		0.00003			<	<	<	· ·			<		`	<	13	<		<			
Haringvliet		μg/l	0.1	<	<	<	<	<	<u> </u>	<	<	<	<	<	<	13	<	<	<	<	<	<
Di(2-Ethylhexyl)Phtalat (DEHP)	117 01 7	/1	1													10						
	117-81-7	μg/l		<		<		<	< 0.015		< 0.0004		<	<	< 0.0057	13	<		< 0.00000	> 0.0000	0.0150	
Bisphenol A	80-05-7	μg/l	0.005			<			0.015			0.0098	<	<	0.0057	12	<		0.00565	0.00665	0.0158	0.017
17-beta-Östradiol	50-28-2	μg/l	0.001	<		<	<		<			<	<	<	<	12	<		<	<	<	<
Estriol	50-27-1	μg/l	0.006	<		<	<		<			<	<	<	<	12	<		<	<	<	< <
Estron	53-16-7	μg/l	0.002	<		<	,		<		<	<	<	<	<	12	<	`	<	<	<	<
17-alpha-Ethinylöstradiol	57-63-6	μg/l	0.001	<		<	<		<		<	<	<	<	<	12	<		<	<	<	<
Progesteron	57-83-0	μg/l	0.01	<		<	<		<		<	<	<	<	<	12	<	<	<	<	<	< < 0.00581
4-TertOctylphenol	140-66-9	μg/l	0.005	<	<	<	<	<	<			<	<	<	<	13	<		<	<	<	<
Tributylzinn-Kation	36643-28-4	μg/l		0.00014	0.00023	0.00009	0.00581	0.00002	0.00005	0.00007	0.00004	0.00007	0.00008	0.00009	0.00014	13	0.00002	0.000028	0.00009	0.000536	0.00358	0.00581
Tetrabutylzinn	1461-25-2	μg/l	0.0003	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Triphenylzinn	892-20-6	μg/l	0.0001	<	<	<	<	<	<		<	<	<	<	<	13	<		<	<	<	<
Dibutylzinn	1002-53-5	μg/l		0.00018	0.0002	0.00012		0.00012	0.00013	0.00009	0.0001	0.00011	0.00009	0.0001	0.00013	13	0.00009	0.00009	0.00012	0.000421	0.00243	
Diphenylzinn	1011-95-6	μg/l	0.00009	<	<	<	0.00057	<	<	<	<	<	<	<	<	13	<	<	<	<	0.00036	0.00057
Cortison	53-06-5	μg/l	0.01	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	<
17-alpha-Östradiol	57-91-0	μg/l	0.001	<		<	<		<	<	<	<	<	<	<	12	<	<	<	<	<	< < <
4-Nonylphenol Isomere		μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Weichmacher																						
vveichmacher Lobith																						
Di(2-Ethylhexyl)Phtalat (DEHP)	117 01 7	a/I	1		<			<	<					<		13			<	<		<
Nieuwegein	117-81-7	μg/l		<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
	05.00.7		0.1													10						<
Butylbenzylphtalat (BBP)	85-68-7	μg/l	0.1			<	<	<	<				<	<	<	13	<		<	<	<	
Dibutylphtalat (DBPH)	84-74-2	μg/l	0.1		<	<	<	<	<			<	<	<	<	13	<		<	<	<	< <
Diethylphthalat (DEPH)	84-66-2	μg/l	0.1	<		<		<	<			<	<	<	<	13	<		<	<	<	<
Di(2-Ethylhexyl)Phtalat (DEHP)	117-81-7	μg/l	1	<	<	<		<	<			<	<	<	<	13	<		<	<	<	<
Dimethylphtalat (DMP)	131-11-3	μg/l	0.1	<	<	<		<	<		<	<		<	<	12	<	<	<	<	<	<
Di(N-Octyl)Phalat (DOP)	117-84-0	μg/l	0.1	<	<	<		<	<			<	<	<	<	13	<		<	<	<	<
Di-(2-methylpropyl)phtalat (DIBP)	84-69-5	μg/l	0.5			<		<	<		<	<	<	<	<	13	<		<	<	<	<
Dipropylphthalat	131-16-8	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	
Diheptylphtalat	3648-21-3	μg/l	0.1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<

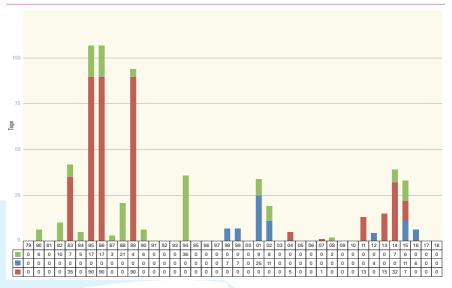
Weichmacher Nieuwersluis	CAS-Nr.	Einheit	u.b.g.	Jan.	Feb.	Mrz.	Apr.	Mai	Jun.	Jul.	Aug.	Sep.	Okt.	Nov.	Dez.	n	Min.	P10	P50	M.W.	P90	Max. Pikt.
Di(2-Ethylhexyl)Phtalat (DEHP) Andijk	117-81-7	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	<
Di(2-Ethylhexyl)Phtalat (DEHP) Haringvliet	117-81-7	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
Di(2-Ethylhexyl)Phtalat (DEHP)	117-81-7	μg/l	1	<	<	<	<	<	<	<	<	<	<	<	<	13	<	<	<	<	<	< ■
Künstliche Süssstoffe Lobith																						
Sucralose Sacharin Cyclamat Acesulfam Nieuwegein	56038-13-2 81-07-2 100-88-9 55589-62-3	μg/l μg/l		0.22 0.12 0.17 0.37	0.36 0.16 0.07 0.63	0.52 0.16 0.07 0.82	0.5 0.09 0.06 0.64	0.45 0.05 0.08 0.4	0.4 0.05 0.07 0.27	0.6 0.29 0.07 0.25	0.83 0.04 0.11 0.29	0.89 0.03 0.06 0.22	0.21 0.05 0.04 0.22	0.06 0.07 0.27	1.1 0.19 0.25 0.54	13 13 13 13	0.18 0.03 0.04 0.22	0.192 0.034 0.048 0.22	0.5 0.09 0.07 0.33	0.562 0.108 0.0992 0.407	1.06 0.25 0.23 0.748	1.1 2 0.29 = 0.25 = 0.82 >
Sucralose Sacharin Aspartam Cyclamat Acesulfam	56038-13-2 81-07-2 22839-47-0 100-88-9 55589-62-3	μg/l μg/l μg/l	0.05 0.01 0.01	0.1020.160.475	0.130.090.68	0.35 0.14 < 0.089 0.8	0.76 0.12 < 0.081 0.92	1.4 0.063 < 0.043 0.75	0.051<0.10.46	0.029 < 0.33	1.7 0.033 < 0.044 0.28	1.3 < 0.091 0.36	1.8 0.04 < 0.086 0.34	1.9 0.087 < 0.1 0.52	2.2 0.079 < 0.084 0.43	13 12 12 13 13	0.029<<0.28	0.03020.02020.3	0.083 < 0.089 0.46	0.962 0.0813 < 0.0872 0.525	2.08 0.137 < 0.166 0.872	2.2 = 0.14 = 0.19 = 0.92
Nieuwersluis Sucralose Sacharin Aspartam Cyclamat Acesulfam	56038-13-2 81-07-2 22839-47-0 100-88-9 55589-62-3	μg/l μg/l μg/l	0.01	1.4 0.17 < 0.16 1.15	1.4 0.18 < 0.14 1.4	2.5 0.18 < 0.084 2	2.1 0.13 < 0.067 1.7	3.5 0.1 < 0.059 1.4	2.2 0.068 < 0.11 0.56	2.6 0.036 0.088 0.4	3.7 0.045 < 0.064 0.4	3.6 < 0.1 0.67	3.6 0.047 < 0.083 0.41	2.3 0.045 < 0.1 0.37	2.7 0.067 < 0.092 0.53	13 12 12 13 13	1.4 0.036 < 0.059 0.37	1.4 0.0387 < 0.061 0.382	2.5 0.084 < 0.092 0.67	2.54 0.103 < 0.101 0.934	3.66 0.215 < 0.182 1.88	3.7 = 0.23 = 0.21 = 2 = 0.21
Andijk Sucralose Sacharin Aspartam Cyclamat Acesulfam	56038-13-2 81-07-2 22839-47-0 100-88-9 55589-62-3	μg/l μg/l μg/l	0.05 0.01 0.01 0.01	0.382 0.0465 < 0.12 0.445	< 0.1 < 0.1 0.1 0.52	0.36 0.098 < 0.07 0.51	0.12 < 0.087 0.82	2.4 0.071 < 0.065 0.62	0.65 0.06 < 0.055 0.72	0.88 < < < 0.56	0.5 0.057 < < 0.57	0.021 0.091 0.64	1.5 < < 0.048 0.57	1.1 < < 0.064 0.55	1.4 < < 0.045 0.5	13 12 12 13 13	< < < < 0.4	< < < < 0.436	0.74 0.0585 < 0.065 0.56	0.816 0.0516 < 0.0673 0.575	2.04 0.114 0.0162 0.12 0.78	2.4 = 0.12 = 0.021 = 0.12 = 0.82
Haringvliet Sucralose Sacharin Cyclamat Acesulfam	56038-13-2 81-07-2 100-88-9 55589-62-3	μg/l μg/l	0.1 0.03	0.37 < 0.13 0.34		0.69 0.17 0.15 0.94	0.48 0.11 0.06 0.52	0.46 < < 0.51	0.915 < 0.09 0.51	0.69 < 0.03 0.34	0.86 < 0.04 0.32	1.2 < 0.06 0.34	0.6 < 0.04 0.17	0.75 < 0.03 0.16	1.6 < 0.07 0.37	13 13 13 13	0.36 < < 0.16	0.368 < < 0.164	0.69 < 0.06 0.37	0.762 < 0.0719 0.413	1.44 0.146 0.15 0.788	1.6
Wirkungsteste Nieuwegein ER-Calux Akt. gegen 17-beta-Östradiol GR-Calux Akt. gegen Dexamethason AR-Anti-Calux Akt. gegen Flutamid CYTO-Calux Zytotoxizität NRF2-Calux Akt. gegen Curcumin P53 Calux Akt. gegen Actinomycin D Andiik		ng/l µg/l µg/l % µg/l	0.034 0.0043 1.4 100 0.01	0.037	0.057 0.0047 2.1 109 <	0.068	0.048 < 3.5 103 < <	0.12 0.0078 9.7 96 <	0.045 < 8.6 104 < <	0.46	0.041 < 5.56 88 < <	0.067 < 19.1 77 266 <	0.035 < 9.29 111 < <	<	0.054 < 52 118 128 <	13 13 13 13 13 13	< < < 717 <	<	0.048	0.0835 < 14.7 106 <	0.324 0.00656 59.6 125 211	0.46
ER-Calux Akt. gegen 17-beta-Östradiol GR-Calux Akt. gegen Dexamethason AR-Anti-Calux Akt. gegen Flutamid CYTO-Calux Zytotoxizität NRF2-Calux Akt. gegen Curcumin P53 Calux Akt. gegen Actinomycin D Haringyliet		ng/l µg/l µg/l % µg/l µg/l	0.034 0.0043 100 0.01	0.036 < 3.25 113 < <	<	<	0.066 < 2.9 101 < <	0.468 < 5.3 104 <	0.044 < 8.4 101 < <	0.287 < 9 102 < <	< c	<	0.456 < 11.7 112 < <	0.354 < 46.5 112 <	1.38 < 42.3 103 < <	13 13 13 12 13	<	< c c c c c c c c c c c c c c c c c c c	0.055 < 5.3 104 <	0.246 < 11.2 105 672 <	1.02 < 44.8 114 4900 <	1.38
ER-Calux Akt. gegen 17-beta-Östradiol		ng/l	0.013	0.148		0.18	0.33		0.14	0.072	0.076	0.046	<	0.062	0.046	12	<	0.0183	0.0805	0.116	0.294	0.33

Meldungen von Verunreinigungen

Meldungen von Verunreinigungen die RIWA-Rhein im Jahr 2018 im Rahmen des Internationaler Warn- und Alarmplans (IWAP) erhalten hat

Nr	Datum	Ort	Str.	Art und Menge	Max. Konz.	Ursache / Herkunft
			KM	der Verunreinigung		
1	19. Jan.	Bimmen / Lobith	865	Pyrazol	4.5 / 4.1 μg/L	Einleitung
2	09. Feb.	Bimmen / Lobith	865	Pyrazol	3.1 / 3.0 µg/L	Einleitung
3	12. Mrz.	Bimmen / Lobith	865	1,4-Dioxan	3.2 / 3.7 µg/L	unbek. / erh. Konzentr.
4	24. Mai	Bimmen / Lobith	865	Dichlormethan	24 / 20 μg/L	unbek. / erh. Konzentr.
5	26. Mai	Bimmen / Lobith	865	1,4-Dioxan	4.2 / 5.9 μg/L	unbek. / erh. Konzentr.
6	20. Jul.	Bimmen / Lobith	865	Pyrazol	4.1 / 3.4 μg/L	Einleitung
7	27. Jul.	Bimmen	865	unbekannten Substanz (Alkane relatiert)	5.2 μg/L	unbek. / erh. Konzentr.
8	15. Aug.	Lobith	863	1,4-Dioxan	4.1 μg/L	unbek. / erh. Konzentr.
9	23. Aug.	Lobith	863	Monoaromatische Kohlenwasserstoffe	Summe: 14 µg/L	unbek. / erh. Konzentr.
				(MAK)	gegen Naphtalin D8	
10	31. Aug.	Bimmen / Lobith	865	1,4-Dioxan	3.8 / 4.7 µg/L	unbek. / erh. Konzentr.
11	01. Sep.	Lobith	863	PAK/Naphtalin	3.4 µg/L	unbek. / erh. Konzentr.
12	29. Sep.	Bimmen / Lobith	865	1,4-Dioxan	4.5 / 7.2 μg/L	unbek. / erh. Konzentr.
13	16. Okt.	Bimmen / Lobith	865	1,4-Dioxan	4.2 / 5.2 µg/L	unbek./erh.Konzentr.
14	17. Okt.	Wesel (Lippe)	814	1,4-Dioxan	21 μg/L	unbek./erh.Konzentr.
15	19. Okt.	Leverkusen	699	vermutlich 1,5-Naphthalin-Diamin	33 μg/L	unbek. / erh. Konzentr.
16	04. Nov.	Bimmen / Lobith	865	1,4-Dioxan	3.1 / 4.0 µg/L	unbek. / erh. Konzentr.
17	21. Nov.	Bimmen / Lobith	865	1,4-Dioxan	3.6 / 5.3 µg/L	unbek. / erh. Konzentr.
18	04. Dez.	Lobith	863	1,4-Dioxan	3.8 µg/L	unbek. / erh. Konzentr.
19	26. Dez.	Bimmen	865	Phenol	5 μg/L	unbek. / erh. Konzentr.
20	28. Dez.	Lobith	863	Trübung	97 FTU	unbek. / erh. Konzentr.

Das Sekretariat der Internationalen Kommission zum Schutz des Rheins (IKSR) erstellt jedes Jahr ein Kompendium aller am Rhein eingegangenen IWAP-Berichte, in dem die Berichte zusammengefasst, statistisch ausgewertet und/oder in Zahlen dargestellt werden. Diese Überblick wird als IKSR-Bericht in den Arbeitssprachen Niederländisch, Deutsch und Französisch auf der IKSR-Website (www.iksr.org/de) veröffentlicht.


Entnahmestopps und begrenzte Entnahme

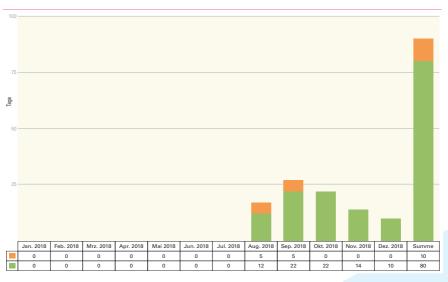
Waterwinstation ir. Cornelis Biemond (WCB) Nieuwegein 1969 – 2018

Jahr	Verunreinigungen	Anzahl von Tagen
2018	(Pyrazol, Glyphosat, Guanylharn- stoff, 1,4-Dioxan, EDTA, Melamin, Methenamin (Urotropin), Trifluor- acetat (TFA), Schwebstoffgehalt)	Keine. Die folgenden Parameter übertrafen jedoch den gesetzlichen Standard (Anzahl der Überschreitungen aus 13 Messungen): Pyrazol (3x), Glyphosat (2x), Guanylureum (3x), 1,4-Dioxan (6x), EDTA (13x), Melamin (6x), Methenamin (Urotropin) (10x), TFA (10x) und Schwebstoffgehalt (4x). Wenn der Minister von lenW keine Genehmungen für diese Substanzen erlassen hätte, wären (präventive) Entnahmestopps erforderlich gewesen.
2017	(Melamin, 1,4-Dioxan, Trifluor- acetat (TFA), Pyrazol)	Keine. Ohne Verwendung von Genehmigungen des Ministers für Infrastruktur und Wasserwirtschaft hätte es (präventive) Entnahmestopps infolge der nachstehenden Stoffe gegeben (Anzahl der Überschreitungen aus 13 Messungen): Melamin (12x), 1,4-Dioxan (6x), TFA (11x) und Pyrazol (5x). Beim Einsatz von Grundwasser hätte ohne diese Genehmigungen drei Monate lang unbegrenzt Wasser entnommen werden können.
2016	Acetochlor	Februar: 6 Tage mischen mit Grundwasser 50/50
2015	Fenol Metolachloor Pyrazol	Januar: 4 Tage Entnahmestopp (und mischen mit Grundwasser) Mai: 7 begrenzte Entnahme und mischen mit Grundwasser August: 2 tage Entnahmestopp
2014	Phenol Isoproturon	7 Tage 32 Tage begrenzte Entnahme
2013	TPA Isoproturon	April: 4 Tage begrenzte Entnahme November: 11 Tage begrenzte Entnahme
2012	Metolachlor (max. 0,30 µg/L)	4 Tage begrenzte Entnahme und mischen mit Grundwasser
2011	Glyphosat Xylol Isoproturon Chlortoluron	1 Tag begrenzte Entnahme 1 und 8 Tage begrenzte Entnahme 1 Tage begrenzte Entnahme 3 Tage begrenzte Entnahme
2010	Keine	Keine
2009	Keine	Keine
2008	1,2 dichlorbenzol	2 Tage
2007	Xylol / Benzol	2 Tage begrenzte Entname durch Waternet, PWN-Wasserabnahme aus Nieuwegein eingestellt
2006	Niedrigwasser / Niedriger Abfluss	In diesen Perioden wurde intensiv mit Rijkswaterstaat (Wasserbehörde) beraten über den Fortgang der normalen Produktion
2005	Keine	Keine
2004	MTBE	5 Tage begrenzte Entnahme (max. 50000 m3/Tag)
2003	Keine	Keine
2002	Isoproturon/Chlortoluron	19 (wovon 8 Tage Entnahmestopp und danach mischen mit Grundwasser)
2001	Isoproturon/Chlortoluron	34 (wovon 9 Tage Entnahmestopp und danach mischen mit Grundwasser)
2000	Keine	Keine
1999	Isoproturon	7 Tage begrenzte Entnahme und mischen mit Grundwasser
1998	Isoproturon	7 Tage begrenzte Entnahme und mischen mit Grundwasser
1995 - 1997	Keine	Keine
1994	Isoproturon	36
1991 - 1993	Keine	Keine
1990	Metamitron	6
1989	Nitrobenzol Chlorid	4 4. Quartal begrenzte Entnahme

Fortsetzung

Jahr	Verunreinigungen	Anzahl von Tagen
1988	Isophoron	5
	Dichlorpropen	12
	Mecoprop	4
1987	Neopentylglycol	3
1986	"Sandoz"	9
	Fettsäuren / Terpentin	3
	2,4-D Herbizide	5
	Chlorid	1. Quartal begrenzte Entnahme
1985	Chlorid	17 Tage
		3. Quartal begrenzte Entnahme
1984	Phenetidin / o-Isoanisidin	5
1983	Dichlorisobutylether	7
	Chlorid	35 Tage begrenzte Entnahme
1982	Chlornitrobenzol	10
1981	Keine	Keine
1980	Styrol	6
1970 - 1979	Keine	Keine
1969	Endosulfan	14

Grafik 1 Entnahmestopps und begrenzte Entnahme bei Waterwinstation ir. Cornelis Biemond (WCB) Nieuwegein von 1979-2018 Entnahmestopp mischen mit Grundwasser begrenzte Entnahme



Pompstation Andijk (PSA)

Jahr	Verunreinigungen	Anzahl von Tagen
2018	Chlorid/Elektrische Leitfähigkeit	August: 12 Tage Entnahmestopp
		September: 22 Tage Entnahmestopp
		Oktober: 22 Tage Entnahmestopp
		November: 14 Tage Entnahmestopp
		Dezember: 10 Tage Entnahmestopp

WRK Waterwinstation Prinses Juliana (WPJ) Andijk

Jahr	Verunreinigungen	Anzahl von Tagen
2018	Chlorid/Elektrische Leitfähigkeit	August: 5 Tage Entnahmestopp September: 5 Tage Entnahmestopp

Grafik 2 Entnahmestopps und begrenzte Entnahme Pompstation Andijk (PSA) und WRK Waterwinstation Prinses Juliana (WPJ)

Andijk 2018 (Tage)

Entnahmestopp PSA

Entnahmestopp WPJ

Mitgliedsunternehmen RIWA-Rhein

Oasen N.V.

Postfach 122, NL - 2800 AC GOUDA Telefon +31 182593530

Besucheradresse

Nieuwe Gouwe O.Z. 3, NL - 2801 SB GOUDA

PWN Waterleidingbedrijf Noord-Holland N.V.

Postfach 2113, NL - 1990 AC VELSERBROEK Telefon +31 900 406 0700

Besucheradresse

Rijksweg 501, NL - 1991 AS VELSERBROEK

Vitens N.V.

Postfach 1205, NL - 8801 BE ZWOLLE Telefon +31 9000650

Besucheradresse

Oude Veerweg 1, NL - 8019 BE ZWOLLE

Stichting Waternet

Postfach 94370, NL - 1090 GJ AMSTERDAM Telefon +31 889 39 4000

Besucheradresse

Korte Ouderkerkerdijk 7, NL - 1096 AC AMSTERDAM

RIWA-Rhein

Vorstand

Vorsitzender Frau Dipl.-Jur. J.L. Cuperus, PWN Sekretär Dr. G.J. Stroomberg, RIWA-Rhein

Mitglieder Dr. Dipl.-Ing. R.T. van Houten, Waternet

Dipl.-Ing. R.A. Kloosterman, Vitens

Dipl.-Ing. L.P. Wessels, Oasen

RIWA-Rhein

Direktor Dr. G.J. Stroomberg
Mitarbeiter Ing. A.D. Bannink

Frau J.A. de Jonge MSc Frau R.E.M. Neefjes MSc

Frau C.C. Zwamborn

Besuchadresse Ampèrebaan 4, NL - 3439 MH NIEUWEGEIN

Postanschrift c/o Waterwinstation ir. Cornelis Biemond

Groenendael 6, NL - 3439 LV NIEUWEGEIN

Telefon + 31 30 600 9030

E-mail riwa@riwa.org

Interne Beratungsgruppen

Expertengruppe Wasserqualität Rhein (EWR)

Das EWR tauscht Informationen untereinander aus, berät den Vorstand der RIWA-Rhein in Fragen der Wasserqualität und bereitet

Stellungnahmen für den Wissenschaftlichen Beirat Rhein vor.

Vorsitzender Dr. G.J. Stroomberg Sekretär Ing. A.D. Bannink

Teilnehmer Oasen, PWN, Vitens, Waternet, Het Waterlaboratorium,

KWR Watercycle Research Institute, Rijkswaterstaat WVL, RIVM

Expertengruppen Wasserqualität Maas und Rhein (EWMR)

In der gemeinsamen Sitzung des EWM (Expertengruppe Wasserqualität Maas von RIWA-Maas) und EWR werden Informationen untereinander

ausgetauscht und Stellungnahmen vorbereitet.

Vorsitzender Dr. G.J. Stroomberg, RIWA-Rhein

Vizevorsitzender Dipl.-Ing. M.P. van der Ploeg, RIWA-Maas

Sekretär Ing. A.D. Bannink, RIWA

Teilnehmer Dunea, Evides/WBB, Oasen, PWN, Vitens, Vivagua, De Watergroep,

Waternet, WML, Aqualab Zuid, Het Waterlaboratorium,

KWR Watercycle Research Institute, Rijkswaterstaat WVL, ILT

Beratungsgruppe Monitoring & Research lenW / RIVM

Zusammen mit dem EWR und RIWA-Maas berät das RIVM mit dem Ministerium für Infrastruktur und Wasserwirtschaft und das Inspektorat Umwelt und Transport über Monitoring und Forschuna.

Vorsitzende Frau. Drs. M. van der Aa, RIVM

Sekretär Ing. A.D. Bannink, RIWA

Teilnehmer RIVM, Ministerie van Infrastructuur en Waterstaat, ILT,

Het Waterlaboratorium, KWR Watercycle Research Institute,

Rijkswaterstaat WVL

RIWA-Dachorganisation

RIWA-Rhein, RIWA-Maas und RIWA-Schelde bilden zusammen die RIWA-Dachorganisation. Die Präsidentschaft wechselt alle drei Jahre. Ab Januar 2019 liegt dies in der Verantwortung von RIWA-Rhein

RIWA-Rhein Sekretariat

Besuchadresse Ampèrebaan 4, NL - 3439 MH NIEUWEGEIN

Postanschrift Waterwinstation ir. Cornelis Biemond

Groenendael 6, NL - 3439 LV NIEUWEGEIN

Telefon + 31 30 600 9030 E-mail riwa@riwa.org

Hauptversammlung (stand Juli 2019)

Vorsitzender Frau Dipl.-Jur. J.L. Cuperus, PWN, Velserbroek

Vizevorsitzender Drs. W. Drossaert, Dunea, Zoetermeer

Sekretär Dipl.-Ing M.P. van der Ploeg, RIWA-Maas, Rotterdam

Mitglieder J.M. Cornelis, Water-Link, Antwerpen

G. Dekegel, Vivaqua, Brussel Frau H. Doedel, WML. Maastricht

Dr. Dipl.-Ing. R.T. van Houten, Waternet, Amsterdam

T. Diez, De Watergroep, Brussel (Auch vorsitzender RIWA-Schelde)

Dipl.-Ing. R. A. Kloosterman, Vitens, Leeuwarden Frau Dipl.-Ing. A.M. Ottolini, Evides, Rotterdam Dr. G.J. Stroomberg, RIWA-Rhein, Nieuwegein J. Verberk, Brabant Water, 's-Hertogenbosch

Dipl.-Ing. L.P. Wessels, Oasen, Gouda

Beobachter

Im Namen von belgischer und niederländischer Branchenverbände

Chr. Legros, BELGAQUA, Brussel

Drs. J.H. de Groene, VEWIN, Den Haag

IAWR

Internationale Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet

Mitglieder ARW Arbeitsgemeinschaft Rhein-Wasserwerke e.V.

GEW - RheinEnergie AG

Parkgürtel 24, D - 50823 Köln - Ehrenfeld

AWBR Arbeitsgemeinschaft Wasserwerke Bodensee-Rhein

c/o TZW-DVGW Technologiezentrum Wasser Karlsruher Straße 84, D - 76139 Karlsruhe

RIWA-Rhein Verband der Flusswasserwerke Groenendael 6, NL - 3439 LV Nieuwegein

Präsidium (stand Juli 2019)

Präsident Prof. Dr. Matthias Maier, Stadtwerke Karlsruhe GmbH

1. Vizepräsident Frau Dip.-Jur. J.L. Cuperus, PWN, Velserbroek

2. Vizepräsident Dr. Andreas Cerbe, RheinEnergie, Köln

Geschäftsführer IAWR Wolfgang Deinlein, Stadtwerke Karlsruhe

ARW Dr. Carsten Schmidt, RheinEnergie AG Köln

AWBR Prof. Dr. Heinz-Jürgen Brauch, TZW-DVGW, Karlsruhe **RIWA-Rijn** Dr. Gerard J. Stroomberg, RIWA-Rhein, Nieuwegein

Sekretariat Internationale Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet

c/o Stadtwerke Karlsruhe GmbH

Frau S. Grobs

Daxlander Straße 72, D - 76185 Karlsruhe

Tel: +49 721 599 3202

Vertreter im Auftrag von RIWA-Rhein im Beirat

Ing. A.D. Bannink, RIWA-Rhein

Dr. P.S. Bäuerlein, KWR Watercycle Research Institute

Dr. G.J. Stroomberg, RIWA-Rhein

Drs. H. Timmer, Oasen

Frau Dipl.-Ing. T. van der Velden-Slootweg, Het Waterlaboratorium

Impressum

Text und Redaktion RIWA-Rhein:

Dr. G.J. Stroomberg

Frau R.E.M. Neefjes MSc

Ing. A. Bannink

Frau J.A. de Jonge MSc Frau C.C. Zwamborn

Externe Beiträge Frau I. Zeegers, Portretten in Woorden

Frau Dr. Dipl.-Ing. T.E. Pronk, KWR Watercycle Research Institute

Herausgeber RIWA-Rijn, Verband der Flusswasserwerke

Gestaltung Make My Day, Wormer

Druck Make My Day, Wormer

Fotografie Hitman Fotografie, Utrecht

Ricardo Smit, PhotoFlight Pure Fotografie, Houten RIWA-Rhein, Nieuwegein

ISBN/EAN 978-90-6683-175-9

Publikationsdatum September 2019